
Research Article

Akshay KC, Balachandra Muniyal*, and Vikalp Parashar

Optimizing data retrieval for enhanced data
integrity verification in cloud environments

https://doi.org/10.1515/eng-2024-0058
received November 27, 2023; accepted June 07, 2024

Abstract: In today’s rapidly evolving digital landscape, the
urgency to secure data within expansive cloud storage sys-
tems has reached unprecedented levels. Conventional remote
storagemethods, while widely used, are inherently vulnerable
to security breaches, corruption, and tampering. Recognizing
this critical challenge, a state-of-the-art protocol has emerged
to address these vulnerabilities head-on. This innovative solu-
tion integrates a sophisticated binary search tree (BST) struc-
ture with elliptic curve cryptography, ensuring not only
efficient data retrieval but also robust encryption mechan-
isms. The protocol goes further by meticulously computing
secure hashing algorithm hash values to verify the integrity
of files, leaving no room for unauthorized modifications or
tampering attempts. A thorough comprehensive bench-
marking analysis has been conducted comparing this protocol
with established techniques such as Rivest, Shamir, Adleman
encryption and doubly linked list-based index table structures.
The findings reveal that the proposed protocol outperforms
these conventional methods, showcasing superior security
features and computational efficiency. Remarkably, the pro-
posed method reduces overheads by an impressive 5%,
making it a highly favorable choice for both businesses
and academic institutions. This marks a significant advance-
ment toward fortified data security in cloud environments,
contributing substantially to the ongoing discourse on secure
data storage and management.

Keywords: cloud security, information security, cloud auditing,
cloud computing, cryptography, elliptic curve encryption, data
integrity verification

1 Introduction

The escalating growth of data transfers due to increasing
internet connectivity has led to an unprecedented surge in
data production and exchange. Over the past 5 years
(2020–2024), the volume of generated data has exceeded
that of the entire preceding decade (2010–2019), with pro-
jections indicating a further exponential increase. By 2025,
the global data creation is anticipated to surpass 181 zetta-
bytes, as depicted in Figure 1.

This rapid expansion in data creation has posed signifi-
cant challenges for organizations in meeting their data sto-
rage requirements. As a result, cloud storage has emerged as
a viable solution, albeit accompanied by new security consid-
erations that demand careful attention. With a substantial
adoption of cloud computing among enterprises, the impor-
tance of robust cloud security measures cannot be overstated.
Forecasts by Gartner suggest a notable growth of 23.1% in the
global market for public cloud services by 2025 [1].

Despite the advantages offered by cloud-based envir-
onments, concerns persist among information technology
professionals regarding the secure transfer of sensitive
data to the cloud, encompassing issues related to security
protocols, governance, and regulatory compliance. The
potential risks of inadvertent data exposure or cyber
attacks leading to the compromise of confidential corpo-
rate data and intellectual property are significant and
require proactive mitigation strategies.

In this context, data auditing plays a pivotal role in
evaluating the accuracy, reliability, and security of data
throughout its lifecycle. It helps to prevent the spread of
poor data quality and security issues throughout an orga-
nization [2]. There have been numerous methods proposed
for dynamic auditing in the past, including those proposed
in previous studies [3–7]. While these methods claim to
reduce computational cost, the communication cost remains

Akshay KC: Department of Information and Communication Technology,
Manipal Institute of Technology, Manipal Academy of Higher Education,
Manipal – 576104, Karnataka, India,
e-mail: akshay.kc@manipal.edu



* Corresponding author: Balachandra Muniyal, Department of
Information and Communication Technology, Manipal Institute of
Technology, Manipal Academy of Higher Education, Manipal – 576104,
Karnataka, India, e-mail: bala.chandra@manipal.edu

Vikalp Parashar: Department of Information and Communication
Technology, Manipal Institute of Technology, Manipal Academy
of Higher Education, Manipal – 576104, Karnataka, India,
e-mail: vparashar0299@gmail.com

Open Engineering 2024; 14: 20240058

Open Access. © 2024 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License.

https://doi.org/10.1515/eng-2024-0058
mailto:akshay.kc@manipal.edu
mailto:bala.chandra@manipal.edu
mailto:vparashar0299@gmail.com

a challenge in these methods. Hence, there is a pressing
need to devise an enhanced model for data integrity audits
that effectively balances data security and accessibility. The
proposed binary search tree (BST)-based model aims to
achieve this equilibrium by implementing a robust encryp-
tion mechanism to ensure the security and confidentiality of
information stored on remote servers. This approach facil-
itates secure data storage while facilitating essential data
integrity audits, thereby addressing critical concerns and
advancing best practices in cloud-based data management
and security.

The ultimate goal is to provide a solution that enables
organizations to securely store their data on remote ser-
vers with confidence, knowing that their information is
safeguarded by robust encryption mechanisms and that
regular data audits can be conducted to ensure data integ-
rity. In the context of escalating reliance on cloud-based
storage solutions, effective data security measures have
become increasingly critical. The proposed BST-based
model directly addresses this need, offering a practical
and efficient solution for organizations looking to protect
their sensitive information in the cloud. By optimizing
data retrieval processes and enhancing data integrity ver-
ification mechanisms, it will contribute significantly to
the field of cloud data management and security. It under-
scores the relevance and importance of the research in
optimizing data retrieval processes to achieve enhanced
data integrity verification in cloud environments, thereby
addressing key challenges and making substantial contri-
butions to the field.

1.1 Research contribution

The proposed study presents a comprehensive contribu-
tion to the field of data integrity verification in cloud envir-
onments. The key contributions are highlighted as follows:
1) A novel system for verifying the integrity of data stored

in the cloud environment is devised. This system is a
significant improvement over the existing methods and
enhances the overall reliability of cloud storage systems.

2) In the proposed approach, the BST data structure for
data insertion, deletion, updation, and auditing has
been utilized in the cloud environment. This leads to
improved performance and efficiency in managing the
data stored in the cloud.

3) The work described in this article has been thoroughly
analyzed for various security threats, and countermeasures
have been proposed tomitigate these risks. This ensures that
the data stored in the cloud is protected against unauthor-
ized access, tampering, and other security threats.

4) To confirm the effectiveness of the proposed method, a
statistical analysis is conducted, which shows that the pro-
posed approach outperforms the existing works in terms of
data integrity verification in the cloud environment.

1.2 Organization of this article

Section 2 reviews relevant literature on data auditing pro-
tocols, summarizing prior research efforts aimed at enhan-
cing data storage and protection on remote servers. In

Figure 1: Exponential growth in the amount of data created by 2025 [8].

2  Akshay KC et al.

Section 3, the key research contributions are highlighted
showcasing novel approaches, innovative techniques, and
insights addressing existing literature gaps to provide new
perspectives for future work. Section 4 provides essential
background knowledge for implementing the proposed
approach, explaining preliminary concepts and secure
assumptions to establish a strong foundation for under-
standing later technical details. Section 5 thoroughly exam-
ines the proposed method, breaking it down into parts
covering system design aspects, workflow, architecture,
and visual aids to elucidate component interactions. It
offers a comprehensive understanding of how the method
addresses challenges and requirements outlined in Section 1.
Section 6 provides the assessment of security threats to the
proposed system. It also offers a detailed analysis of mitiga-
tion measures emphasizing the importance of the robust
security for data protection and system integrity. Section 7
compares the components of the proposed model with other
existing models, highlighting the advantages and super-
iority. Section 8 offers a comprehensive conclusion, sum-
marizing findings, strengths, and future potential of the
proposed method. It also identifies areas for improvement
and extension.

2 Literature survey

This section details about the past works and recent advance-
mentsmade in the domain of data integrity check in the cloud
environment. These works have been categorized under var-
ious schemes or methods used for integrity verification pro-
cess. The goal is to present contemporary literature in the
field, discuss its design and implementation, and highlight
the research gaps that have necessitated this work.

2.1 Conventional schemes

Ateniese et al. [9] introduced the concept of the “provable
data protocol (PDP),” which allows a client to verify that
the original data are stored on an untrusted server without
retrieving it. On the other hand, Juels et al. [10] proposed a
work called “proof of retrievability (PoR),” which not only
verifies the integrity of the data but also ensures that it can
be retrieved from the cloud through an error-correcting
method.

Liu and Zic [11] introduced a PoR scheme built on
homomorphic encryption. The PoR scheme allows for the
retrieval of homomorphically encrypted data through the

generation of probabilistic and homomorphic message
authenticators, allowing for direct handling of the encrypted
data by the cloud. The integrity of outsourced computations
can also be verified by the PoR scheme. The researchers
developed a prototype to test the scheme; however, no com-
parison was made to any existing work.

2.2 Schemes based on Merkle hash
tree (MHT)

Wang et al. [4] proposed a protocol that balances both
public auditing and dynamic information management. It
uses a combination of Boneh–Lynn–Shacham (BLS) [12]
signatures and MHT. While this protocol ensures data
integrity, it falls short in providing privacy for information
stored in remote storage.

Luo [13] improved the prior privacy-preserving model
and proposed an effective integrity check technique of
cloud data based on signature (BLS) that secures both
public access and data privacy.

Du et al. [14] proposed a cost-effective solution for file
storage that combines proof of ownership and retrieva-
bility. The files are encoded using erasure coding, and
the use of Merkle trees and homomorphic verifiable tags
reduces computation costs, particularly for large files.
However, this approach increases storage costs.

2.3 Schemes with third-party auditor (TPA)

Kwon et al. [15] presented a review system for dynamic
distributed information in cloud storage, which involves
a third-party reviewer and a record table. The uploader
must split the information into chunks, label them, and
direct them to the clients for sharing. The uploader can
also confirm the information with the third-party inspector.
However, this approach incurs high communication costs
due to the frequent exchange of messages between clients
and data uploaders, and this also results in increased sto-
rage expenses for the third-party inspector. Every time the
information is updated, the record table must also be
updated by the third-party inspector.

More and Chaudhari [16] presented a strategy in which
information is encrypted at the owner’s side by dividing it
into chunks and applying scrambling, producing hash
labels for each chunk. The hash labels are then used to
generate a signature for the specific owner. However,
this approach requires more time and involves multiple

Optimizing data retrieval for enhanced data integrity verification  3

steps on the owner’s side. The proposed scheme also
involves verification by a third-party analyst, who must
recreate the steps performed by the owner to cross-verify
the digital signature, adding an additional layer of security.

The aim of Shah et al. [17] was to develop and intro-
duce a TPA in cloud storage to enhance security and main-
tain data integrity. The TPA is noted for its adaptability and
ease of use. The authors claimed that the TPA can effec-
tively perform simultaneous reviews for multiple clients
and verify the integrity of information stored in the cloud.
The study suggests that the proposed protocol is secure and
well structured; however, the computational cost needed
for implementation is not explicitly stated in this article.

2.4 Schemes without TPA

Yuan et al. in their study [18] proposed a strategy to
enhance integrity of information sharing activities in the
cloud. This strategy takes into account various important
aspects such as client disavowal, open examination, multi-
user adjustment, increased error detection probability,
and efficient computational and communication auditing
execution. The proposed approach is designed to resist
client impersonation attacks and enables multiple clients
to collaborate on data without the risk of impersonation or
data theft or modification. However, the computational
cost of implementing the proposed protocol is not specified
in this article.

Zargad et al. [19] presented a dynamic encryption
approach for cloud storage without the use of a neutral
reviewer. According to the proposed method, the judgment
of the information is lost when it is outsourced to the cloud.
Whenever there is a security threat, an encryption method
is applied based on the type and size of the information
stored. The method employs an executor, such as a proxy
server, to handle incorrect additions or alterations, but it
lacks a proper mechanism for key management, which is
an important aspect of secure information storage in the
cloud.

Kaaniche in her dissertation [20] proposed a design for
ensuring the integrity of information in a public network
sharing setup. She proposed a system called “cloudasec” that
verifies information ownership using set homomorphic ver-
ification and zero-knowledge proof techniques. Although
the proposal highlights the importance of remote informa-
tion checks in a cloud environment, it lacks a comprehen-
sive overview of dynamic information corroborations.

Li et al. [21] presented a secure and lightweight infor-
mation sharing scheme for mobile computing. They used

ciphertext policy-attribute-based encryption (CP-ABE) in a
cloud environment as an access control technique. The
implementation was based on the access control tree con-
cept, and the team used the description fields to implement
the lazy revocation method. The study reported that the
overhead or processing time is reduced on mobile devices
when information is distributed in the mobile cloud envir-
onment. However, the computational cost required to
implement the protocol is not clearly stated.

Anisetti et al. in their work [22] aimed to provide a
persistent cloud service certification framework that would
meet non-functional requirements as defined by a certifica-
tion model and specialist. The framework relies on a chain
of trust, established through the comparison of the require-
ments and models. However, the authors do not address the
computational and communication cost required to imple-
ment the certification scheme.

Mrinal et al. [23] proposed a technique to maintain the
authenticity of information during transmission by hiding
the information behind an image. The approach focuses on
ensuring the integrity of the information, but it does not
provide a solution for the confidentiality of the information.

Sun et al. [24] presented an open data integrity verifi-
cation scheme that uses cryptographic indistinguishability
obfuscation. The scheme aims to hide users’ secret data
from the cloud server by embedding it into a scrambled
program. However, the computational cost required to
implement this scheme is not mentioned in the study.

Wang and Di [25] presented a multi-agent-based cloud
storage system that implements a multi-copy data integrity
check method. They utilized the bi-linear mapping method
to generate the keys, and a multi-branch tree for authenti-
cation was proposed to perform signing, validation, and
confirmation through multi-copy data signatures. The allo-
cation of resources and workflow was based on quality of
service (QoS) and represented through a directed acyclic
graph (DAG). The jobs were scheduled based on the QoS
preference settings.

Ganesh and Manikandan [26] presented a scheme for
verifying the remote information stored in public clouds,
specifically designed for mobile users. They claimed that the
communication and computation overhead was reduced
compared to previous works. The authentication process
was carried out during the auditing, modification, deletion,
and insertion of blocks.

Chidambaram et al. [27] proposed a scheme for secure
storage of customer data in the cloud. They utilized the
Rivest, Shamir, Adleman (RSA) algorithm and digital fin-
gerprint generated using the MD5 hash function. The
authors claimed that data encrypted with the RSA algo-
rithm cannot be modified by a third party.

4  Akshay KC et al.

Zhong et al. [28] developed an information-theoretic
safe proof of ownership mechanism for file rating. The K-
means technique was integrated with file rating, and the use
of random seed technology and pre-calculation approach
was proposed to provide a secure and fast proof of owner-
ship mechanism.

2.5 Schemes with other structures

Canto et al. [29] presented the methods for creating secure
key generators for code-based post-quantum cryptosystems
on field programmable gate arrays (FPGA) platforms. It
focuses on ensuring reliable key generation, critical for
system security. The study discusses optimizations leveraging
FPGA parallelism. However, it may not extensively cover
potential limitations, such as resource constraints or perfor-
mance trade-offs, inherent in FPGA-based implementations.

Chen et al. [30] put forth a groundbreaking public
auditing protocol based on the adjacency-hash table. This
new protocol was designed to be more efficient in terms of
dynamic auditing and data updating when compared to
the existing methods available at that time. The authors
claimed that this protocol outperformed the state of the
art methods in these aspects.

Koziel et al. [31] discussed a highly efficient implemen-
tation of the supersingular isogeny Diffie–Hellman key
exchange protocol on advanced RISC machine (ARM) pro-
cessors. It focuses on optimizing the protocol’s perfor-
mance on ARM-based devices, which are commonly used
in mobile and embedded systems. The study likely covers
techniques and optimizations to leverage ARM’s neon tech-
nology for enhanced performance. However, a potential limita-
tion of this work could be its applicability to specific ARM
architectures or limitations in scalability to larger systems
beyond mobile or embedded devices.

Kermani et al. [32] explored integrating security
research and education for new medical devices. It
addresses interdisciplinary strategies for tackling security
concerns. However, a limitation could be the complexity of
merging diverse expertise, such as medical, engineering,
and cybersecurity, which might hinder comprehensive
security solutions, and on the other hand, Kermani [33]
focused on detecting faults in very large scale integration
implementations of advanced encryption standard (AES)
encryption. It presents schemes to mitigate faults affecting
AES’ performance, but a limitation may arise from the
trade-offs between fault detection accuracy and overhead.
More robust detection methods could demand additional
hardware resources, impacting efficiency in terms of per-
formance or area.

Yan [34] proposed a secure and efficient data exchange
solution for dynamic user groups. To ensure user identification
tracking and handle the addition and removal of dynamic
users, Yan introduced the concept of a rights distribution
center (RDC). The RDC role was designed to protect the privacy
of user identities during a third-party audit of data integrity,
thereby increasing the fairness of the audit and establishing a
new approach to verifying the integrity of shared cloud data.

Chandel et al. [35] conducted a study comparing the
time complexity of RSA and elliptic curve cryptography
(ECC) algorithms for encrypting and decrypting data. They
found that the time required for RSA grows logarithmically
as the amount of data to be encrypted increases, while the
time complexity of ECC remains relatively constant.

Niasar et al. [36] focused on enhancing the perfor-
mance of ECC specifically for Curve448. It discusses opti-
mizations in hardware architectures or algorithms to
speed up ECC operations on Curve448, which is crucial
for secure communications protocols. However, previous
studies [37–40] explored dependable architectures for
finite field multipliers, emphasizing their implementation
using cyclic codes on FPGA platforms. These architectures
are vital in both classic and post-quantum cryptography
systems. All of these articles contribute to improving the
efficiency, reliability, and security of cryptographic opera-
tions, addressing key challenges in modern cryptographic
implementations.

Mozaffari-Kermani et al. [41] discussed crucial aspects
such as protecting sensitive medical data, securing medical
devices, and fortifying healthcare infrastructure against
cyber threats. The collection aims to underscore the growing
significance of security in biomedical contexts and offers
insights into current challenges and potential solutions
within this dynamic field, whereas Karam et al. [42] dis-
cussed the significance of hands-on learning in hardware
security, especially during a time when traditional in-person
education is limited. However, a limitation of the study is
that it may not yet have comprehensive results or evalua-
tions due to its work-in-progress nature. Nonetheless, it
offers valuable insights into innovative strategies for addres-
sing educational challenges in hardware security during the
pandemic.

The field of cloud data integrity has seen a significant
amount of research over the years, resulting in the pro-
posal of various methods and works aimed at ensuring
the accuracy and reliability of data stored in the cloud.
However, many of these works only focused on verifying
the integrity of static data, while others relied on TPAs to
carry out the check. This means that the owner or user of
the data must first request the integrity check, which then
triggers the TPA to conduct the audit. This process also

Optimizing data retrieval for enhanced data integrity verification  5

involves a significant amount of communication between
the TPA and the owner to verify the ownership of the data
and retrieve it, adding to the overall cost of the data
integrity check. The BST-based model presented in this
article aims to enhance the integrity check process while
simultaneously reducing communication costs.

3 Background

Users may have significant assets stored in the cloud. Cloud
service providers (CSPs) offer ample storage space and
large-scale computing mechanisms to support these assets.
However, to ensure the integrity and reliability of the data,
cloud auditors are tasked with auditing on behalf of the
users and providing fair and sincere results. Dos outsource
their data to CSPs to take advantage of reliable remote
storage and high-performance services while reducing
their own storage and maintenance overhead. Since the
data are stored in the cloud rather than the owner’s local
systems, the owner must rely on the CSP to maintain the
integrity and properness of the data.

Although cloud auditors are considered trusted and
credible parties, there is always the possibility of them
being curious about the private information of users or
owners, despite their fair and credible audit practices.
This curiosity may lead them to attempt to deduce the
contents of the data being stored.

Additionally, CSPs are not always trustworthy. They
may have various reasons, such as protecting their reputa-
tion or gaining benefits, to not reveal the loss or manipula-
tion of data. In some cases, CSPs may even attempt to
launch attacks on cloud auditors.

However, for the work discussed in this article, there
are some secure assumptions made that serve as the foun-
dation for the security of the proposed work.
• Computational Diffie–Hellman (CDH) assumption: Let G

be a multiplicative cyclic group of a large prime order p,
where g is a generator of G and x , ∈y Zp. It is consid-
ered computationally intractable to compute gxy when
gx and g y are given. Specifically, for any probabilistic
polynomial-time adversary ϕ, the probability of solving
the CDH problem is negligible, as expressed by the
inequality:

∈ ⇒ ∈ ∀ ∈ ≤P ϕ g g g G g G x y Z ε, , : , .

x y xy
p

CDH

(()) (1)

This indicates that the security of the system is based on
the assumption that CDH is a difficult problem to solve.

• Discrete logarithm (DL) assumption: assuming G is the
multiplicative cyclic group of a large prime order p, where

g is a generator ofG, and given a value k such that =k gx ,
where ∈x Zp, it is considered computationally intract-
able to determine x . In other words, the probability of
solving the DL problem is negligible for any probabil-
istic polynomial-time adversary ϕ, as expressed by the
inequality:

∈ ⇒ ∈ = ≤P ϕ g k G x Z k g ε, , .
DL

x(()) (2)

This indicates that the security of the system is based on
the assumption that solving the DL problem is difficult.

Moreover, the proposed work employs elliptic curve-
integrated encryption scheme as the encryption technique
to safeguard the files. A random generator point G con-
strained by n (the order) is selected such that G has a
double, i.e., if we add G to itself, the new point created
must lie on the curve; G must also be additive, such that
if another point F on the curve is added to G, the resultant
point must likewise be on the curve. Finally, G should have
an inverse, i.e., given the symmetry of the elliptic curve
about the x -axis, if G lies on the positive y-axis, it should
be projected to the negative y-axis on the curve and vice-
versa. Now, a huge integer K , where K is the system’s
private key, is used as the multiplicand and multiplied
by G.

K multiplied by G is equivalent to G being added to
itself K times, and the resultant point P is the public key
(PK) used to encrypt the message. The elliptic curve taken
in this model is secp256r1. The following is the general
function of the elliptic curve:

= + +y x ax b.

2 3

And, this here is the secp256r1 curve = +y x 7

2 3 ,
where =a 0 and =b 7

=n 11579208921035624876269744694940757352999695522

4135760342422259061068512044369

= =

=

G x

y

484395612939064517590525852527979142027629

49526041747995844080717082404635286,

3613425095674979579858512791958788195661110667

2985015071877198253568414405109 .

{

}

Even though there are various cryptographic hash
functions designed to generate fixed-size hash values
(digests) from input data such as BLAKE [43] in quantum
cryptographical aspects, the proposed work uses secure
hashing algorithm (SHA)-2. It is a standardized method
and has a higher level of compatibility due to its wide-
spread adoption, and integration into protocols and
standards.

6  Akshay KC et al.

4 Methodology

This section describes the methodology that is followed to
realize the proposed work considering the background
mentioned in Section 3.

4.1 Architecture of BST-based model

In the proposed BST-based model there are three primary
entities: DO, CSP, and auditor. Figure 2 depicts the overall
architecture of the BST-based model with the functions of
each primary entity.
• CSP: The CSP is a remote storage unit whose only respon-
sibility is to store the received files. It provides the
response when it is challenged by the auditor in refer-
ence to a file. When the file is requested by the auditor, it
sends the corresponding file to the auditor. The BST
model begins with CSP launching its storage server, as
shown in Figure 3, and goes to listening mode.

• DO: This module represents the user side of the model. It
manages all the invocation of input-output operations
for the user, including insertion, deletion, update, and
audit. Additionally, the DO will encrypt a new file using
its private key generated using elliptic curve encryption
technique before calculating the SHA-2 hash.

• Auditor: This module is the system that performs the
auditing process. It acts as a mediator and interaction
point between the DO and CSP. It also does most of the
work in the BST model. It manages the insertion, deletion,
and modification of files stored in CSP. It records the user’s
user ID (UID), IP address, and password for authentication
purposes. It further maintains the file metadata for each

user, including hash, version number, and file ID (FID). The
storage of these data is performed using BST of BST
method, which is explained in Section 4.2. This module
initializes the BST by pulling data from the database and
starts the server to go to the listening mode as shown in
Figure 4.

• If a user submits an audit request, the auditor sends a
challenge to the CSP, which in turn sends the response of
the existence of the file and then sends the requested file
to the auditor. The auditor in turn calculates the SHA-2
hash and compares it with the hash stored in the system.
Based on the result of this comparison, the auditor
informs the user whether the file is safe.

Figure 2: Architecture of the BST-based model.

Figure 3: Workflow of CSP.

Optimizing data retrieval for enhanced data integrity verification  7

4.2 Overview of BST of BST structure

This structure is the core of auditor module. As the name
indicates, there are two BSTs that are connected such that
the first tree us a user tree where each node of represents
an individual user. The user nodes include the user’s UID
and IP address. It also has three other pointers, of which
the first two are conventional left and right child pointers,
while the third is a reference to the user’s file tree as
indicated by the dotted arrow in Figure 5.

Algorithm 1 shows the steps involved in generating the
BST of BST structure whenever there is a new user joining
the system.

Algorithm 1 Creation of user BST.

1: function INSERTUSER (userId, key)
2: root ← INSERTUSERNODE (root, userId, key)
3: end function
4: function INSERTUSERNODE (root, userId, key)
5: if root is null then
6: return new UserNode (userId, key)
7: end if
8: if key < root.key then
9: root.left ← INSERTUSERNODE (root.left, userId, key)
10: else if key > root.key then
11: root.right ← INSERTUSERNODE (root.right,

userId, key)
12: end if
13: return root
14: end function

Each file uploaded to the CSP is referenced via the file
tree, as shown in Figure 6. Each node represents a file and
holds its FID, hash, and version number. It also contains
two conventional pointers to the node’s left and right chil-
dren. The UIDs and FIDs determine the structure of the
trees.

Algorithm 2 depicts the creation of the file BST after
searching the user BST for the user

Algorithm 2 Creation of file BST

1 : function SEARCHUSER (root, userId)
2 : if root is null or root.userId = userId then
3 : return root
4 : end if
5 : if userId < root.userId then
6 : return SEARCHUSER (root.left, userId)
7 : else

8 : return SEARCHUSER (root.right, userId)
9 : end if
10 : end function
11 : function INSERTFILE (userId, fileId, versionNumber,

timestamp)
12 : userNode ← SEARCHUSER (root, userId)
13 : if userNode is not null then
14 : userNode.fileRoot ← INSERTFILENODE

(userNode.fileRoot, fileId, versionNumber,
timestamp)

15 : end if
16 : end function
17 : function INSERTFILENODE (root, fileId,

versionNumber, timestamp)
18 : if root is null then
19 : return new FileNode(fileId, versionNumber,

timestamp)
20 : end if
21 : if fileId < root.fileId then
22 : root.left ← INSERTFILENODE (root.left, fileId,

versionNumber, timestamp)
23 : else if fileId > root.fileId then
24 : root.right ← INSERTFILENODE (root.right, fileId,

versionNumber, timestamp)
25 : end if
26 : return root
27 : end function

To insert a new node, an ID comparison is performed,
and traversal through the tree leads to the pointer where
the new node must be connected. If the node being deleted
is a leaf node, straightforward deletion will occur. If the
child on the right does not exist, the child on the left will
take its place. If the child to the left does not exist, the child
to the immediate right will take its place. In all other cir-
cumstances, the node with the least value on the right child
will replace the current node, and for a file update, the
hash value and version of the relevant node will be
replaced with the new values. Once the CSP and auditor
start and go to the listening mode, the DO attempts to con-
nect with the auditor server, as shown in Figure 7.

4.3 Process framework

After a link or a session has been established, the auditor
inquires whether the user is new. If the user responds
affirmatively, auditor provides the user with a UID and
password; otherwise, it requests the UID and password
from the user. The auditor then compares the UID and

8  Akshay KC et al.

Figure 5: User tree and single BST node.

Figure 6: File tree and single file node.

Figure 4: Workflow of auditor.

Optimizing data retrieval for enhanced data integrity verification  9

password up to three times and blocks the connection from
the incoming IP if the comparison fails. If the connection is
successful, the user can perform the following operations
or requests.

4.3.1 Insert

The insert file operation is storing the file into CSP. To
perform this operation, the DO, first will encrypt the file

and generate SHA-2 hash of the corresponding file. This
encrypted file is then transmitted to the auditor along
with the hash of the file. The auditor generates a random
FID and returns the FID to the DO. It then searches the BST
for the UID and then traverses through the file BST of the
user to then store the received information such as hash,
version, and FID of the respective user. It will create con-
nection to the CSP and transmit the file to be saved in the
CSP using the UID as the document number and FID as file
number.

Figure 7: Workflow of DO.

10  Akshay KC et al.

4.3.2 Delete

If the DO chooses the delete operation, then DO must enter
the FID and submit it to the auditor. The auditor in turn
searches the user BST for the UID and then searches the file
BST to delete the file’s information from the tree. It also
requests the CSP to remove the files from the storage.

4.3.3 Update

If the user chooses the update operation, then the updated
or modified file is encrypted at the user’s end and run
through hash function to generate the corresponding hash.
It then sends the data to the auditor along with the FID. The
auditor searches for the file in the BST and then updates the
metadata of the file with an increment in the version number
of the file. It then sends the file to CSP where the existing file
is overwritten.

4.3.4 Audit

During the auditing process, the DO will transmit the FID to
be audited, while the auditor will request the file from the
CSP using the UID and the FID. In the process, the generation
of the challenge involves creating a set of file numbers to be
verified, denoted as C = fid, ≤ c1 , ≤c n, and selecting a
random file number from the set, denoted as = ∈S s i C,i .
Additionally, a random number ∈ρ Z is generated, and g is
raised to the power of ρ, denoted as =ξ gρ. The cloud auditor
then calculates y raised to the power of ρ, denoted as =η yρ,
for use in verification. The challenge is then sent to the CSP,

who generates a proof and returns the result to the cloud
auditor for verification.

Once the auditor obtains the file from the CSP, it will
compute the following equation to verify the proof sent
from CSP:

= λ e u v ρTP . , , .

ρ H v t s M.i i i()(‖) (3)

If Equation (3) is proven to be correct, then the data integrity
verification process is considered to be succeeded. The ver-
ification process is in par with the file’s SHA-2 hash and
compare it to the hash contained in the file node in the
BST. If the calculated hash matches the hash stored in the
BST, then the file has not been altered since it was stored in
the cloud. On the other hand, if the calculated hash does not
match the hash stored in the BST, then it indicates that the
file has been modified since it was last stored in the cloud,
and appropriate measures can be taken to address the issue.
Figure 8 describes the auditing process followed in the pro-
posed work. Table 1 summarizes the steps involved in the
auditing process.

This approach of comparing hash values ensures the
integrity of the file and is a widely adopted practice for file
verification in various domains. By following this process,
the auditor can ensure that the data has not been tampered
with, and the DO can be assured that their data remains
secure and unaltered in the cloud.

On the other hand, after receiving the challenge from
the cloud auditor, the CSP generates a response proof, con-
sisting of three parts: tag proof, file proof, and auxiliary
auditing proof. The tag proof, given by the equation

∏=
∈

e σ ρTP , ,

i C

i
si() (4)

Figure 8: Steps involved in auditing process.

Optimizing data retrieval for enhanced data integrity verification  11

is computed by taking the product of the pairing between
the signature σi and the random number ρ, raised to the
power of the corresponding element si in set S . The file
proof, given by the equation

∑= +
∈

M m s r. ,

i C

i (5)

is calculated by taking the sum of the product between the
file m and the element si, for each file i in set C , and adding
a random padding/mask r used to protect the data privacy.
Finally, the auxiliary proof is derived using the following
equation:

= −λ e v y, ,

r() (6)

where v is a verification key provided by the cloud auditor,
and y is the PK of the CSP. Once these values are computed,

the CSP sends the tuple M λTP, ,⟨ ⟩ to the cloud auditor for
verification.

4.3.5 Retrieve and display file list

The user may get their saved files using the retrieve option,
and when the file has been sent to the DO, the DO will
decrypt the file and store it in local storage. Using the
List file option, the user can see the files saved on the CSP.

5 Analysis and results obtained

This section provides the analysis of the BST-based model
in terms of correctness and resistance to forging attacks. It
also depicts the comparative results obtained for ECC and
RSA. The section concludes with the highlight that the BST-
based model outperforms the index-list based method
through a statistical analysis.

5.1 Threat analysis and mitigation

This section enumerates a comprehensive list of potential
threats that have been identified as potential vulnerabilities.

Table 1: Steps involved in auditing process

O:Epsk
(R)

→U
1

CA: Request R
Fid

CA → CSP: Challenge(Fid)
CSP → CA:Proof(Fid)
CSP → CA: Epsk

(R)

CA: Dpsu
(Epsk

(R))

CA: Generatehash(R)
CA: Verifyhash(R)
CA → U

1
: Epsk

(R) with integrity verification result

Figure 9: Generic threat model for BST-based model.

12  Akshay KC et al.

Additionally, it outlines corresponding mitigation methods
for each of these threats. To analyze the possible threats,
Microsoft threat modeling tool has been used. Figure 9
shows the generic threat model that has been used to iden-
tify the possible threats.

As described in the Section 4.1, there are three primitive
modules in the BST-based model. The DO encrypts the data,
generates the hash of the encrypted data, and sends the files
to the auditor. Once the auditor generates the file number, it
is sent back to the DO. Auditor has BST storage in it which
stores various metadata related to the user and the respec-
tive files of the users. It stores and fetches these data to and
from the BST of BST whenever the need arises. The CSP
module, in turn, stores the data that the auditor sends.
When the auditor sends the challenge to the CSP, it sends
the necessary response back to the auditor.

Table 2 summarizes the threats that were identified
along with the mitigation steps that were taken as a coun-
termeasure to overcome those threats.

Table 3 compares the BST-based structure doubly
linked list based index table (DLIT) structure with index-
based method in terms of whether the methods handle the
listed vulnerabilities or not.

Table 4 shows a comparison of communication cost in
terms of the various operations that are involved in var-
ious state of the arts.

5.2 Scheme analysis

This section confidently asserts the effectiveness of the
BST-based method against forging attacks and confirms
its correctness.

Correctness: The verification process of the owner’s
identity as a rightful cloud user is carried out with utmost
confidence via the signature scheme. Once the CSPs follow
the appropriate standards, passing the auditing process
becomes a guaranteed success. The file’s number, version
number, name, and timestamp are all utilized to create a
signature that is protected by the BLS signature against any
potential tampering

When data are sent from the auditor to the CSP for
verification, it is encrypted using a secret key to produce
Epsk . These encrypted data contain the PK, message digest,
file identifier, version number, and timestamp. If the data
are modified by an adversary, the version number and mes-
sage digest will change, resulting in incorrect encrypted data
(Epsk*). As a result, when the auditor receives tampered
data from the CSP and performs the check, it will fail if
either the message digest does not match or the timestamp
is different.

Table 2: Identified threats and their mitigation steps in BST-based
model

Threats Mitigations in BST-based method

Spoofing 1. Authentication mechanism has
been used
2. Encryption to protect the data

Tampering 1. Appropriate authorization
2. Hashes have been used
3. Use of suitable tamper-resistant
protocols

Repudiation 1. Digital signatures have been used.
2. Version numbers
3. Timestamps

Information disclosure 1. Authorization techniques
2. Encryption

Denial of service 1. Authentication
2. Authorization
3. QoS

Elevation of privilege 1. Run with least privilege
Impersonation 1. Authentication

2. Authorization
Eavesdropping 1. SSL-encrypted network traffic

2. Certificate check when connection is
established between the parties

Table 3: Comparison of various state of arts with the BST of BST method

Techniques Public auditing Data privacy Dynamic auditing

PDP [3] √ × ×
PoR [14] × NoD ×
IHT-PA [5] √ √ √
DAP [44] √ √ √
DPDP [3] × NoD √
DHT-PA [6] √ √ √
DLIT-PA [7] √ × √
AHT-PA [30] √ √ √
BST-based √ √ √

√ : “Supports”; ×: “Does not support”; NoD: “Not defined/no demand”.

Table 4: Comparison of communication costs of various state of the arts

Methods Search Insert Delete Update Audit

PDP [3] × × × × ×
PoR [14] × × × × ×
IHT-PA [5] × × × O(1) O(c)
DAP [44] × × × × ×
DHT-PA [6] × × × O(1) O(c)
DLIT-PA [7] × × × O(1) O(c)
AHT-PA [30] O(n) O(1) O(1) O(1) O(c)
BST-based O(log n) O(1) O(1) O(1) O(c)

√ : “Supports”; ×: “Does not support/not defined/no demand”.

Optimizing data retrieval for enhanced data integrity verification  13

To verify the accuracy of the CSP’s response, the
lambda value of the response is analyzed. This value is
denoted as () =λ e u v ρ. . , TP

ρ H v t s M.i i i(‖) , where TP is the
tag proof. If the auxiliary proof is incorrect, the verification
formula (4) will not hold. The BLS signature scheme ensures
that the tag-proof TP cannot be forged.

Resistance to forging attacks: The block proof M is
proven to be unforgeable, as demonstrated below. Let us
assume that a false proof is submitted to the cloud auditor
by the CSP (TP, M*, λ), where

∑ ∑= + ≠ = +
∈ ∈

M m s r M m s r. . .

i C

i

i C

i (7)

If the CSP successfully passes the verification, the fol-
lowing equation holds for valid proofs:

= ∑− +∈

λ e u v ρ

e v y e u v ρ

. . ,

, . . , .

ρ H v t s M

r H v t s m s r

.

. .

i i i

i i i i C i

()

() ()

(‖)

(‖)
(8)

This equation readily refutes the presumption made in
the false proof, proving that forging attacks are effectively
counteracted. Furthermore, as Shen et al. [7] have explained,

replay and replacing attacks can be effectively blocked or
halted.

5.3 Performance analysis

5.3.1 RSA vs ECC

The Table 5 demonstrates that ECC provides better security
than RSA, even with significantly smaller key sizes.

To demonstrate that it is a faster encryption system,
both encryption systems were compared by encrypting files
with 300 byte size increments in each iteration, recording
the time required to complete them. The results were
charted and two cases were presented: one with the same
degree of security as shown in Figure 10 and another with
the same key size as shown in Figure 11.

The graphs demonstrate that ECC surpasses RSA in
every category, including security and performance.

5.3.2 BST of BST vs DLIT

This section details the space complexity and time com-
plexity concerning the BST-based method and DLIT method.

5.3.2.1 Space complexity
The space utilization of both algorithms is directly propor-
tional to the number of nodes present in the data structure.
This is because the creation of a new node requires an
allocation of memory of the size of one node class every

Table 5: RSA vs ECC

Security (in Bits) RSA key length
required

ECC key length
required

80 1,024 160–223
112 2,048 224–255
128 3,072 256–383
192 7,680 384–511
256 15,360 512+

Figure 10: RSA 3072 vs ECC 256.

14  Akshay KC et al.

time it is generated. As a result, at any given moment, the
stack allocation of both data structures will be equivalent
to the number of nodes present. Therefore, the space com-
plexity of both algorithms can be represented by the
expression O n(), where n signifies the number of nodes
in the data structure.

5.3.2.2 Time complexity
The algorithm for BST implements a divide-and-conquer
strategy, where both the tree and search set are iteratively
halved. This results in an average time complexity of
O nlog(). To locate a specific file node, the process involves
traversing the user tree to find the corresponding user
node, followed by traversing the file tree to access the
desired file node. As a result of this two-step process, the
overall average time complexity of the BST algorithm is

estimated to be O n mlog *log(), where n represents the
number of user nodes and m represents the number of
file nodes.

A linked list is a data structure in which each node is
connected to the next node using a pointer. To locate a
specific node in a linked list, one has to traverse each sub-
sequent node until the desired node is found. This traversal
process results in a time complexity of O n(), where n is the
number of nodes in the list.

When searching for a file node, the process becomes
even more time-consuming. The file node must be found by
first browsing through a linked list of user nodes and then
traversing the list of file nodes. This results in a time com-
plexity of O n2().

As depicted in Figure 12, the BST-based method per-
forms better than the index-based linked list method

Figure 11: RSA 521 vs ECC 521.

Figure 12: Comparison of index table method and BST method in seconds for auditing.

Optimizing data retrieval for enhanced data integrity verification  15

during the auditing process. The BST method has a faster
time complexity, making it more efficient in this scenario.

5.4 Statistical analysis

The efficacy of the proposed methods can be scientifically
evaluated through hypothesis testing, specifically analysis
of variance (ANOVA). Both methods were implemented
using a similar system setup and configuration to ensure
fair comparison.

The hypothesis for the validation is defined as follows:
H

0
states that there is no significant difference between

the index table method and the BST method,
H

1
states that there is a significant difference between

the two methods.
To determine which hypothesis holds true, ANOVA

was performed using the observed values for various
block-sized files, as presented in Table 6. These observa-
tions were made in terms of milliseconds for the auditing
process. The results of ANOVA will determine if there is a
significant difference in performance between the two pro-
posed methods.

Table 7 provides the details about the various factors
that are calculated.

Table 8 details about the prerequisite value calcula-
tions for the F-calculation of ANOVA.

From the prerequisite values calculated in Table 8, the
F-ratio is given by

- = =F ratio

MS between

MS within

20.34781. (9)

Therefore, F
calculated

is 20.34781. This value is then ver-
ified with the t-table where

=F 1, 18 4.4139.() (10)

Comparing the calculated and tabulated value of t-
statistic:

>F F .
calculated tabulated

(11)

The results of Equations (1) and (2) were substituted into
Equation (3), revealing that the calculated value of F

(F
calculated

) was higher than the tabulated value of F

(F
tabulated

). This indicates that the calculated value falls within
the rejection region; hence, the results reject the null hypoth-
esis with the significance level that falls below 5%. This rejec-
tion of the null hypothesis suggests that there is a significant
improvement in the execution time of the data integrity check
process when using the BST method.

In other words, the analysis demonstrates that the BST
method leads to a marked reduction in the execution time
required to perform the data integrity check process, com-
pared to traditional methods. This result supports the effec-
tiveness of the BST method in improving the efficiency of
data integrity checks in cloud environments.

6 Conclusion and future scope

6.1 Conclusion

In conclusion, the proposed study has focused on opti-
mizing data retrieval processes to bolster data integrity
verification in cloud environments. With the exponential

Table 6: Observed data in seconds

Index table method BST method

0.738012698 0.671239259
0.555915283 0.312453451
0.503742505 0.412434441
0.563627574 0.352145123
0.573763049 0.352454631
0.576584172 0.342455512
0.509596796 0.372431981
0.517415459 0.371424214
0.621983678 0.402987652
0.575574678 0.412612431

Table 7: Calculating the factors for ANOVA

Variables Equation Value obtained

Total, T 9.738854587
Number of samples, n 20
Correction factor, CF T

n

2 4.742264433

Total sum of square, SSTot ∑X ‒ij

T

n

2

2 0.283190861

Sum of squares between, SSbet ∑ ‒

T

n

T

n

j

j

2

2 0.150264495

Sum of squares within, SSWithin ∑ ∑X ‒ij

T

n

2
j

j

2 0.132926366

Table 8: Prerequisite values to calculate Fcalculated

Source of variation SS d.f MS

Between sample 143.937496 (2 ‒ 1) = 1 0.150264
Within sample 11.4724 (20 ‒ 2) = 18 0.007385
Total 0.283190861 (20 ‒ 1) = 19

16  Akshay KC et al.

growth of global data transfer, cloud data storage has
become a pivotal solution, necessitating robust mechan-
isms for maintaining data integrity.

The proposed methodology, centered around a data
integrity auditor framework, emphasizes efficient data
retrieval while ensuring enhanced data integrity verifica-
tion. By leveraging a BST for streamlined metadata man-
agement and employing ECC for secure data encryption,
our approach optimizes data retrieval processes crucial for
integrity verification.

Our comparative analysis against established methods
such RSA and index table-based DLIT showcases the effi-
ciency and security benefits of our proposed solution.
These findings underscore the significance of optimizing
data retrieval mechanisms to fortify data integrity verifica-
tion in cloud environments.

Furthermore, it contributes to the ongoing discourse
on cloud data management by providing a comprehensive
approach that addresses critical challenges in cloud-based
data storage and security. By optimizing data retrieval
processes, we not only enhance data integrity verification
but also pave the way for more efficient and secure cloud
data management practices.

Overall, the work underscores the importance of consid-
ering data retrieval optimization as a key aspect of ensuring
data integrity in cloud environments, highlighting avenues
for further research and development in this domain.

6.2 Future scope

This article provides a foundation for future work that can
be done on this model and system such as:
• Enhancing the security measures to provide an even
higher level of protection using Curve448 or Ed448.

• Enhancing the security measures of the hardwares used
in the system by testing for SIKE, Kyber on Cortex M4 or
ARM processors.

• Various fault detection techniques or error detectionmethods
for block ciphers such as Camilla, Midori cipher, Qualcomm
ARM Authenticator, or a stream cipher such as WAGE.

These improvements hold the promise of further advan-
cing the capabilities and potential of the model and system
presented in this work.

Acknowledgement: The authorswould like to thankDepartment
of Information andCommunication Technology,Manipal Institute
of Technology, Manipal Academy of Higher Education, Manipal,
for providing the required resources to conduct this experiment.

Funding information: The authors state no funding involved.

Author contributions: All authors have accepted responsi-
bility for the entire content of this manuscript and con-
sented to its submission to the journal, reviewed all the
results, and approved the final version of the manuscript.
AKC designed the experiments, conceptualized the models,
performed the field study, curated the data, prepared the
original draft of the article and validated. BM performed the
visualization, investigation, reviewed and edited the original
article and validated. VP contributed in realizing the meth-
odology, writing the article and validation.

Conflict of interest: The authors state no conflict of interest.

Data availability statement: Data sharing is not applicable
to this article as no datasets were generated or analyzed
during the current study. All data generated or analyzed
during this study are included in this published article.

References

[1] Gartner. Gartner Forecasts Worldwide Public Cloud End-
UserSpending to Grow 23% in 2021; [Cited 02 May 2022]. https://
www.gartner.com/en/newsroom/press-releases/2021-04-2-
gartner-forecasts-worldwide-public-cloud-end-user-spending-to-
grow-23-percent-in-2021.

[2] egnyte.com Data Auditing. [Cited 26 April 2021]. https://www.
egnyte.com/guides/governance/data-auditing.

[3] Erway CC, Küpçü A, Papamanthou C, Tamassia R. Dynamic provable
data possession. ACM Trans Inform Syst Security. 2015
Apr;17(4):1–29. doi: 10.1145/2699909.

[4] Wang Q, Wang C, Ren K, Lou W, Li J. Enabling public auditability and
data dynamics for storage security in cloud computing. IEEE Trans
Parallel Distributed Syst. 2011;22(5):847–59.

[5] Zhu Y, Ahn G, Hu H, Yau SS, An HG, Hu C. Dynamic audit services for
outsourced storages in clouds. IEEE Trans Services Comput.
2013;6(2):227–38.

[6] Tian H, Chen Y, Chang C, Jiang H, Huang Y, Chen Y, et al. Dynamic-
Hash-Table based public auditing for secure cloud storage. IEEE
Trans Services Comput. 2017;10(5):701–14.

[7] Shen J, Shen J, Chen X, Huang X, Susilo W. An efficient public
auditing protocol with novel dynamic structure for cloud data. IEEE
Trans Inform Forensics Security. 2017;12(10):2402–15.

[8] S. R. Department. Volume of data/information created, captured, copied,
and consumed worldwide from 2010 to 2025. [Cited March 2022].
https://www.statista.com/statistics/871513/worldwide-data-created/.

[9] Ateniese G, Burns R, Curtmola R, Herring J, Kissner L, Peterson Z,
et al. Provable data possession at untrusted stores. Proceedings of
the 14th ACM Conference on Computer and Communications
Security; 2007. p. 598–609.

[10] Juels A, Kaliski BS. PORs: Proofs of retrievability for large files.
Proceedings of 14th ACM Conference on Computer and
Communications Security (CCS ’07); 2007 November. p. 584–97.

Optimizing data retrieval for enhanced data integrity verification  17

https://www.gartner.com/en/newsroom/press-releases/2021-04-2-gartner-forecasts-worldwide-public-cloud-end-user-spending-to-grow-23-percent-in-2021
https://www.gartner.com/en/newsroom/press-releases/2021-04-2-gartner-forecasts-worldwide-public-cloud-end-user-spending-to-grow-23-percent-in-2021
https://www.gartner.com/en/newsroom/press-releases/2021-04-2-gartner-forecasts-worldwide-public-cloud-end-user-spending-to-grow-23-percent-in-2021
https://www.gartner.com/en/newsroom/press-releases/2021-04-2-gartner-forecasts-worldwide-public-cloud-end-user-spending-to-grow-23-percent-in-2021
https://www.egnyte.com/guides/governance/data-auditing
https://www.egnyte.com/guides/governance/data-auditing
https://doi.org/10.1145/2699909
https://www.statista.com/statistics/871513/worldwide-data-created/

[11] Liu D, Zic J. Proofs of Encrypted Data Retrievability with Probabilistic
and Homomorphic Message Authenticators. In: Society IC, editor.
IEEE Trustcom/BigDataSE/ISPA; 2015.

[12] Boneh D, Lynn B, Shacham H. Short signatures from the Weil
pairing. In: International Conference on the Theory and
Aapplication of Cryptology and Information Security. Springer;
2001. p. 514–32.

[13] Luo X, Zhou Z, Zhong L, Mao J, Chen C. An effective integrity ver-
ification scheme of cloud data based on BLS signature. Wiley
Online Library; 2018. doi: 10.1155/2018/2615249.

[14] Du R, Deng L, Chen J, He K, Zheng M. Proofs of Ownership and
Retrievability in Cloud Storage. In: Society IC, editor. IEEE 13th
International Conference on Trust, Security and Privacy in
Computing and Communications; 2014. p. 328–335.

[15] Kwon O, Koo D, Shin Y, Yoon H. A secure and efficient audit
mechanism for dynamic shared data in cloud storage. The
Scientific World. Sci World J. 2014;2014:820391.

[16] More S, Chaudhari S. Third party public auditing scheme for cloud
storage. Procedia Computer Sci. 2016;79:69–76.

[17] Shah H, Shah J, Desai U. Third Party Public Auditing Scheme for
Security in Cloud Storage. Int J Trend Scientif Res Development
(ijtsrd). 2019 April;3:179–84.

[18] Yuan J, Yu S. Public integrity auditing for dynamic data sharing with
multiuser modification. IEEE Trans Inform Forensics Security. 2015
August;10(8):1717–26.

[19] Zargad SV, Tambile AV, Sankoli SS, Bhongale RC. Data Integrity
Checking Protocol with Data Dynamics and Public Verifiability for
Secure Cloud Computing. Int J Comput Sci Inform Tech (IJCSIT).
2014;5(3):4062–4.

[20] Kaaniche N. Cloud Data Storage Security Based on Cryptographic
Mechanisms [dissertation]. Informatique, Télécommunications et
Électronique de Paris; 2014.

[21] Li R, Shen C, He H, Gu X, Xu Z, Xu CZ. A lightweight secure data
sharing scheme for mobile cloud computing. IEEE Trans Cloud
Comput. 2017 Jan 6;6(2):344–57.

[22] Anisetti M, Ardagna CA, Damiani E, Gaudenzi F. A semi-automatic
and trustworthy scheme for continuous cloud service certification.
IEEE Trans Services Comput. 2017 Jan 24;13(1):30–43.

[23] Sarkar MK, Chatterjee T. Enhancing data storage security in cloud
computing through steganography. Int J Netw Security. 2014 Jan
1;5(1):13.

[24] Sun L, Xu C, Zhang Y, Chen K. An efficient iO-based data integrity
verification scheme for cloud storage. Sci China Inform Sci. 2019
May 1;62(5):59101.

[25] Wang C, Di X. Research on integrity check method of cloud storage
multi-copy data based on multi-agent. IEEE Access. 2020 Jan
15;8:17170–8.

[26] Ganesh SM, Manikandan SP. An efficient integrity verification and
authentication scheme over the remote data in the public clouds
for mobile users. Security Commun Netw. 2020;2020(1):9809874.

[27] Chidambaram N, Raj P, Thenmozhi K, Amirtharajan R. Enhancing
the security of customer data in cloud environments using a novel
digital fingerprinting technique. Int J Digital Multimedia Broadcast.
2016;2016(1):8789397.

[28] Zhong W, Liu Z. Efficient proof of ownership for cloud storage
systems. Guangzhou, China: School of Computer Science and
Technology, Guangdong University of Technology; 2017. https://
aip.scitation.org/doi/abs/10.1063/1.4992867.

[29] Canto AC, Kermani MM, Azarderakhsh R. Reliable constructions for
the key generator of code-based post-quantum cryptosystems on
FPGA. ACM J Emerg Tech Comput Syst. 2022 Dec 9;19(1):1–20.

[30] Chen W, Tian H, Chang CC, Nan F, Lu J. Adjacency-?hash-?table
based public auditing for data integrity in mobile cloud computing.
Wireless Commun Mobile Comput. 2018;2018(1):3471312.

[31] Azarderakhsh R, Koziel B, Jalali A, Kermani MM, Jao D. NEON-SIDH:
efficient implementation of supersingular isogeny Diffie–Hellman Key-
exchange protocol on ARM. IACR Cryptol ePrint Arch. 2016;2016:669.

[32] Kermani MM, Azarderakhsh R, Mirakhorli M. Multidisciplinary
approaches and challenges in integrating emerging medical
devices security research and education. In 2016 ASEE Annual
Conference & Exposition. 2016 Jun 26.

[33] Kermani MM. Fault detection schemes for high performance vlsi
implementations of the Advanced Encryption Standard [dissertation],
Faculty of Graduate Studies, University of Western Ontario; 2007.

[34] Yan YX, Wu L, Xu WY, Wang H, Liu ZM. Integrity audit of shared
cloud data with identity tracking. Security Commun Netw.
2019;2019(1):1354346.

[35] Chandel S, Cao W, Sun Z, Yang J, Zhang B, Ni TY. A multi-dimen-
sional adversary analysis of RSA and ECC in blockchain encryption.
In Advances in Information and Communication: Proceedings of
the 2019 Future of Information and Communication Conference
(FICC). Springer; 2020. p. 988–1003.

[36] Niasar MB, Azarderakhsh R, Kermani MM. Optimized architectures
for elliptic curve cryptography over Curve448. Cryptology ePrint
Archive. 2020.

[37] Cintas-Canto A, Kermani MM, Azarderakhsh R. Reliable architec-
tures for finite field multipliers using cyclic codes on FPGA utilized
in classic and post-quantum cryptography. IEEE Trans Very Large
Scale Integration (VLSI) Syst. 2022;31(1):157–61.

[38] Canto AC, Kermani MM, Azarderakhsh R. CRC-based error detection
constructions for FLT and ITA finite field inversions over GF (2m).
IEEE Trans Very Large Scale Integration (VLSI) Syst. 2021 Mar
10;29(5):1033–7.

[39] Canto AC, Sarker A, Kaur J, Kermani MM, Azarderakhsh R. Error
detection schemes assessed on FPGA for multipliers in lattice-
based key encapsulation mechanisms in post-quantum crypto-
graphy. IEEE Trans Emerg Topics Comput. 2022;11(3):791–7.

[40] Kaur J, Canto AC, Kermani MM, Azarderakhsh R. Hardware con-
structions for error detection in WG-29 stream Cipher bench-
marked on FPGA. IEEE Trans on Computer-Aided Design of
Integrated Circuits and Syst. 2024;43(4):1307–11.

[41] Mozaffari-Kermani M, Azarderakhsh R, Ren K, Beuchat JL. Guest
editorial: introduction to the special section on emerging security
trends for biomedical computations, devices, and infrastructures.
IEEE/ACM Trans Comput Biol Bioinform. 2016 May 1;13(3):399–400.

[42] Karam RA, Katkoori S, Kermani MM. Work-in-progress: Hyflex
hands-on hardware security education during covid-19. In 2022
IEEE World Engineering Education Conference (EDUNINE), IEEE;
2022 Mar 13. p. 1–4.

[43] Kermani MM, Bayat-Sarmadi S, Ackie AB, Azarderakhsh R. High-
performance fault diagnosis schemes for efficient hash algorithm
blake. In 2019 IEEE 10th Latin American Symposium on Circuits &
Systems (LASCAS), IEEE; 2019 Feb 24. p. 201–204.

[44] Yang K, Jia X. An efficient and secure dynamic auditing protocol for
data storage in cloud computing. IEEE Trans Parallel Distributed
Syst. 2012 Sep 24;24(9):1717–26.

18  Akshay KC et al.

https://doi.org/10.1155/2018/2615249
https://aip.scitation.org/doi/abs/10.1063/1.4992867
https://aip.scitation.org/doi/abs/10.1063/1.4992867

	1 Introduction
	1.1 Research contribution
	1.2 Organization of this article

	2 Literature survey
	2.1 Conventional schemes
	2.2 Schemes based on Merkle hash tree (MHT)
	2.3 Schemes with third-party auditor (TPA)
	2.4 Schemes without TPA
	2.5 Schemes with other structures

	3 Background
	4 Methodology
	4.1 Architecture of BST-based model
	4.2 Overview of BST of BST structure
	4.3 Process framework
	4.3.1 Insert
	4.3.2 Delete
	4.3.3 Update
	4.3.4 Audit
	4.3.5 Retrieve and display file list

	5 Analysis and results obtained
	5.1 Threat analysis and mitigation
	5.2 Scheme analysis
	5.3 Performance analysis
	5.3.1 RSA vs ECC
	5.3.2 BST of BST vs DLIT

	5.4 Statistical analysis

	6 Conclusion and future scope
	6.1 Conclusion
	6.2 Future scope

	Acknowledgement
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

