Home Numerical simulation of low-pulsation gerotor pumps for use in the pharmaceutical industry and in biomedicine
Article Open Access

Numerical simulation of low-pulsation gerotor pumps for use in the pharmaceutical industry and in biomedicine

  • Vincent Klopsch EMAIL logo , Tomas Germann and Hermann Seitz
Published/Copyright: September 12, 2015

Abstract

The reduction of the pulsation of flow and pressure as well as the increase of the mean flow of a displacement pump will be a benefit to many technical processes, especially in the pharmaceutical industry and in biomedicine. By reducing the flow pulsation, microreactors could work more efficiently and thin-film coatings or fluids in biomedical applications could be applied with more precision. This article presents a new toolbox to analyse and compare different types of gerotor pump gear profiles. The main objective was the development of a toolbox to analyse the mean flow and the flow ripple of theoretical and reverse engineered gerotor gear sets. For that reason, the presented toolbox does not work with analytic functions, but with numerical methods based on point cloud data. A comparison of four different profile types shows that these profiles perform very differently if they are limited by a given maximal outer root diameter and by the numbers of the teeth of both rotors.

1 Introduction

In many applications a low flow and pressure pulsation is needed to obtain good results. For example, it is crucial to determine the delay between the visual detection and the separation of the cell types in flow cytometry. By reducing the flow pulsation of the used pump, the uncertainty in the calculation of the delay caused by the changing volume flow can be minimised. By increasing the mean flow, the pump can deliver the same volume flow while running at a lower rotation speed. This would result in less wear, less noise and reduced pulsation. Every positive displacement pump has a flow pulsation, which is mainly caused by its displacement device and the ripple of the pump drive. Within the group of continuously working positive displacement pumps, a gerotor pump is one of the pumps with the lowest pulsation. Nevertheless, some new approaches to generate gerotor profiles with low pulsation and less wear were made in the last years. In order to compare these new approaches to the older ones, a MATLAB toolbox was created.

2 Methods

All gerotor pumps consist of an inner rotor with N teeth and an outer rotor with N+1 teeth. The rotors are mounted eccentrically to each other. The geometry of both rotors will describe N+1 dynamically-changing volumes, of which N will take part in the volume displacement of a full rotation of the inner rotor.

Depending on the approach, the inner and outer rotors are either calculated separately or one of the rotors is calculated first and the other rotor is derived from this by e.g. the envelope theory.

All approaches to calculate either the first or both rotors use a roulette of one geometric shape or a combination of two or more roulettes. The calculation of the mean flow and the pulsation is carried out by using the given analytic functions.

The new MATLAB toolbox GPT (Gerotor Pump Tool) uses a different approach to calculate the mean flow, the flow pulsation and the pressure angle of gerotor profiles, which are all very difficult to describe analytically. A reason for this difficulty could, for example, be due to the fact that the point cloud data of a manufactured gear set is obtained via a microscope or a measuring machine and thus contains measurement errors, which would have to be considered before using an analytical approach.

The main menu of the GPT is divided into three sections as shown in Figure 1.

The first section, “Gerotor Profile Library”, shown in Figure 2, is used to generate a point cloud from one of the following profiles from literature:

Figure 1 Main menu of the GPT with the different tool boxes.
Figure 1

Main menu of the GPT with the different tool boxes.

  • – GT1: Standard Trochoid [1, 2],

  • – GT2: Hypotrochoid [35],

  • – GT3: Epitrochoid-Circle-Hypotrochoid [6, 7],

  • – GT4: Ellipse [810],

  • – GT5: DF-Method [1113],

  • – GT6: Ellipse-Involute-Ellipse [14].

The point clouds are calculated via the given analytic functions and the user given parameters, which are specific for each profile type.

Figure 2 Gerotor Profile Library function (Example: GT1 – Standard Trochoid).
Figure 2

Gerotor Profile Library function (Example: GT1 – Standard Trochoid).

After the generation of a point cloud from the Profile Library, the data can be passed on to the next section called “Flow Rate Analysis Tool”. This tool calculates the chamber area “A” between the profile of the inner and outer tooth for a whole turn using a step width given by the angle “φ”, which the user must specify. This is done by searching the minimum distance between the rotor profiles in a given area of the point cloud. This area contains all data between the centre and the upper as well as the lower end of a defined section. This section is centred at one inner rotor tooth tip and has a whole width of 360° divided by the amount of teeth of the inner rotor. The result is an A(φ)-plot and -chart. This tool can also import profile data provided via Excel-Worksheets to analyse a reverse engineered data set.

Afterwards, the data can be passed to the “Flow Rate Irregularity and Comparison” tool. The tool can be used to calculate the flow ripple and the mean flow by specifying the height of the rotors and the rotation speed. To do so, the A(φ)-data from the previous toolbox is first smoothed and then deviated by the angle φ.

A˙(ϕ)=A(ϕ)ϕ

After this step, only the positive values are taken into account, as these values describe the output volume flow of the pump. In order to calculate the flow of the gear set, these values are duplicated N times and each one is shifted by 360°/N to the one before. The angle wise sum of all these values multiplied with the rotor height “h” will be the volume change V˙(ϕ) generated by the gear set:

V˙(ϕ)=h*i=0NA˙i(ϕ)

From this, the maximum, minimum and mean flow, denoted by Q, can be calculated for a defined rotation speed “n”:

Q=n*ϕ=0360V˙i(ϕ)

With these values, the flow ripple can be calculated by:

δ=QmaxQminQmean

The tool is designed to read a list of input data files and compare them, after each one has been analysed. The result is also provided via a plot and a chart.

In order to check which profile type is the one with the lowest pulsation and the highest volume flow in a well-defined limitation size regime, a large set of different profiles (GT1, GT2, GT3, GT4) was generated by the “Gerotor Profile Library” tool. This was done by varying the parameters of the rotor profile within their mathematical limitations. These limitations were reached, if the profiles started to overlap with themselves or if one or more teeth had an undercut.

In addition, one reimported reference profile, which is an optimized GT1 profile, was included in the analysis. To make the results comparable, all gear sets have an inner rotor with 6 teeth and an outer rotor with 7 teeth. Furthermore, all gear sets are limited to the same maximal size. This was done by setting the outer rotor tooth root value to be equal or less than 3.64 mm.

All gear sets were analysed with a step width of 1° in the “Flow Rate Analysis Tool” and afterwards compared with a height of h=3.2 mm and a rotation speed of n=6000 rpm in the “Flow Rate Irregularity and Comparison” tool.

3 Results

In order to give a detailed view of the resulting data one generated profile is shown first, before all data sets are compared to each other. The profile which can be seen in Figure 3 is a GT4 profile with a robust tooth profile, as well as a low pulsation and a high mean flow.

Figure 3 Robust GT4 gear set with approx. 270 ml/min mean flow and a flow pulsation of 3.4%.
Figure 3

Robust GT4 gear set with approx. 270 ml/min mean flow and a flow pulsation of 3.4%.

The shown gear set is very likely to be robust because of the wide and flat teeth. It is also very likely to have a high hydraulic efficiency and therefore low leakage, because of the extended areas and very low distances between the rotors at the upper three teeth of the inner rotor. Also, the amount of trapped fluid, seen at the bottom tooth of the inner rotor, is very low.

In Figure 4 all solution plots of this gear set are shown. The chamber area change A(φ) of the second toolbox is shown in the upper left corner. In the upper right corner, the deviated chamber area change A˙(φ) is plotted. At the bottom, the resulting volume flow V˙(φ) of this gear set is plotted.

Figure 4 Comparison of the volume flow and the flow pulsation of different gerotor gear sets.
Figure 4

Comparison of the volume flow and the flow pulsation of different gerotor gear sets.

In order to obtain a better overview, all results from the data sets are compared by their flow pulsation and their mean flow (Figure 5). From this, it was determined that the eccentricity must be maximized in order to gain a high mean flow. This can be seen by the groups of points along the same mean flow lines, which all share the same eccentricity, respectively. The eccentricity can therefore be regarded as the main parameter when aiming for a high mean flow.

Figure 5 Comparison of the volume flow and the flow pulsation of different gerotor gear sets.
Figure 5

Comparison of the volume flow and the flow pulsation of different gerotor gear sets.

As can be seen, the ellipse-based-profile GT4 is the profile type with the lowest pulsation at higher mean flow rates.

4 Conclusion

A group of toolboxes was presented, which enable the generation of gear sets for gerotors. Furthermore, a first analysis for four different gerotor profile types was shown. The results show that the ellipse-based gerotor profile sets deliver the best compromise between a low pulsation and a high mean volume flow within the given limitations. For that reason, this profile type is the most suitable for use in pharmaceutical industry and for biomedical applications, where a low pulsation is required.

Further investigation is needed to compare the other two remaining profiles types, as well as gear sets with different numbers of teeth.

Funding

The authors like to thank the Ministerium für Wirtschaft, Bau und Tourismus MecklenburgVorpommern which provided funding of the project with financial resources by the Europäischer Fonds für regionale Entwicklung EFRE. (European Regional Development Fund ERDF).

Author’s Statement

  1. Author’s Statement: Conflict of interest: Authors state no conflict of interest. Material and Methods: Informed consent: Informed consent is not applicable. Ethical approval: The conducted research is not related to either human or animals use.

References

[1] Kwon S M, Kim M S, Shin J H. Analytical Wear Model of a Gerotor Pump without Hydrodynamic Effect. Journal of Advanced Mechanical Design Systems, and Manufacturing, 2008, Vol. 2, No. 2.10.1299/jamdsm.2.230Search in Google Scholar

[2] Fabiani M, Mancň S, Nervegna N, Rundo M, Armenio G, Pachetti C, Trichilo R. Modelling and Simulation of Gerotor Gearing in Lubricating Oil Pumps. Society of Automotive Engineers, Inc., 1999: 99P-46410.4271/1999-01-0626Search in Google Scholar

[3] Kwon S M, Kang H S, Shin J H. Rotor profile design in a hypogerotor pump [J]. Journal of Mechanical Science and Technology, 2009, 23: 3459-3470.10.1007/s12206-009-1007-ySearch in Google Scholar

[4] Kwon S M, Kim C H, Shin J H. Optimal rotor design in hypotrochoidal gear pump using genetic algorithm. J. Cent. South Univ. Technol., 2011, 18: 718-725.10.1007/s11771-011-0753-zSearch in Google Scholar

[5] Kwon S M, Sim M, Nam H, Shin J H. Optimal Wear Design for a Hypotrochoidal Gear Pump without Hydrodynamic Effect, 10.3795/KSME-A.2009.33.12.1383.Search in Google Scholar

[6] Choi T H, Kim M S, Lee G S, Jung S Y, Bae J H, Professor Kim C. Design of Rotor for Internal Gear Pump Using Cycloid and Circular-Arc Curves. Journal of Mechanical Design, 2012, Vol. 134, 01100510.1115/1.4004423Search in Google Scholar

[7] Kim M S, Lee H W, Jung S Y, Kim C. Development of Rotor for Internal Gear Pump using Cycloid and Polycircular-arc Curves. Journal of the Korean Society for Precision Engineering, 2012, Vol. 29, No. 9, pp. 1003-1011.10.7736/KSPE.2012.29.9.1003Search in Google Scholar

[8] Jung S Y, Han S M, Cho H Y, Kim C. Automated design system for rotor with an ellipse lobe profile. Journal of Mechanical Science and Technology 23, 2009, 2928-2937.10.1007/s12206-009-0808-3Search in Google Scholar

[9] Moon H K, Jung S Y, Kim C, Han S M, Cho H Y. Development of an Automated Design System for Generating Ellipse Lobe Profile of Gerotor. Journal of the Korean Society for Precision Engineering, 2008.Search in Google Scholar

[10] Karamooz Ravari M R. Elliptical lobe shape gerotor pump design to minimize wear. Front. Mech. Eng., 2011, 6(4): 429-434.10.1007/s11465-011-0247-6Search in Google Scholar

[11] Warren S E. New Rotary Engine Designs by Deviation function Method, PhD dissertation. University of California, Los Angeles, 2012.Search in Google Scholar

[12] Tong S H, Yan J, Yang D C H. Design of deviation-function based gerotors. Mechanism and Machine Theory 44, 2009, 1595-1606.10.1016/j.mechmachtheory.2009.01.001Search in Google Scholar

[13] Yan J, Yang D C H, Tong S H. A New Gerotor Design Method With Switch Angle Assingability. Journal of Mechanical Design, 2009, Vol.131, 011006.10.1115/1.3013442Search in Google Scholar

[14] Jung S Y, Bae J H, Kim M S, Kim C. Development of a New Gerotor for Oil Pumps with Multiple Profiles. International Journal of Precision Engineering and Manufacturing, 2011, Vol. 12, No. 5, pp. 835-841.10.1007/s12541-011-0111-ySearch in Google Scholar

Published Online: 2015-9-12
Published in Print: 2015-9-1

© 2015 by Walter de Gruyter GmbH, Berlin/Boston

This article is distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Articles in the same Issue

  1. Research Article
  2. Development and characterization of superparamagnetic coatings
  3. Research Article
  4. The development of an experimental setup to measure acousto-electric interaction signal
  5. Research Article
  6. Stability analysis of ferrofluids
  7. Research Article
  8. Investigation of endothelial growth using a sensors-integrated microfluidic system to simulate physiological barriers
  9. Research Article
  10. Energy harvesting for active implants: powering a ruminal pH-monitoring system
  11. Research Article
  12. New type of fluxgate magnetometer for the heart’s magnetic fields detection
  13. Research Article
  14. Field mapping of ballistic pressure pulse sources
  15. Research Article
  16. Development of a new homecare sleep monitor using body sounds and motion tracking
  17. Research Article
  18. Noise properties of textile, capacitive EEG electrodes
  19. Research Article
  20. Detecting phase singularities and rotor center trajectories based on the Hilbert transform of intraatrial electrograms in an atrial voxel model
  21. Research Article
  22. Spike sorting: the overlapping spikes challenge
  23. Research Article
  24. Separating the effect of respiration from the heart rate variability for cases of constant harmonic breathing
  25. Research Article
  26. Locating regions of arrhythmogenic substrate by analyzing the duration of triggered atrial activities
  27. Research Article
  28. Combining different ECG derived respiration tracking methods to create an optimal reconstruction of the breathing pattern
  29. Research Article
  30. Atrial and ventricular signal averaging electrocardiography in pacemaker and cardiac resynchronization therapy
  31. Research Article
  32. Estimation of a respiratory signal from a single-lead ECG using the 4th order central moments
  33. Research Article
  34. Compressed sensing of multi-lead ECG signals by compressive multiplexing
  35. Research Article
  36. Heart rate monitoring in ultra-high-field MRI using frequency information obtained from video signals of the human skin compared to electrocardiography and pulse oximetry
  37. Research Article
  38. Synchronization in wireless biomedical-sensor networks with Bluetooth Low Energy
  39. Research Article
  40. Automated classification of stages of anaesthesia by populations of evolutionary optimized fuzzy rules
  41. Research Article
  42. Effects of sampling rate on automated fatigue recognition in surface EMG signals
  43. Research Article
  44. Closed-loop transcranial alternating current stimulation of slow oscillations
  45. Research Article
  46. Cardiac index in atrio- and interventricular delay optimized cardiac resynchronization therapy and cardiac contractility modulation
  47. Research Article
  48. The role of expert evaluation for microsleep detection
  49. Research Article
  50. The impact of baseline wander removal techniques on the ST segment in simulated ischemic 12-lead ECGs
  51. Research Article
  52. Metal artifact reduction by projection replacements and non-local prior image integration
  53. Research Article
  54. A novel coaxial nozzle for in-process adjustment of electrospun scaffolds’ fiber diameter
  55. Research Article
  56. Processing of membranes for oxygenation using the Bellhouse-effect
  57. Research Article
  58. Inkjet printing of viable human dental follicle stem cells
  59. Research Article
  60. The use of an icebindingprotein out of the snowflea Hypogastrura harveyi as a cryoprotectant in the cryopreservation of mesenchymal stem cells
  61. Research Article
  62. New NIR spectroscopy based method to determine ischemia in vivo in liver – a first study on rats
  63. Research Article
  64. QRS and QT ventricular conduction times and permanent pacemaker therapy after transcatheter aortic valve implantation
  65. Research Article
  66. Adopting oculopressure tonometry as a transient in vivo rabbit glaucoma model
  67. Research Article
  68. Next-generation vision testing: the quick CSF
  69. Research Article
  70. Improving tactile sensation in laparoscopic surgery by overcoming size restrictions
  71. Research Article
  72. Design and control of a 3-DOF hydraulic driven surgical instrument
  73. Research Article
  74. Evaluation of endourological tools to improve the diagnosis and therapy of ureteral tumors – from model development to clinical application
  75. Research Article
  76. Frequency based assessment of surgical activities
  77. Research Article
  78. “Hands free for intervention”, a new approach for transoral endoscopic surgery
  79. Research Article
  80. Pseudo-haptic feedback in medical teleoperation
  81. Research Article
  82. Feasibility of interactive gesture control of a robotic microscope
  83. Research Article
  84. Towards structuring contextual information for workflow-driven surgical assistance functionalities
  85. Research Article
  86. Towards a framework for standardized semantic workflow modeling and management in the surgical domain
  87. Research Article
  88. Closed-loop approach for situation awareness of medical devices and operating room infrastructure
  89. Research Article
  90. Kinect based physiotherapy system for home use
  91. Research Article
  92. Evaluating the microsoft kinect skeleton joint tracking as a tool for home-based physiotherapy
  93. Research Article
  94. Integrating multimodal information for intraoperative assistance in neurosurgery
  95. Research Article
  96. Respiratory motion tracking using Microsoft’s Kinect v2 camera
  97. Research Article
  98. Using smart glasses for ultrasound diagnostics
  99. Research Article
  100. Measurement of needle susceptibility artifacts in magnetic resonance images
  101. Research Article
  102. Dimensionality reduction of medical image descriptors for multimodal image registration
  103. Research Article
  104. Experimental evaluation of different weighting schemes in magnetic particle imaging reconstruction
  105. Research Article
  106. Evaluation of CT capability for the detection of thin bone structures
  107. Research Article
  108. Towards contactless optical coherence elastography with acoustic tissue excitation
  109. Research Article
  110. Development and implementation of algorithms for automatic and robust measurement of the 2D:4D digit ratio using image data
  111. Research Article
  112. Automated high-throughput analysis of B cell spreading on immobilized antibodies with whole slide imaging
  113. Research Article
  114. Tissue segmentation from head MRI: a ground truth validation for feature-enhanced tracking
  115. Research Article
  116. Video tracking of swimming rodents on a reflective water surface
  117. Research Article
  118. MR imaging of model drug distribution in simulated vitreous
  119. Research Article
  120. Studying the extracellular contribution to the double wave vector diffusion-weighted signal
  121. Research Article
  122. Artifacts in field free line magnetic particle imaging in the presence of inhomogeneous and nonlinear magnetic fields
  123. Research Article
  124. Introducing a frequency-tunable magnetic particle spectrometer
  125. Research Article
  126. Imaging of aortic valve dynamics in 4D OCT
  127. Research Article
  128. Intravascular optical coherence tomography (OCT) as an additional tool for the assessment of stent structures
  129. Research Article
  130. Simple concept for a wide-field lensless digital holographic microscope using a laser diode
  131. Research Article
  132. Intraoperative identification of somato-sensory brain areas using optical imaging and standard RGB camera equipment – a feasibility study
  133. Research Article
  134. Respiratory surface motion measurement by Microsoft Kinect
  135. Research Article
  136. Improving image quality in EIT imaging by measurement of thorax excursion
  137. Research Article
  138. A clustering based dual model framework for EIT imaging: first experimental results
  139. Research Article
  140. Three-dimensional anisotropic regularization for limited angle tomography
  141. Research Article
  142. GPU-based real-time generation of large ultrasound volumes from freehand 3D sweeps
  143. Research Article
  144. Experimental computer tomograph
  145. Research Article
  146. US-tracked steered FUS in a respiratory ex vivo ovine liver phantom
  147. Research Article
  148. Contribution of brownian rotation and particle assembly polarisation to the particle response in magnetic particle spectrometry
  149. Research Article
  150. Preliminary investigations of magnetic modulated nanoparticles for microwave breast cancer detection
  151. Research Article
  152. Construction of a device for magnetic separation of superparamagnetic iron oxide nanoparticles
  153. Research Article
  154. An IHE-conform telecooperation platform supporting the treatment of dementia patients
  155. Research Article
  156. Automated respiratory therapy system based on the ARDSNet protocol with systemic perfusion control
  157. Research Article
  158. Identification of surgical instruments using UHF-RFID technology
  159. Research Article
  160. A generic concept for the development of model-guided clinical decision support systems
  161. Research Article
  162. Evaluation of local alterations in femoral bone mineral density measured via quantitative CT
  163. Research Article
  164. Creating 3D gelatin phantoms for experimental evaluation in biomedicine
  165. Research Article
  166. Influence of short-term fixation with mixed formalin or ethanol solution on the mechanical properties of human cortical bone
  167. Research Article
  168. Analysis of the release kinetics of surface-bound proteins via laser-induced fluorescence
  169. Research Article
  170. Tomographic particle image velocimetry of a water-jet for low volume harvesting of fat tissue for regenerative medicine
  171. Research Article
  172. Wireless medical sensors – context, robustness and safety
  173. Research Article
  174. Sequences for real-time magnetic particle imaging
  175. Research Article
  176. Speckle-based off-axis holographic detection for non-contact photoacoustic tomography
  177. Research Article
  178. A machine learning approach for planning valve-sparing aortic root reconstruction
  179. Research Article
  180. An in-ear pulse wave velocity measurement system using heart sounds as time reference
  181. Research Article
  182. Measuring different oxygenation levels in a blood perfusion model simulating the human head using NIRS
  183. Research Article
  184. Multisegmental fusion of the lumbar spine a curse or a blessing?
  185. Research Article
  186. Numerical analysis of the biomechanical complications accompanying the total hip replacement with NANOS-Prosthetic: bone remodelling and prosthesis migration
  187. Research Article
  188. A muscle model for hybrid muscle activation
  189. Research Article
  190. Mathematical, numerical and in-vitro investigation of cooling performance of an intra-carotid catheter for selective brain hypothermia
  191. Research Article
  192. An ideally parameterized unscented Kalman filter for the inverse problem of electrocardiography
  193. Research Article
  194. Interactive visualization of cardiac anatomy and atrial excitation for medical diagnosis and research
  195. Research Article
  196. Virtualizing clinical cases of atrial flutter in a fast marching simulation including conduction velocity and ablation scars
  197. Research Article
  198. Mesh structure-independent modeling of patient-specific atrial fiber orientation
  199. Research Article
  200. Accelerating mono-domain cardiac electrophysiology simulations using OpenCL
  201. Research Article
  202. Understanding the cellular mode of action of vernakalant using a computational model: answers and new questions
  203. Research Article
  204. A java based simulator with user interface to simulate ventilated patients
  205. Research Article
  206. Evaluation of an algorithm to choose between competing models of respiratory mechanics
  207. Research Article
  208. Numerical simulation of low-pulsation gerotor pumps for use in the pharmaceutical industry and in biomedicine
  209. Research Article
  210. Numerical and experimental flow analysis in centifluidic systems for rapid allergy screening tests
  211. Research Article
  212. Biomechanical parameter determination of scaffold-free cartilage constructs (SFCCs) with the hyperelastic material models Yeoh, Ogden and Demiray
  213. Research Article
  214. FPGA controlled artificial vascular system
  215. Research Article
  216. Simulation based investigation of source-detector configurations for non-invasive fetal pulse oximetry
  217. Research Article
  218. Test setup for characterizing the efficacy of embolic protection devices
  219. Research Article
  220. Impact of electrode geometry on force generation during functional electrical stimulation
  221. Research Article
  222. 3D-based visual physical activity assessment of children
  223. Research Article
  224. Realtime assessment of foot orientation by Accelerometers and Gyroscopes
  225. Research Article
  226. Image based reconstruction for cystoscopy
  227. Research Article
  228. Image guided surgery innovation with graduate students - a new lecture format
  229. Research Article
  230. Multichannel FES parameterization for controlling foot motion in paretic gait
  231. Research Article
  232. Smartphone supported upper limb prosthesis
  233. Research Article
  234. Use of quantitative tremor evaluation to enhance target selection during deep brain stimulation surgery for essential tremor
  235. Research Article
  236. Evaluation of adhesion promoters for Parylene C on gold metallization
  237. Research Article
  238. The influence of metallic ions from CoCr28Mo6 on the osteogenic differentiation and cytokine release of human osteoblasts
  239. Research Article
  240. Increasing the visibility of thin NITINOL vascular implants
  241. Research Article
  242. Possible reasons for early artificial bone failure in biomechanical tests of ankle arthrodesis systems
  243. Research Article
  244. Development of a bending test procedure for the characterization of flexible ECoG electrode arrays
  245. Research Article
  246. Tubular manipulators: a new concept for intracochlear positioning of an auditory prosthesis
  247. Research Article
  248. Investigation of the dynamic diameter deformation of vascular stents during fatigue testing with radial loading
  249. Research Article
  250. Electrospun vascular grafts with anti-kinking properties
  251. Research Article
  252. Integration of temperature sensors in polyimide-based thin-film electrode arrays
  253. Research Article
  254. Use cases and usability challenges for head-mounted displays in healthcare
  255. Research Article
  256. Device- and service profiles for integrated or systems based on open standards
  257. Research Article
  258. Risk management for medical devices in research projects
  259. Research Article
  260. Simulation of varying femoral attachment sites of medial patellofemoral ligament using a musculoskeletal multi-body model
  261. Research Article
  262. Does enhancing consciousness for strategic planning processes support the effectiveness of problem-based learning concepts in biomedical education?
  263. Research Article
  264. SPIO processing in macrophages for MPI: The breast cancer MPI-SNLB-concept
  265. Research Article
  266. Numerical simulations of airflow in the human pharynx of OSAHS patients
Downloaded on 12.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/cdbme-2015-0104/html
Scroll to top button