Home Mesh structure-independent modeling of patient-specific atrial fiber orientation
Article Open Access

Mesh structure-independent modeling of patient-specific atrial fiber orientation

  • Andreas Wachter EMAIL logo , Axel Loewe , Martin W Krueger , Olaf Dössel and Gunnar Seemann
Published/Copyright: September 12, 2015

Abstract

The fiber orientation in the atria has a significant contribution to the electrophysiologic behavior of the heart and to the genesis of arrhythmia. Atrial fiber orientation has a direct effect on excitation propagation, activation patterns and the P-wave. We present a rule-based algorithm that works robustly on different volumetric meshes composed of either isotropic hexahedra or arbitrary tetrahedra as well as on 3-dimensional triangular surface meshes in patient-specific geometric models. This method fosters the understanding of general proarrhythmic mechanisms and enhances patient-specific modeling approaches.

1 Introduction

The fiber orientation in the atria has a significant effect on the spread of depolarization. Thus, it is important to include fiber orientation in computational models to understand the development and perpetuation of atrial arrhythmias. Atrial flutter is sustained along flutter paths which are usually aligned with the fibers. To predict e.g. the effect of radio frequency ablation in-silico, it is better to have realistic fiber orientation in patient-specific anatomical models.

Earlier, we presented an algorithm working on hexahedral meshes with fixed resolution [1]. On that base, a new algorithm was developed that works on volumetric structures composed of either hexahedra or tetrahedra as well as on triangular surface meshes. The rules used in the algorithm are based on [35]. In this paper, we present a complete and comprehensive description of the method and selected results.

Figure 1 Initial seed points in the RA and the LA.
Figure 1

Initial seed points in the RA and the LA.

2 Methods

2.1 Seed points

The algorithm works on the same 22 seed points, as the algorithm in [1, 2]. The seed points are marked in a preprocessing step by the user or a segmentation tool. Points are defined as centroids of cells yielding an approach independent of mesh structure. The seed points comprise 9 points in the right atrium (RA) and 13 points in left atrium (LA) (see Figure 1).

R1, R2, R3 mark the superior vena cava (SVC). R1 lies medial, close to R4. R2 lies anterior, in direction of the tricuspid valve. R3 is located at the junction of the SVC and the right atrial appendage (RAA). R4 and R5 mark the inferior vena cava (IVC) and lie at the junction of the atrial wall and the IVC. R6 marks the tip of the RAA. R7, R8 and R9 mark the tricuspid valve (TV). R7 is localized superior, apical, R8 inferior and R9 medial and close to the LA.

L1, L2 and L3 mark the mitral valve (MV) with L1 being localized close to the left atrial appendage (LAA), L2 lies posterior and L3 close to the RA. L5, L7, L9 and L12 define the left pulmonary veins (LPVs). L5, L7 and L9 form a line across the LPVs. L5, L7, L12 mark left superior pulmonary vein (LSPV). L5 is located superior, at the junction of the LAA and the LSPV. L7 is localized right lateral, between the LPVs, L12 left lateral, between the LPVs and the LAA. L12, L7 and L9 mark the left inferior pulmonary vein (LIPV) together with a later defined and computed additional point. L9 is located at the inferior border of the LSPV. L4, L6, L8 and L13 define the right pulmonary veins (RPVs). L4, L6 and L8 form a line on the RPVs. L4 is located superior, left lateral of the right superior pulmonary vein (RSPV). L6, L8, L13 mark the right inferior pulmonary vein (RIPV). L6 is located superior, at the beginning of the junction of the RSPV and the RIPV. L8 is located inferior of the RSPV, L13 right lateral, close to the RA. L10 marks the end of Bachmann’s Bundle (BB) in the LA and L11 marks the tip of the LAA.

2.2 Connecting paths

Paths are defined as connections between two points on the mesh. An auxiliary path (aPath) is calculated only to define a point on it but is not used to define fiber orientation. Paths are named using the start point, intermediate points if existent and the end point. Paths are calculated using a modified Dijkstra algorithm penalizing deviations from the direct connecting line:

min(i=0n(ai+1ai+ana0×(ai+1a0)(ana0)))

A path with an equal start and end point is named as circular path (cPath). Paths are dilated radially into unmarked tissue to obtain the desired width of the muscular bundle represented by the path. Orientation is defined by the vector between two adjacent points along a path. Orientation and material class are saved for each cell. Paths are smoothed using orientation averaging of the 5 previous and 5 succeeding cell orientations on the path.

The paths in RA are shown in Figure 2. The cPath SVC runs from R1 via R2 and R3 to R1 and is dilated to a width (w) of 8.58 mm. The cPath TV runs from R8 via R7 and R9 to R8 (w = 12.54 mm). The path from the SVC to the TV runs from R12, placed at 3 % of PathR3R1, to R7 (w = 7,92 mm). The Crista Terminalis (CT) runs from R3 via R12, R4, R14 to R16. R14 is placed at 60 % of PathR4R5. PathR4R5 runs from R4 to R5. R16 is placed at 25 % of PathR14R15. R15 is placed at 20 % of PathR12R7. PathR12R4 is restricted to a 3D plane defined by R4, R12 and R14. The width of the first part of the CT (R3, R12 and R4) decreases linearly from 7.92 mm at R3 to 5.28 mm at R4. The second part of CT has a constant width of 5.28 mm. PathR16R15 is dilated to w = 9.24mm. PathR13R17 runs from the SVC to the top of the RAA (w = 3.96 mm). R13 is placed at 85 % of PathR2R3. R17 is placed at 6.6 mm from R13 along the aPathR13R6. The 15 pectinate muscles (PM) run from a part of the CT (origin path) to a part of PathR7R8 (destination path). The origin path runs from 10 % of PathR7R8 to the end. The destination path runs from 3 % to 100 % of the PathR12R4 and is extended by PathR4R14. The first muscle runs from the begining of the origin path to the begining of the destination path (w = 2.64 mm) at the first 4.95 mm of the path. The rest is of widthw = 1.32 mm. The other muscles begin and end at every 7.143 %. The remaining PMs arew = 1.32 mm. The PathR1R20 (w = 5.28 mm) is the superior border of the intercaval bundle (ICB). R20 is placed at 20 % of PathR12R4.

Figure 2 Calculated paths and points in the RA and in the endocar-dial layer of the LA.
Figure 2

Calculated paths and points in the RA and in the endocar-dial layer of the LA.

The inferior border of the ICB (w = 7.92 mm) runs from R2 via R23 (placed at 50 % of PathR1R2) to R28 (placed at 90 % of PathR12R4). The paths covering the RAA are described below. The LA wall is subdivided in two layers. 40 % of the wall is considered the endocardial layer (EnL) and 60 % the epicardial layer (EpL). The fiber orientation is defined separately for each layer.

The paths in the EnL are shown in Figure 2. cPathL1L2L3L1 marks the MV (w = 9.9 mm). All other paths from the EnL are set tow = 5.28 mm with dilation restricted to the EnL. cPathL4L6L8L13L4 marks the RPVs. cPathL5L7L9L31L12L5 marks the LPVs. L31 is placed at 30 % of aPathL1L9. PathL1L32L12L7 divides the LPVs in the LSPV and the LIPV. The middle-line between the LPVs and the RPVs runs from L18 via L19 to L21. L18 is placed at 50 % of aPathL5L4. L19 is placed at 50 % of aPathL7L6. L21 is placed at 50 % of aPathL19L20. L20 is placed at 50 % of aPathL9L8. The middle-line is subdivided into two paths: one from L21 to L9 and one from L21 to L8. The first connecting path between the MV and LPVs runs from L1 via L16 to L5. L16 is placed at 50 % of aPathL1L4. The second path runs from L14 to L4, L14 is placed at 80 % of aPathL2L3.

The paths in the EpL are shown in Figure 3. cPathL1L2L3L1 marks the MV (w = 9.9 mm). All other paths are set to w = 6.6 mm with dilation restricted to the EpL. An additional dilation restricted to the EnL (w = 8.58 mm) is performed. cPathL6L8L13L6 marks the RIPV. PathL26L24L22L4L6 encircles a part of the RPVs. L26 is placed at 20 % of aPathL9L1. L24 is placed at 10 % of aPathL8L2. L22 is placed at 10 % of aPathL4L14. L14 is placed at 80 % of aPathL2L3. PathL8L24 links the RIPV with PathL26L24L22L4L6. cPathL5L12L26L9L7L5 encircles the LPVs. A horizontal path runs from L5 via L23, L25 and L27 to L12. L23 is placed at 80 % of aPathL4L14. L25 is placed at 80 % of aPathL8L2. L27 is placed at 75 % of aPathL9L1. PathL26L33L12L7 also encircles the LIPV. L33 is placed at 5 % of aPathL26L1. The paths covering the LAA are described below.

Figure 3 Paths and points in the RA, the epicardial layer of the LA. Dashed straight lines between RA and LA indicate interatrial bridges.
Figure 3

Paths and points in the RA, the epicardial layer of the LA. Dashed straight lines between RA and LA indicate interatrial bridges.

2.3 Pulmonary veins & appendages

If an outward-oriented trunk of the vein is included in the model, the center point of the orifice is computed as the center of a path’s bounding box. For the LSPV, cPathL5L7L12L5 is used. For the LIPV, cPathL7L9L26L12L7; for the RSPV cPathL4L6L13L4; and for the RIPV cPathL6L8L13L6. To define an external point of the vein, the outwardly-oriented normal vector of the orifice plane is calculated. The path at the base of the vein is repeated towards that point. Smoothing is performed using all adjacent cells.

To mark the appendages, the border path at the base of the appendage is calculated first. Then, it is dilated up to the tip of the appendage. The supporting points (SPs) in the RA are R17, R21, R22, R23 and R26. R21 is placed at 55 % of PathR12R7. R22, R23 and R26 are placed at 59 %, 43 % and 20 % of the first PM. R17, R22, R23 are moved at least 0.66 mm towards R6. It means that the SP are moved until the path length of cells with no fiber orientation is equal with the distance covered. R21 and R26 are moved at least 1.32 mm towards R6. The border path runs from R17 via R22, R23, R26 and R21 to R17. It is dilated transmurally to separate the appendage from the rest of the RA. The border plane is dilated tow = 5.28 mm and up to R6. The SPs in the LA are L1, L5, L10, and L12. L1 is moved at least 7.26 mm towards L11 in the EpL. L5 and L10 are moved at least 0.99 mm in EpL towards L11. L12 is moved at least 6 mm or more in the EpL towards the recently moved point L1. The border path runs from L1 via L12, L5 and L10 to L1 regardless of the layer. The border plane is dilated transmurally tow = 5.2 mm in both layers and up to L11.

2.4 Region growing

The fiber orientation of cells which are not marked by any path are set using region growing. In isolated areas surrounded by only one type of material, the cells adopt the orientation of the closest border cell. If the area is surrounded by more than one type of material, the cells adopt the averaged orientation of the different material classes weighted by the inverse distance. The regions interpolated using two paths in the RA are: the areas between the PMs and the area between the first PM and the RAA; the area between the superior ICB and the inferior ICB; the area between PathR12R7 extended by PathR7R8R9; and the 15th PM extended by PathR14R16. PathR16R15 is only grown in the area which lies in direction of R7 of the plane defined by R14, R17 and R4. The region not lying in the direction of R7 but in direction of R20 from the plane defined by R28, R2 and R38 are defined as non-isthmus. The cells lying in direction of R7 from the plane defined by R18, R16 and R32 and having no orientation are defined as the isthmus region with an undefined orientation. In the LA, the areas between the middle-line and the LPVs, respectively RPVs are interpolated. Before the region can be grown, it must be isolated from the rest of the EnL. Therefore aPathL5L4 is calculated (w = 5.28 mm). Then, the path is deleted and the area between PathL1L16L5 and PathL14L4 is interpolated. For the rest of remaining areas, cross-layer interpolation is allowed. The area between PathL4L6L8L24 and PathL26L9L7L5 is interpolated after being isolated from the rest of the EnL and EpL by aPathL5L6 (w = 7.26 mm in both layers). Then, this path is deleted and the area between PathL5L23L25L27L12 and PathL26L24L22L4L6 is interpolated. The remaining orientation holes are closed using interpolation between material classes.

2.5 Interatrial bridges

The algorithm can set up to 6 interatrial bridges as their presence differs interindividually and can mostly not be extracted from imaging data. A bridge is defined by an LA point and an RA point, the width of the bridge and a search radius (r) for the breakthrough point (BTP). The direct line between the given RA and LA points is dilated by the search radius. Then, the closest RA point (R*) to the given LA point within that region is identified and vice versa (L*). The BTPs in the RA and the LA are identified as the closest points to the midpoint between R* and L*. The BTPs are the start and the end point of the bridge. The BB extends into both atria. In the RA, it runs from R3 via R30 to R7. R30 is placed at 40 % of PathR12R7. Hence, the BB surrounds the RAA partially. R30 is the start point of the actual bridge, L10 is the end point. The search radius is 2.31 mm. The right BTP is connected with the closest point on PathR3R30R7 and the left BTP is connected with L10. From L10, the BB runs to L5 and from L10 to L1, thus it partially surrounds the LAA. The superior posterior bridge runs from L13 to R29, the middle posterior bridge from L8 to R4, the coronary sinus (CS) bridge from L2 to R14, the middle anterior bridge from L10 to R2 and the inferior anterior bridge from L3 to R21. The search radius is 0.66 mm for all bridges except for the middle anterior bridge (2.31 mm).

Figure 4 Annotated fiber orientation in a volumetric structured hexahedral model including interatrial bridges. Colors correspond to paths in Figures 2 and 3.
Figure 4

Annotated fiber orientation in a volumetric structured hexahedral model including interatrial bridges. Colors correspond to paths in Figures 2 and 3.

Figure 5 Annotated fiber orientation in a trianguler surface mesh including interatrial bridges. Colors correspond to paths in Figures 2 and 3.
Figure 5

Annotated fiber orientation in a trianguler surface mesh including interatrial bridges. Colors correspond to paths in Figures 2 and 3.

3 Results

The algorithm was tested on two different geometries with three different mesh types each (hexahedra, tetrahedra and triangles). The resulting fiber orientation show that the algorithm allows fiber crossing in the meshes (see Figure 4 for hexahedral mesh and Figure 5 for triangular surface mesh). For hexahedral meshes the fiber orientation its comparable to previous results. For surface meshes, EnL and EpL results were saved in different containers. The CS orifice and IVC orifice were not marked as they are not covered by seed points. For setting interatrial bridges, each mesh type has its own method to include new elements. The height of the BB in the surface mesh does not reduce with increasing distance to the BTP.

4 Conclusion

We presented a complete and comprehensive description of a rule-based algorithm to annotate the atrial fiber orientation and bridges. Our method works independent from the underlying mesh structure (triangles, tetrahedra, hexahedra). Based on 22 seed points, the fiber architecture was defined layer-specifically resulting in a smooth fiber orientation for different mesh structures and models. To ensure robustness regarding patient-specific geometries, the seed points must be placed in a reproducible way. The fiber orientation in the pulmonary veins are not marked exactly radial due to the dilation from the base of the veins. Anatomic differences like different numbers of pulmonary veins are currently not handled by the algorithm leaving room for future development.

In conclusion, the presented method provides a tool to enhance computational models. On the one hand, this augments patient-specific modeling. On the other hand, it may eventually help to understand principal pro-arrhythmic mechanisms.

Author’s Statement

  1. Conflict of interest: Authors state no conflict of interest. Material and Methods: Informed consent: Informed consent has been obtained from all individuals included in this study. Ethical approval: The research related to human use has been complied with all the relevant national regulations, institutional policies and in accordance the tenets of the Helsinki Declaration, and has been approved by the authors’ institutional review board or equivalent committee.

References

[1] Krueger M. W., Schmidt V., et al.: Modeling atrial fiber orientation in patient-specific geometries: a semi-automatic rule-based approach. FIMH, LNCS 2011; 6666: 223–23210.1007/978-3-642-21028-0_28Search in Google Scholar

[2] Krueger, M. W., Seemann, G., Rhode, K., et al.: Personalization of atrial anatomy and electrophysiology as a basis for clinical modeling of radio-frequency ablation of atrial fibrillation. Medical Imaging, IEEE 2013; 32(1): 73–8410.1109/TMI.2012.2201948Search in Google Scholar PubMed

[3] Papez J. W.: Heart musculature of the atria. American Journal of Anatomy 1920; 27: 255–28610.1002/aja.1000270302Search in Google Scholar

[4] Sanchez-Quintana D., Anderson R. H., et al.: The terminal crest: morphological features relevant to electrophysiology. Heart (British Cardiac Society) 2002; 88: 406–41110.1136/heart.88.4.406Search in Google Scholar PubMed PubMed Central

[5] Ho S. Y., Sanchez-Quintana D.: The importance of atrial structure and fibers. Clinical Anatomy 2009; 22: 52–6310.1002/ca.20634Search in Google Scholar PubMed

Published Online: 2015-9-12
Published in Print: 2015-9-1

© 2015 by Walter de Gruyter GmbH, Berlin/Boston

This article is distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Articles in the same Issue

  1. Research Article
  2. Development and characterization of superparamagnetic coatings
  3. Research Article
  4. The development of an experimental setup to measure acousto-electric interaction signal
  5. Research Article
  6. Stability analysis of ferrofluids
  7. Research Article
  8. Investigation of endothelial growth using a sensors-integrated microfluidic system to simulate physiological barriers
  9. Research Article
  10. Energy harvesting for active implants: powering a ruminal pH-monitoring system
  11. Research Article
  12. New type of fluxgate magnetometer for the heart’s magnetic fields detection
  13. Research Article
  14. Field mapping of ballistic pressure pulse sources
  15. Research Article
  16. Development of a new homecare sleep monitor using body sounds and motion tracking
  17. Research Article
  18. Noise properties of textile, capacitive EEG electrodes
  19. Research Article
  20. Detecting phase singularities and rotor center trajectories based on the Hilbert transform of intraatrial electrograms in an atrial voxel model
  21. Research Article
  22. Spike sorting: the overlapping spikes challenge
  23. Research Article
  24. Separating the effect of respiration from the heart rate variability for cases of constant harmonic breathing
  25. Research Article
  26. Locating regions of arrhythmogenic substrate by analyzing the duration of triggered atrial activities
  27. Research Article
  28. Combining different ECG derived respiration tracking methods to create an optimal reconstruction of the breathing pattern
  29. Research Article
  30. Atrial and ventricular signal averaging electrocardiography in pacemaker and cardiac resynchronization therapy
  31. Research Article
  32. Estimation of a respiratory signal from a single-lead ECG using the 4th order central moments
  33. Research Article
  34. Compressed sensing of multi-lead ECG signals by compressive multiplexing
  35. Research Article
  36. Heart rate monitoring in ultra-high-field MRI using frequency information obtained from video signals of the human skin compared to electrocardiography and pulse oximetry
  37. Research Article
  38. Synchronization in wireless biomedical-sensor networks with Bluetooth Low Energy
  39. Research Article
  40. Automated classification of stages of anaesthesia by populations of evolutionary optimized fuzzy rules
  41. Research Article
  42. Effects of sampling rate on automated fatigue recognition in surface EMG signals
  43. Research Article
  44. Closed-loop transcranial alternating current stimulation of slow oscillations
  45. Research Article
  46. Cardiac index in atrio- and interventricular delay optimized cardiac resynchronization therapy and cardiac contractility modulation
  47. Research Article
  48. The role of expert evaluation for microsleep detection
  49. Research Article
  50. The impact of baseline wander removal techniques on the ST segment in simulated ischemic 12-lead ECGs
  51. Research Article
  52. Metal artifact reduction by projection replacements and non-local prior image integration
  53. Research Article
  54. A novel coaxial nozzle for in-process adjustment of electrospun scaffolds’ fiber diameter
  55. Research Article
  56. Processing of membranes for oxygenation using the Bellhouse-effect
  57. Research Article
  58. Inkjet printing of viable human dental follicle stem cells
  59. Research Article
  60. The use of an icebindingprotein out of the snowflea Hypogastrura harveyi as a cryoprotectant in the cryopreservation of mesenchymal stem cells
  61. Research Article
  62. New NIR spectroscopy based method to determine ischemia in vivo in liver – a first study on rats
  63. Research Article
  64. QRS and QT ventricular conduction times and permanent pacemaker therapy after transcatheter aortic valve implantation
  65. Research Article
  66. Adopting oculopressure tonometry as a transient in vivo rabbit glaucoma model
  67. Research Article
  68. Next-generation vision testing: the quick CSF
  69. Research Article
  70. Improving tactile sensation in laparoscopic surgery by overcoming size restrictions
  71. Research Article
  72. Design and control of a 3-DOF hydraulic driven surgical instrument
  73. Research Article
  74. Evaluation of endourological tools to improve the diagnosis and therapy of ureteral tumors – from model development to clinical application
  75. Research Article
  76. Frequency based assessment of surgical activities
  77. Research Article
  78. “Hands free for intervention”, a new approach for transoral endoscopic surgery
  79. Research Article
  80. Pseudo-haptic feedback in medical teleoperation
  81. Research Article
  82. Feasibility of interactive gesture control of a robotic microscope
  83. Research Article
  84. Towards structuring contextual information for workflow-driven surgical assistance functionalities
  85. Research Article
  86. Towards a framework for standardized semantic workflow modeling and management in the surgical domain
  87. Research Article
  88. Closed-loop approach for situation awareness of medical devices and operating room infrastructure
  89. Research Article
  90. Kinect based physiotherapy system for home use
  91. Research Article
  92. Evaluating the microsoft kinect skeleton joint tracking as a tool for home-based physiotherapy
  93. Research Article
  94. Integrating multimodal information for intraoperative assistance in neurosurgery
  95. Research Article
  96. Respiratory motion tracking using Microsoft’s Kinect v2 camera
  97. Research Article
  98. Using smart glasses for ultrasound diagnostics
  99. Research Article
  100. Measurement of needle susceptibility artifacts in magnetic resonance images
  101. Research Article
  102. Dimensionality reduction of medical image descriptors for multimodal image registration
  103. Research Article
  104. Experimental evaluation of different weighting schemes in magnetic particle imaging reconstruction
  105. Research Article
  106. Evaluation of CT capability for the detection of thin bone structures
  107. Research Article
  108. Towards contactless optical coherence elastography with acoustic tissue excitation
  109. Research Article
  110. Development and implementation of algorithms for automatic and robust measurement of the 2D:4D digit ratio using image data
  111. Research Article
  112. Automated high-throughput analysis of B cell spreading on immobilized antibodies with whole slide imaging
  113. Research Article
  114. Tissue segmentation from head MRI: a ground truth validation for feature-enhanced tracking
  115. Research Article
  116. Video tracking of swimming rodents on a reflective water surface
  117. Research Article
  118. MR imaging of model drug distribution in simulated vitreous
  119. Research Article
  120. Studying the extracellular contribution to the double wave vector diffusion-weighted signal
  121. Research Article
  122. Artifacts in field free line magnetic particle imaging in the presence of inhomogeneous and nonlinear magnetic fields
  123. Research Article
  124. Introducing a frequency-tunable magnetic particle spectrometer
  125. Research Article
  126. Imaging of aortic valve dynamics in 4D OCT
  127. Research Article
  128. Intravascular optical coherence tomography (OCT) as an additional tool for the assessment of stent structures
  129. Research Article
  130. Simple concept for a wide-field lensless digital holographic microscope using a laser diode
  131. Research Article
  132. Intraoperative identification of somato-sensory brain areas using optical imaging and standard RGB camera equipment – a feasibility study
  133. Research Article
  134. Respiratory surface motion measurement by Microsoft Kinect
  135. Research Article
  136. Improving image quality in EIT imaging by measurement of thorax excursion
  137. Research Article
  138. A clustering based dual model framework for EIT imaging: first experimental results
  139. Research Article
  140. Three-dimensional anisotropic regularization for limited angle tomography
  141. Research Article
  142. GPU-based real-time generation of large ultrasound volumes from freehand 3D sweeps
  143. Research Article
  144. Experimental computer tomograph
  145. Research Article
  146. US-tracked steered FUS in a respiratory ex vivo ovine liver phantom
  147. Research Article
  148. Contribution of brownian rotation and particle assembly polarisation to the particle response in magnetic particle spectrometry
  149. Research Article
  150. Preliminary investigations of magnetic modulated nanoparticles for microwave breast cancer detection
  151. Research Article
  152. Construction of a device for magnetic separation of superparamagnetic iron oxide nanoparticles
  153. Research Article
  154. An IHE-conform telecooperation platform supporting the treatment of dementia patients
  155. Research Article
  156. Automated respiratory therapy system based on the ARDSNet protocol with systemic perfusion control
  157. Research Article
  158. Identification of surgical instruments using UHF-RFID technology
  159. Research Article
  160. A generic concept for the development of model-guided clinical decision support systems
  161. Research Article
  162. Evaluation of local alterations in femoral bone mineral density measured via quantitative CT
  163. Research Article
  164. Creating 3D gelatin phantoms for experimental evaluation in biomedicine
  165. Research Article
  166. Influence of short-term fixation with mixed formalin or ethanol solution on the mechanical properties of human cortical bone
  167. Research Article
  168. Analysis of the release kinetics of surface-bound proteins via laser-induced fluorescence
  169. Research Article
  170. Tomographic particle image velocimetry of a water-jet for low volume harvesting of fat tissue for regenerative medicine
  171. Research Article
  172. Wireless medical sensors – context, robustness and safety
  173. Research Article
  174. Sequences for real-time magnetic particle imaging
  175. Research Article
  176. Speckle-based off-axis holographic detection for non-contact photoacoustic tomography
  177. Research Article
  178. A machine learning approach for planning valve-sparing aortic root reconstruction
  179. Research Article
  180. An in-ear pulse wave velocity measurement system using heart sounds as time reference
  181. Research Article
  182. Measuring different oxygenation levels in a blood perfusion model simulating the human head using NIRS
  183. Research Article
  184. Multisegmental fusion of the lumbar spine a curse or a blessing?
  185. Research Article
  186. Numerical analysis of the biomechanical complications accompanying the total hip replacement with NANOS-Prosthetic: bone remodelling and prosthesis migration
  187. Research Article
  188. A muscle model for hybrid muscle activation
  189. Research Article
  190. Mathematical, numerical and in-vitro investigation of cooling performance of an intra-carotid catheter for selective brain hypothermia
  191. Research Article
  192. An ideally parameterized unscented Kalman filter for the inverse problem of electrocardiography
  193. Research Article
  194. Interactive visualization of cardiac anatomy and atrial excitation for medical diagnosis and research
  195. Research Article
  196. Virtualizing clinical cases of atrial flutter in a fast marching simulation including conduction velocity and ablation scars
  197. Research Article
  198. Mesh structure-independent modeling of patient-specific atrial fiber orientation
  199. Research Article
  200. Accelerating mono-domain cardiac electrophysiology simulations using OpenCL
  201. Research Article
  202. Understanding the cellular mode of action of vernakalant using a computational model: answers and new questions
  203. Research Article
  204. A java based simulator with user interface to simulate ventilated patients
  205. Research Article
  206. Evaluation of an algorithm to choose between competing models of respiratory mechanics
  207. Research Article
  208. Numerical simulation of low-pulsation gerotor pumps for use in the pharmaceutical industry and in biomedicine
  209. Research Article
  210. Numerical and experimental flow analysis in centifluidic systems for rapid allergy screening tests
  211. Research Article
  212. Biomechanical parameter determination of scaffold-free cartilage constructs (SFCCs) with the hyperelastic material models Yeoh, Ogden and Demiray
  213. Research Article
  214. FPGA controlled artificial vascular system
  215. Research Article
  216. Simulation based investigation of source-detector configurations for non-invasive fetal pulse oximetry
  217. Research Article
  218. Test setup for characterizing the efficacy of embolic protection devices
  219. Research Article
  220. Impact of electrode geometry on force generation during functional electrical stimulation
  221. Research Article
  222. 3D-based visual physical activity assessment of children
  223. Research Article
  224. Realtime assessment of foot orientation by Accelerometers and Gyroscopes
  225. Research Article
  226. Image based reconstruction for cystoscopy
  227. Research Article
  228. Image guided surgery innovation with graduate students - a new lecture format
  229. Research Article
  230. Multichannel FES parameterization for controlling foot motion in paretic gait
  231. Research Article
  232. Smartphone supported upper limb prosthesis
  233. Research Article
  234. Use of quantitative tremor evaluation to enhance target selection during deep brain stimulation surgery for essential tremor
  235. Research Article
  236. Evaluation of adhesion promoters for Parylene C on gold metallization
  237. Research Article
  238. The influence of metallic ions from CoCr28Mo6 on the osteogenic differentiation and cytokine release of human osteoblasts
  239. Research Article
  240. Increasing the visibility of thin NITINOL vascular implants
  241. Research Article
  242. Possible reasons for early artificial bone failure in biomechanical tests of ankle arthrodesis systems
  243. Research Article
  244. Development of a bending test procedure for the characterization of flexible ECoG electrode arrays
  245. Research Article
  246. Tubular manipulators: a new concept for intracochlear positioning of an auditory prosthesis
  247. Research Article
  248. Investigation of the dynamic diameter deformation of vascular stents during fatigue testing with radial loading
  249. Research Article
  250. Electrospun vascular grafts with anti-kinking properties
  251. Research Article
  252. Integration of temperature sensors in polyimide-based thin-film electrode arrays
  253. Research Article
  254. Use cases and usability challenges for head-mounted displays in healthcare
  255. Research Article
  256. Device- and service profiles for integrated or systems based on open standards
  257. Research Article
  258. Risk management for medical devices in research projects
  259. Research Article
  260. Simulation of varying femoral attachment sites of medial patellofemoral ligament using a musculoskeletal multi-body model
  261. Research Article
  262. Does enhancing consciousness for strategic planning processes support the effectiveness of problem-based learning concepts in biomedical education?
  263. Research Article
  264. SPIO processing in macrophages for MPI: The breast cancer MPI-SNLB-concept
  265. Research Article
  266. Numerical simulations of airflow in the human pharynx of OSAHS patients
Downloaded on 7.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/cdbme-2015-0099/html
Scroll to top button