Home Field mapping of ballistic pressure pulse sources
Article Open Access

Field mapping of ballistic pressure pulse sources

  • Abtin Jamshidi Rad EMAIL logo and Friedrich Ueberle
Published/Copyright: September 12, 2015

Abstract

Ballistic pressure pulse sources are used since late 1990s for the extracorporeal treatment of chronic Enthesitis. Newly indications are found in trigger-point-therapy for the treatment of musculoskeletal disorders. In both applications excellent results without relevant side effects were found in clinical trials. The technical principle of pressure pulse source is based on the same techniques used in air guns. A projectile is accelerated by pressurized air and hits the applicator with high kinetic energy. By this a compression wave travels through the material and induces a fast (4..5μs), almost singular pressure pulse of 2..10 MPa, which is followed by an equally short rarefaction phase of about the same amplitude. It is assumed that the pressure pulse accounts for the biomedical effects of the device. The slower inertial motion of the waveguide is damped by elastic stoppers, but still can be measured several micro seconds after the initial pressure pulse. In order to characterize the pressure pulse devices, field mapping is performed on several radial pressure pulse sources using the fiber optic hydrophone and a polyvinylidenfluorid (PVDF) piezoelectric hydrophone. It could be shown that the current standard (IEC 61846) is not appropriate for characterization of ballistic pressure pulse sources.

1 Introduction

Since the introduction of extracorporeal shockwave lithotripsy (ESWL) for the treatment of kidney stones in the 90th the shockwave technology is augmented to a variety of other fields. One of these fields is the application of focused low energy shockwaves - also known as Extra-corporeal Shockwave Therapy (ESWT) - in the treatment of musculoskeletal disorders [11]. During the in vivo evaluation of potential unwanted side effects of ESWL in the 80th, shockwave induced osteoblast stimulation and bone apposition after an initial osteocyte-damage was observed [17, 21]. This marks the initiation of shockwave therapy for the treatment of pseudarthrosis [21]. Nowadays the ESWT is a standard method in orthopedics for the treatment of epicondylitis, calcific tendinitis, achillodynia and calcaneal spur. Newly application are found in the treatment of myofascial pain with trigger-point-therapy [7]. Clinical trials report good results without significant side effects [7, 8, 11, 15, 17, 20]. Therapeutic success with such amount of different indications suggest the assumption that there must be many different bio-effects related with shockwave therapy [21]. Ballistic pressure pulse sources use the same principle as air guns. Pressurized air (typically 2 − 4 Bar) is used to accelerate a cylindrical steel projectile (typical weight 3 g) guided through a tube of about 20 cm onto the rear face of a conical waveguide, calledapplicator. Typical diameter of an applicator on the patient side is 15 mm with a weight of 30 g. Other applicators with different diameters (6 mm − 36 mm), shapes (convex or concave end-surface) and lengths can be attached to the hand-piece. After the impact of the projectile on the applicator a compression wave travels through the material and is transferred at the adjacent side into the patient via a coupling gel [24, 27].

2 Acoustic metrology

The physical properties of the shockwave field, the basics of shockwave generation and the parameters of the field are well defined in [22] and [23]. In addition to it, the measurements of the field parameters are described by the IEC standard 61846 [12] and are mandatory for regulatory certifications. In contrast to the physical parameters the biological and the bio-molecular effects are not fully understood [11, 18]. It is assumed that the biological effects of ESWT are based on a bio-molecular mechanism and not on the physical-mechanical level [15].

Since the end of the 90th ballistic (also called radial) Extracorporeal Shockwave Therapy sources (rESWT) are on the market and used for the treatments soft-tissue pain situations [7, 17]. In contrast to the focused extracorporeal shockwave therapy (ESWT) devices, the pulses in rEWST are applied manually, guided by patient feedback, without ultrasound or X-ray control. While several reports and clinical studies find good results with rESWT, such as the therapy of chronic plantar fasciitis [8], Tennis elbow [4, 7], some other find no effect [1] or no advantage of rESWT compared to standard procedures [5]. The varying results could be an indication for the influence of clinical-study-conditions and the setting of the hand-piece on the study outcome [2]. This is aggravated by the fact that the physical properties of the acoustic field of rESWT sources are neither fully described nor defined by technical report. Without knowledge on the physical level, predictions on biological effects are difficult to make. To our knowledge, except our recent publications (see [24–26] and [27]) only one publication cover the acoustic field of a rESWT source (see [3]).

Regulatory measurements for the certification process are mostly performed according to the IEC standard 61846 [12]. The IEC standard 61846 was published in 1998, defining the measurement parameters of focused shock-wave fields. Since then the approval of newly designed lithotripters for clinical use are based on the measurement methods described in this standard. Although the standard was written for lithotripters, it is also used to describe otherfocused ESWT devices [22].

For the characterization of the acoustic pressure field of a source several approaches can be used. In [26] a dry test bench using an accelerometer and in [13] and [6] an interferometric approach is suggested. The disadvantage of these methods is that field measurements are difficult to achieve. Acoustic under water measurements are the best option for the evaluation of the field parameters, but also very challenging. Under water measurements need complex and costly experimental setups and with the large amount of different applicators these measurements could be very time consuming.

The aim of our investigation is to characterize the acoustic field of different rESWT sources and make statements on the applicability of the IEC standard 61846 for the measurements of ballistic pressure pulse sources. In order to characterize the device, field mapping is performed on several radial pressure pulse sources using a polyvinylidenfluorid (PVDF) piezoelectric hydrophone.

3 Experimental setup

The measurements are done in a water-tank (LxWxH = 0.8 mx0.8 mx0.4 m) filled with degased (O2 conzentration < 0.9 mg/L), deionized and 0.2 μm filtered water at 25°C ± 1°C. The hand-piece is mounted directly at the bottom of the water-tank without a membrane between the applicator and the liquid. To ensure a fixed position of the applicator relative to the probe the inertial motion of the applicator is prevented by rigid fixation of the hand-piece to the setup. The hydrophones are moved by custom built 3D positioning system controlled by LabView© (National Instruments) and program. The hand-piece with 15 mm applicator, which is to our knowledge the clinically mostly used type, is used for the measurements and modeled for the simulations. The hand-piece generator is connected to a pressurized air source (6 Bar), filtered by a 5 μm sinter-bronze air-filter. Several measurement protocols, with single pulse and pulse repetition frequencies (PRF) between 1 HZ and 20 HZ are performed. The setup is shown in Fig. 1. A Polyvinylidene fluoride (PVDF) piezoelectric hydrophone HGL200 (Onda Corp. Sunnyvale – USA) with an active diameter of (200 μm) is used for acoustic measurements. The calibration of the hydrophone is given for the range 1 MHz − 20MHz. A preamplifier AH2010 (Onda corp. Sunnyvale – USA) with +20 dB is attached ro the hydrophone. A HAMEG 1508-2 oscilloscope (HAMEG Instruments GmbH, Germany) is used for signal acquisition. The signal processing is performed in Matlab© (Math Works Inc.) and Excel©. Due to an agreement with the manufactures the different hand-pieces of the different manufactures are labeled ashand-piece 1 (HP1) etc.

Figure 1 The measurement setup with the hand-piece attached below a water tank.
Figure 1

The measurement setup with the hand-piece attached below a water tank.

Figure 2 Typical pressure-time curve (HP1) measured using a PVDF Hydrophone in degased and deionized water at 25°C at maximum hand-piece setting (4 Bar).
Figure 2

Typical pressure-time curve (HP1) measured using a PVDF Hydrophone in degased and deionized water at 25°C at maximum hand-piece setting (4 Bar).

Figure 3 Left Fig.: The inertial oscillations of the applicator (HP2) lead to pressure pulses, which arrive some ms after the initial pulse (at timet = 0). Middle Fig.: Lateral Maximum- and Minimum-pressure distribution 1 mm distance to the source (HP2). Right Figure: Energy-flux-density distribution along the propagation axis (z-axis). Measurements done using a PVDF Hydrophone in degased and deionized water at 25°C. The black solid line depicts a 1/z2 fit.
Figure 3

Left Fig.: The inertial oscillations of the applicator (HP2) lead to pressure pulses, which arrive some ms after the initial pulse (at timet = 0). Middle Fig.: Lateral Maximum- and Minimum-pressure distribution 1 mm distance to the source (HP2). Right Figure: Energy-flux-density distribution along the propagation axis (z-axis). Measurements done using a PVDF Hydrophone in degased and deionized water at 25°C. The black solid line depicts a 1/z2 fit.

4 Measurement results

A typical pressure time curve of an ballistic pressure pulse source consists of a first positive pressure peak, ranging from 5 MPa up to 20 MPa, mostly followed by a rarefactional phase of about 5 MPa and several oscillations which occur due to stress wave reflections inside the applicator (Fig. 2).

The rise time of the pressure pulse of all hand-pieces are in the range of several microseconds and thus can not be described asshockwaves, which are defined to have a rise time of about some nanoseconds. The inertial motion of the applicator leads to low frequency oscillations of some milliseconds cycle duration, which arrive depending on the applicator and hand-piece several milliseconds after the initial pulse (Fig. 3 left).

Due to the late arrival of the inertial oscillations, these pressure pulses are rarely observed in measurements according the IEC standard, which provide an acquisition time of several microseconds. These pulses are not taken into account in the energy calculations. And to our knowledge there is no clinical investigation on the influence of these motions on biological tissue.

Changing the applicator leads to relatively small differences in the signal shape but could have a big influence on the pressure amplitude. For the same hand-piec (HP5) we observe a pressure change from 7 MPa to 20 MPa, by changing the applicator. The interesting observation we noticed is the huge difference between the pressure-time signals-shape from the hand-pieces of different manufactures, while using the same energy settings and applicator type: As for instance The pressure amplitude is almost two times higher with HP3 while the energy is approximately 40% higher for HP4.

As expected from the theory of a piston source [14], we find a Gaussian distribution for the energy values along the lateral axis (Fig. 3 middle). The energy flux density values along the propagation axis show a 1/z2 distribution (Fig. 2 right), which is contrary to the 1/z3 assumptions in recent publications (see [9]). Furthermore we find several publication describing almost no energy afterz = 3 - 5 mm (e.g. [10, 16]), which is not consistent to our measurements, even if we take a 3 medium analysis to model biological tissue.

5 Results and discussion

Our investigation shows that the current standard is not appropriate for the measurement of ballistic sources. Firstly in accordance to the theory of a point source, our measurements show a radial diffusing field for a ballistic sources, which is contrary to the IEC standards intention of focused fields. Consequently the measurement of focused field parameters as described by the standard are not possible. Furthermore, as shown in Fig. 2 the pressure signal is, in contrast to transient lithotripter pressure-pulses, strongly oscillatory making it difficult to define the integration limits for positive and total-energy calculations. Without any specifications on the integration limits, total energy values can be calculated for arbitrary amount of oscillations, and by this the total energy output of a hand-piece can be artificially increased. As for instance, in our measurements we find several manufacture specifications for the energy values that we could not be achieved if we take only the first oscillations into account.

An important observation we noticed is that, although the hand-piece load is given as pressurized air values (in Bar) for all devices we used, the same load for different hand-pieces – even from the same manufacture – lead to different acoustic pressure and energy outputs. This is also the case for the same hand-piece with different applicator. Consequently the applied load can not be used to characterize or compare the applied energy in different studies. However we find a linear relationship between the hand-piece load and the acoustic output of the device. Shock-wave formation could not be observed regardless of the hand-piece or load settings.

The acoustic measurements in water turned out to be very challenging due to the high probability of cavitation, which leads to signal distortion and could destroy the hydrophone. Our aim for the future work is to find an alternative way to characterize the sound field of the source by interferometric measurements with subsequent spatial impulse response simulations.

Author’s Statement

  1. Conflict of interest: Authors state no conflict of interest.

    Material and Methods: Informed consent: Informed consent has been obtained from all individuals included in this study. Ethical approval: The research related to human use has been complied with all the relevant national regulations, institutional policies and in accordance the tenets of the Helsinki Declaration, and has been approved by the authors’ institutional review board or equivalent committee.

References

[1] Brown KE, Nickels F, Caron J, Mullineaux D, Clayton H. Investigation of the immediate analgesic effects of extracorporeal shock wave therapy for treatment of navicular disease in horses. Vet Surg 2005; 34:554–558.10.1111/j.1532-950X.2005.00087.xSearch in Google Scholar

[2] Cleveland R, Chitnis P, McClure S. Acoustic field of a ballistic shock wave therapy device. Ultrasound Med Biol 2007; 33:1327–1335.10.1016/j.ultrasmedbio.2007.02.014Search in Google Scholar

[3] Cleveland R O, Parag V C, Scott R M. Acoustic Field of a ballistic shock wave therapy device. Ultrasound in Med & Biol 2007; 33:1–9.10.1016/j.ultrasmedbio.2007.02.014Search in Google Scholar

[4] Diesch R, Straub T, Penninger E, et al. New cost-effective treatment for calcaneal spur and tennis elbow. International Society for Medical Shockwave Treatment 2002; London.Search in Google Scholar

[5] Engebretsen K, Grotle M, Bautz-Holter E, et al. Radial extracorporeal shockwave treatment compared with supervised exercises in patients with subacromial pain syndrome: single blind randomised study. BMJ 2009; 339:1–6.10.1136/bmj.b3360Search in Google Scholar

[6] Felix N, Certon D, Ratsimandresy L, Lethiecq M, Patat F. 1D Ultra-sound Array: Performances Evaluation and Characterization by Laser Interferometry. IEEE 2000; 1191–1194.10.1109/ULTSYM.2000.921536Search in Google Scholar

[7] Gerdesmeyer L, Gollwitzer H, Diehl P, Wagner K. extrakorporale Stoßwellentherapie (rESWT) in der Orthopädie. Journal für Mineralstoffwechsel 2004; 11:36–39.Search in Google Scholar

[8] Gerdesmeyer L, Frey C, Vester J, et al. Radial extracorporeal shock wave therapy is safe and effective in the treatment of chronic recalcitrant plantar fasciitis: results of a confirmatory randomized placebo-controlled multicenter study. Am J Sports Med 2008; 36:2100–2109.10.1177/0363546508324176Search in Google Scholar

[9] Gerdesmeyer L, Meier M, Haake M, Schmitz C. Physikalischtechnische Grundlagen der extrakorporalen Stoßwellentherapie (ESWT). Orthopäde 2002; 31:610–617.10.1007/s00132-002-0319-8Search in Google Scholar

[10] Gonkova MI, Ilieva EM, Ferriero G, Chavdarov I. Effect of radial shock wave therapy on muscle spasticity in children with cerebral palsy. International Journal of Rehabilitation Research 2013; 36:284–290.10.1097/MRR.0b013e328360e51dSearch in Google Scholar

[11] Hammer DS, Rupp S, Kreutz A, Pape D, Kohn D, Seil D. Extra-corporeal Shockwave Therapy (ESWT) in Patients with Chronic Proximal Plantar Fasciitis. Foot Ankle Int 2002; 23:309–313.10.1177/107110070202300403Search in Google Scholar

[12] IEC. Ultrasonics - Pressure pulse lithotripters - Characteristics of fields IEC 61846. International Electrotechnical Commission 1998.Search in Google Scholar

[13] Jamshidi Rad A, Ueberle F. Comparison of interferometric measurement of a ballistic pressure pulse source with simulations using the spatial impulse response method and acoustic measurements. BMT 2014.Search in Google Scholar

[14] Kuttruff H. Ultrasonics Fundamentals and Applications. London: Elsevier Applied Science 1991.10.1007/978-94-011-3846-8Search in Google Scholar

[15] Müller-Ehrenberg H, Licht G. Diagnostik und Therapie von Myofasziallen Schmerzsyndromen mittels der Fokussierten Stosswelle (ESWT). Medizinisch-Orthopädische Technik (MOT) 2005; 5:1–6.Search in Google Scholar

[16] Müller-Ehrenberg H. Fokussierte Stoßwelle und radiale Druckwelle: ein Vergleich. Orthopädie 2005; 4:14–16.Search in Google Scholar

[17] Naßenstein K. Wirkung von hochenergetischen extrakorporalen Stoßwellen am Knochen. Eine tierexperimentelle Studie. Ruhr-Universität Bochum 2001.Search in Google Scholar

[18] Neuland H, Duchstein H, Mei W. Grundzüge der molekularbiologischen Wirkung der extrakorporalen Stoßwellen Stoßwellen am menschlichen Organismus - in vitro und in vivo Untersuchung. Orthopädische Praxis 2004; 546–552.Search in Google Scholar

[19] Notarnicola A, Moretti B. The biological effects of extracorporeal shock wave therapy (eswt) on tendon tissue. Muscles Ligaments Tendons J 2012; 2:33–37.Search in Google Scholar

[20] Rompe JD, Küllmer K, Riehle HM et al. Effectiveness of low-energy extracorporal shock waves for chronic plantar fasciitis. Food and Ankle Surgery 1996; 2:215–221.10.1016/S1268-7731(96)80004-XSearch in Google Scholar

[21] Tischer T, Milz S, Zysk A, Hausdorf J, Maier M. ESWL aus der Sicht des Osteologen. Journal für Mineralstoffwechsel 2004; 11:29–35.Search in Google Scholar

[22] Ueberle F, Jamshidi Rad A. Pressure Pulse Measurements Using Optical Hydrophone Principles. Journal of Physics 2011; 279:1–6.10.1088/1742-6596/279/1/012003Search in Google Scholar

[23] Ueberle F. Shock Wave Technology. In: Siebert W, Buch M, editors. Extracorporeal Shock Waves in Orthopaedics. Berlin Heidelberg: Springer 1978: 59–87.10.1007/978-3-642-80427-4_2Search in Google Scholar

[24] Ueberle F, Jamshidi Rad A. Pressure Pulse measurements of Ballistic Pressure Sources. DAGA 2012; Darmstadt.Search in Google Scholar

[25] Ueberle F, Jamshidi Rad A. Characterization of unfocused / weakly focused pressure pulse sources for extracorporeal pain therapy (”Radial Shock Wave Therapy” Sources). BMT 2013; 58:1–2.10.1515/bmt-2013-4130Search in Google Scholar PubMed

[26] Ueberle F, Jamshidi Rad A. Unfocused/Weakly Focused Pressure Pulse Sources for Pain Therapy: Measurements in Water and in a Dry Test Bench. ACTA PHYSICA POLONIA A 2015; 127:135–137.10.12693/APhysPolA.127.135Search in Google Scholar

[27] Ueberle F, Jamshidi Rad A. Ballistic Pain Therapy Devices: Measurement of Pressure Pulse Parameters. BMT 2012; 57:700– 703.10.1515/bmt-2012-4439Search in Google Scholar

[28] van der Worp H, van den Akker-Scheek I, van Schie H, Zwerver J. ESWT for tendinopathy: technology and clinical implications. Jnee Surg Sports Traumatol Arthrosc 2013; 21:1451–1458.10.1007/s00167-012-2009-3Search in Google Scholar PubMed PubMed Central

Published Online: 2015-9-12
Published in Print: 2015-9-1

© 2015 by Walter de Gruyter GmbH, Berlin/Boston

This article is distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Articles in the same Issue

  1. Research Article
  2. Development and characterization of superparamagnetic coatings
  3. Research Article
  4. The development of an experimental setup to measure acousto-electric interaction signal
  5. Research Article
  6. Stability analysis of ferrofluids
  7. Research Article
  8. Investigation of endothelial growth using a sensors-integrated microfluidic system to simulate physiological barriers
  9. Research Article
  10. Energy harvesting for active implants: powering a ruminal pH-monitoring system
  11. Research Article
  12. New type of fluxgate magnetometer for the heart’s magnetic fields detection
  13. Research Article
  14. Field mapping of ballistic pressure pulse sources
  15. Research Article
  16. Development of a new homecare sleep monitor using body sounds and motion tracking
  17. Research Article
  18. Noise properties of textile, capacitive EEG electrodes
  19. Research Article
  20. Detecting phase singularities and rotor center trajectories based on the Hilbert transform of intraatrial electrograms in an atrial voxel model
  21. Research Article
  22. Spike sorting: the overlapping spikes challenge
  23. Research Article
  24. Separating the effect of respiration from the heart rate variability for cases of constant harmonic breathing
  25. Research Article
  26. Locating regions of arrhythmogenic substrate by analyzing the duration of triggered atrial activities
  27. Research Article
  28. Combining different ECG derived respiration tracking methods to create an optimal reconstruction of the breathing pattern
  29. Research Article
  30. Atrial and ventricular signal averaging electrocardiography in pacemaker and cardiac resynchronization therapy
  31. Research Article
  32. Estimation of a respiratory signal from a single-lead ECG using the 4th order central moments
  33. Research Article
  34. Compressed sensing of multi-lead ECG signals by compressive multiplexing
  35. Research Article
  36. Heart rate monitoring in ultra-high-field MRI using frequency information obtained from video signals of the human skin compared to electrocardiography and pulse oximetry
  37. Research Article
  38. Synchronization in wireless biomedical-sensor networks with Bluetooth Low Energy
  39. Research Article
  40. Automated classification of stages of anaesthesia by populations of evolutionary optimized fuzzy rules
  41. Research Article
  42. Effects of sampling rate on automated fatigue recognition in surface EMG signals
  43. Research Article
  44. Closed-loop transcranial alternating current stimulation of slow oscillations
  45. Research Article
  46. Cardiac index in atrio- and interventricular delay optimized cardiac resynchronization therapy and cardiac contractility modulation
  47. Research Article
  48. The role of expert evaluation for microsleep detection
  49. Research Article
  50. The impact of baseline wander removal techniques on the ST segment in simulated ischemic 12-lead ECGs
  51. Research Article
  52. Metal artifact reduction by projection replacements and non-local prior image integration
  53. Research Article
  54. A novel coaxial nozzle for in-process adjustment of electrospun scaffolds’ fiber diameter
  55. Research Article
  56. Processing of membranes for oxygenation using the Bellhouse-effect
  57. Research Article
  58. Inkjet printing of viable human dental follicle stem cells
  59. Research Article
  60. The use of an icebindingprotein out of the snowflea Hypogastrura harveyi as a cryoprotectant in the cryopreservation of mesenchymal stem cells
  61. Research Article
  62. New NIR spectroscopy based method to determine ischemia in vivo in liver – a first study on rats
  63. Research Article
  64. QRS and QT ventricular conduction times and permanent pacemaker therapy after transcatheter aortic valve implantation
  65. Research Article
  66. Adopting oculopressure tonometry as a transient in vivo rabbit glaucoma model
  67. Research Article
  68. Next-generation vision testing: the quick CSF
  69. Research Article
  70. Improving tactile sensation in laparoscopic surgery by overcoming size restrictions
  71. Research Article
  72. Design and control of a 3-DOF hydraulic driven surgical instrument
  73. Research Article
  74. Evaluation of endourological tools to improve the diagnosis and therapy of ureteral tumors – from model development to clinical application
  75. Research Article
  76. Frequency based assessment of surgical activities
  77. Research Article
  78. “Hands free for intervention”, a new approach for transoral endoscopic surgery
  79. Research Article
  80. Pseudo-haptic feedback in medical teleoperation
  81. Research Article
  82. Feasibility of interactive gesture control of a robotic microscope
  83. Research Article
  84. Towards structuring contextual information for workflow-driven surgical assistance functionalities
  85. Research Article
  86. Towards a framework for standardized semantic workflow modeling and management in the surgical domain
  87. Research Article
  88. Closed-loop approach for situation awareness of medical devices and operating room infrastructure
  89. Research Article
  90. Kinect based physiotherapy system for home use
  91. Research Article
  92. Evaluating the microsoft kinect skeleton joint tracking as a tool for home-based physiotherapy
  93. Research Article
  94. Integrating multimodal information for intraoperative assistance in neurosurgery
  95. Research Article
  96. Respiratory motion tracking using Microsoft’s Kinect v2 camera
  97. Research Article
  98. Using smart glasses for ultrasound diagnostics
  99. Research Article
  100. Measurement of needle susceptibility artifacts in magnetic resonance images
  101. Research Article
  102. Dimensionality reduction of medical image descriptors for multimodal image registration
  103. Research Article
  104. Experimental evaluation of different weighting schemes in magnetic particle imaging reconstruction
  105. Research Article
  106. Evaluation of CT capability for the detection of thin bone structures
  107. Research Article
  108. Towards contactless optical coherence elastography with acoustic tissue excitation
  109. Research Article
  110. Development and implementation of algorithms for automatic and robust measurement of the 2D:4D digit ratio using image data
  111. Research Article
  112. Automated high-throughput analysis of B cell spreading on immobilized antibodies with whole slide imaging
  113. Research Article
  114. Tissue segmentation from head MRI: a ground truth validation for feature-enhanced tracking
  115. Research Article
  116. Video tracking of swimming rodents on a reflective water surface
  117. Research Article
  118. MR imaging of model drug distribution in simulated vitreous
  119. Research Article
  120. Studying the extracellular contribution to the double wave vector diffusion-weighted signal
  121. Research Article
  122. Artifacts in field free line magnetic particle imaging in the presence of inhomogeneous and nonlinear magnetic fields
  123. Research Article
  124. Introducing a frequency-tunable magnetic particle spectrometer
  125. Research Article
  126. Imaging of aortic valve dynamics in 4D OCT
  127. Research Article
  128. Intravascular optical coherence tomography (OCT) as an additional tool for the assessment of stent structures
  129. Research Article
  130. Simple concept for a wide-field lensless digital holographic microscope using a laser diode
  131. Research Article
  132. Intraoperative identification of somato-sensory brain areas using optical imaging and standard RGB camera equipment – a feasibility study
  133. Research Article
  134. Respiratory surface motion measurement by Microsoft Kinect
  135. Research Article
  136. Improving image quality in EIT imaging by measurement of thorax excursion
  137. Research Article
  138. A clustering based dual model framework for EIT imaging: first experimental results
  139. Research Article
  140. Three-dimensional anisotropic regularization for limited angle tomography
  141. Research Article
  142. GPU-based real-time generation of large ultrasound volumes from freehand 3D sweeps
  143. Research Article
  144. Experimental computer tomograph
  145. Research Article
  146. US-tracked steered FUS in a respiratory ex vivo ovine liver phantom
  147. Research Article
  148. Contribution of brownian rotation and particle assembly polarisation to the particle response in magnetic particle spectrometry
  149. Research Article
  150. Preliminary investigations of magnetic modulated nanoparticles for microwave breast cancer detection
  151. Research Article
  152. Construction of a device for magnetic separation of superparamagnetic iron oxide nanoparticles
  153. Research Article
  154. An IHE-conform telecooperation platform supporting the treatment of dementia patients
  155. Research Article
  156. Automated respiratory therapy system based on the ARDSNet protocol with systemic perfusion control
  157. Research Article
  158. Identification of surgical instruments using UHF-RFID technology
  159. Research Article
  160. A generic concept for the development of model-guided clinical decision support systems
  161. Research Article
  162. Evaluation of local alterations in femoral bone mineral density measured via quantitative CT
  163. Research Article
  164. Creating 3D gelatin phantoms for experimental evaluation in biomedicine
  165. Research Article
  166. Influence of short-term fixation with mixed formalin or ethanol solution on the mechanical properties of human cortical bone
  167. Research Article
  168. Analysis of the release kinetics of surface-bound proteins via laser-induced fluorescence
  169. Research Article
  170. Tomographic particle image velocimetry of a water-jet for low volume harvesting of fat tissue for regenerative medicine
  171. Research Article
  172. Wireless medical sensors – context, robustness and safety
  173. Research Article
  174. Sequences for real-time magnetic particle imaging
  175. Research Article
  176. Speckle-based off-axis holographic detection for non-contact photoacoustic tomography
  177. Research Article
  178. A machine learning approach for planning valve-sparing aortic root reconstruction
  179. Research Article
  180. An in-ear pulse wave velocity measurement system using heart sounds as time reference
  181. Research Article
  182. Measuring different oxygenation levels in a blood perfusion model simulating the human head using NIRS
  183. Research Article
  184. Multisegmental fusion of the lumbar spine a curse or a blessing?
  185. Research Article
  186. Numerical analysis of the biomechanical complications accompanying the total hip replacement with NANOS-Prosthetic: bone remodelling and prosthesis migration
  187. Research Article
  188. A muscle model for hybrid muscle activation
  189. Research Article
  190. Mathematical, numerical and in-vitro investigation of cooling performance of an intra-carotid catheter for selective brain hypothermia
  191. Research Article
  192. An ideally parameterized unscented Kalman filter for the inverse problem of electrocardiography
  193. Research Article
  194. Interactive visualization of cardiac anatomy and atrial excitation for medical diagnosis and research
  195. Research Article
  196. Virtualizing clinical cases of atrial flutter in a fast marching simulation including conduction velocity and ablation scars
  197. Research Article
  198. Mesh structure-independent modeling of patient-specific atrial fiber orientation
  199. Research Article
  200. Accelerating mono-domain cardiac electrophysiology simulations using OpenCL
  201. Research Article
  202. Understanding the cellular mode of action of vernakalant using a computational model: answers and new questions
  203. Research Article
  204. A java based simulator with user interface to simulate ventilated patients
  205. Research Article
  206. Evaluation of an algorithm to choose between competing models of respiratory mechanics
  207. Research Article
  208. Numerical simulation of low-pulsation gerotor pumps for use in the pharmaceutical industry and in biomedicine
  209. Research Article
  210. Numerical and experimental flow analysis in centifluidic systems for rapid allergy screening tests
  211. Research Article
  212. Biomechanical parameter determination of scaffold-free cartilage constructs (SFCCs) with the hyperelastic material models Yeoh, Ogden and Demiray
  213. Research Article
  214. FPGA controlled artificial vascular system
  215. Research Article
  216. Simulation based investigation of source-detector configurations for non-invasive fetal pulse oximetry
  217. Research Article
  218. Test setup for characterizing the efficacy of embolic protection devices
  219. Research Article
  220. Impact of electrode geometry on force generation during functional electrical stimulation
  221. Research Article
  222. 3D-based visual physical activity assessment of children
  223. Research Article
  224. Realtime assessment of foot orientation by Accelerometers and Gyroscopes
  225. Research Article
  226. Image based reconstruction for cystoscopy
  227. Research Article
  228. Image guided surgery innovation with graduate students - a new lecture format
  229. Research Article
  230. Multichannel FES parameterization for controlling foot motion in paretic gait
  231. Research Article
  232. Smartphone supported upper limb prosthesis
  233. Research Article
  234. Use of quantitative tremor evaluation to enhance target selection during deep brain stimulation surgery for essential tremor
  235. Research Article
  236. Evaluation of adhesion promoters for Parylene C on gold metallization
  237. Research Article
  238. The influence of metallic ions from CoCr28Mo6 on the osteogenic differentiation and cytokine release of human osteoblasts
  239. Research Article
  240. Increasing the visibility of thin NITINOL vascular implants
  241. Research Article
  242. Possible reasons for early artificial bone failure in biomechanical tests of ankle arthrodesis systems
  243. Research Article
  244. Development of a bending test procedure for the characterization of flexible ECoG electrode arrays
  245. Research Article
  246. Tubular manipulators: a new concept for intracochlear positioning of an auditory prosthesis
  247. Research Article
  248. Investigation of the dynamic diameter deformation of vascular stents during fatigue testing with radial loading
  249. Research Article
  250. Electrospun vascular grafts with anti-kinking properties
  251. Research Article
  252. Integration of temperature sensors in polyimide-based thin-film electrode arrays
  253. Research Article
  254. Use cases and usability challenges for head-mounted displays in healthcare
  255. Research Article
  256. Device- and service profiles for integrated or systems based on open standards
  257. Research Article
  258. Risk management for medical devices in research projects
  259. Research Article
  260. Simulation of varying femoral attachment sites of medial patellofemoral ligament using a musculoskeletal multi-body model
  261. Research Article
  262. Does enhancing consciousness for strategic planning processes support the effectiveness of problem-based learning concepts in biomedical education?
  263. Research Article
  264. SPIO processing in macrophages for MPI: The breast cancer MPI-SNLB-concept
  265. Research Article
  266. Numerical simulations of airflow in the human pharynx of OSAHS patients
Downloaded on 11.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/cdbme-2015-0007/html
Scroll to top button