Home Numerical simulations of airflow in the human pharynx of OSAHS patients
Article Open Access

Numerical simulations of airflow in the human pharynx of OSAHS patients

  • C. Kluck EMAIL logo and T.M. Buzug
Published/Copyright: June 13, 2016

Abstract

Abstract: Computational Fluid Dynamic simulations are performed in real patient individual pharynx geometries of an Obstructive Sleep Apnea patient. The Navier-Stokes equations as well as the Reynolds Averaged Navier-Stokes equations and k and kω turbulence models are used. The velocity profile and pressure distribution of the patient without any treatment and the patient wearing a mandibular advancement appliance are compared to each other. The simulation results for the different model conditions all lead to similar results showing the robustness of the numerical solutions. The pressure loss along the pharynx is lower in the presence of a mandibular appliance, which can indicate the reduction of OSAHS severity.

1 Introduction

The Obstructive Sleep Apnea Hypopnea Syndrome (OSAHS) is a sleep related breathing disorder that leads to cessations in respirations due to reversible soft tissue deformations in the area of the human pharynx [14]. OSAHS is connected to a higher risk of stroke, cardiopulmonary death, hypertension as well as a reduction in life quality and depression [58]. In the understanding of the abnormal flow situation within the patient’s pharynx numerical simulation of the airflow in digital models of patient individual airway geometries may be a useful tool for diagnosis as well as therapy. In [12] an experimental comparison study is performed that uses an idealized geometry of a pharynx, which is a circular tube with a constricted area. Computational Fluid Dynamic (CFD) calculations are compared to the experimental measurement of velocity profiles in that tube. It could be shown that using computations based on the Navier-Stokes equations can simulate the true velocity profile quite well. The forgoing study is now extended to real patient data. The velocity profile as well as the pressure distribution in a real patient’s pharyngeal geometry obtained from medical image data is computed and compared to the same patient’s airway, when he is wearing a mandibular advancement appliance (MAA), which is a therapy possibility for OSAHS. The idea to reposition the mandibular with a dental appliance is to also reposition the attached soft tissue and remodel the pharyngeal lumen to improve the awkward pressure distribution. Within this study it is examined whether the numerical simulation shows up a change in the pressure or the velocity in the human pharynx due to a mandibular advancement. Despite that different simulation conditions are examined: the usage of the Navier-Stokes equations as well as their Reynolds Averaged parts together with two different turbulence models, k and kω, are tested to validate the robustness of CFD calculations.

2 Material and Methods

Numerical simulations are performed using real patient’s data. Two different situations are compared: The patient’s natural airway geometry without any treatment and the same patient’s pharynx, where the patient is wearing a MAA. In order to prepare the real data for numerical simulations digital models have to be created.

2.1 Creation of Digital Models

The geometry of a patient’s pharynx suffering from OSAHS is extracted from a cone beam CT image by a watershed segmentation. Based on the segmentation the surface topology can be reconstructed using a Marching Cubes Algorithm and Laplacian Smoothing to gain a realistic smooth pharyngeal surface. The three-dimensional surface representation can be used as computational domain for the numerical simulation.

2.2 Numerical Simulations

The flow of the air in a human pharynx can be described by the stationary Navier-Stokes equations, which are a set of nonlinear partial differential equations of second order prescribing mass and momentum conservation of a fluid

(ρu)=0,ρuu=p+[μ(u+(u)T)23μ(u)I],(1)

where u is the fluid’s velocity vector, p the pressure, ρ the fluid’s density and μ its dynamic viscosity. I denotes the identity matrix. The values for viscosity and density are chosen to be μ = 18.82 · 10−6 Pa s and ρ = 1.15 kgm−3 matching the physical properties of air with a temperature of T = 34° C, which was measured as mean temperature value in the nasopharynx in 50 volunteers [9].

To deal with turbulence effects that may occur, the Navier-Stokes equations are averaged over time to get the Reynolds Averaged Navier-Stokes (RANS) equations

(ρU)=0,ρUU=p+[μ(U+(U)T)23μ(U)I](ρu×u¯),(2)

where U and P denote the time averaged values of u and p. The RANS equations introduce additional unknowns τ = −ρu′ × u, which are called Reynolds stresses. The Reynolds stresses are the time averaged cross correlation of the turbulent fluctuations u′ multiplied by ρ. To deal with this closure problem of having more unknowns than equations, auxiliary equations are introduced that model the transport of turbulent parameters. The Reynolds stresses are therefore replaced by the so called turbulent viscosity

μT=ρCμk2ε1=ρkω1,(3)

where k is the turbulent kinetic energy, is the dissipation, ω is the specific dissipation rate and Cμ = 0.09 is an experimentally determined constant. By using model equations for the kinetic energy k and either modeling equations for the dissipation or the specific dissipation rate ω solutions for the time averaged values for velocity U and P pressure can be obtained. The free stream behavior of a flow is quite different to the near-wall flow, hence the modeling equations for the turbulent parameters are incorrect in the near-wall regime. Therefore wall functions are used that estimate the near-wall flow based on a logarithmic profile. The k turbulence model by Launder and Sharma [10] as well as the kω turbulence model by Wilcox [11] where used within this study. For all different simulation conditions and domains (with and without MAA) an inlet volume flow of uin = 400 ml s−1 was chosen and zero pressure at the outlet. All other boundaries were chosen to be no-slip walls. The simulations were performed with the commercially available simulation environment COMSOL Multiphysics©.

3 Results

Within this work three different simulation conditions were tested:

  1. the simulation without a turbulence model using the Navier-Stokes equations,

  2. the simulation with the k turbulence model and the RANS equations and

  3. the simulation with the kω turbulence model and the RANS equations.

Simulation resultswere obtained for velocity and pressure in the pharynx without a MAA as well as the same patient’s pharynx with MAA. Figure 1 shows the simulation results for the pharynx without MAA and with MAA obtained with the k turbulence model. The velocity is increased after the most constricted part of the pharynx in both cases with and without MAA. But, it is of significance that the highest velocity in the pharynx without MAA is two times higher than with MAA. A higher velocity is caused by a loss in pressure, which could be the reason for the collapse of a pharynx. The same result shows up in figure 2, where mean values the dimensionless Reynolds number Re and the mean pressure are presented in axial slices with different distance z+ to the inlet. The increase of the Reynolds number is smaller in the case of the patient wearing the MAA, which is caused by the smaller velocities. Also the minimal mean pressure is smaller for the simulation without MAA and a reduction in pressure loss along the pharynx can be observed with the patient wearing the MAA. Figure 2 shows also that the results obtained under different simulation conditions (no turbulence model, k model, kω model) are very similar to each other.

Figure 1 Velocity magnitude in a sagittal slice for the patient’s pharynx without and with MAA obtained with the k − ∊ turbulence model.
Figure 1

Velocity magnitude in a sagittal slice for the patient’s pharynx without and with MAA obtained with the k turbulence model.

Figure 2 Mean values for the Reynolds number and pressure in axial slices with different distances z+ to the inlet for the simulation results with and without MAA and the different simulation conditions.
Figure 2

Mean values for the Reynolds number and pressure in axial slices with different distances z+ to the inlet for the simulation results with and without MAA and the different simulation conditions.

4 Discussion

The fact that the three different simulation types all result in very similar values for the velocity and pressure is a good proof of the robustness of CFD as a tool in the patient individual treatment of OSAHS. The results obtained without any turbulence model often restricted to laminar flows is also similar to the results obtained using turbulence models, which may be a hint that turbulence e_ects are of less importance to the pharyngeal airflow.

5 Conclusion and Outlook

In diagnosis and therapy of OSAHS CFD are a powerful tool, because they enable the possibility to examine the abnormal fluid situation, velocity profile and pressure distribution in the patient’s individual pharynx. Within this study three main points show up:

  1. simulation results obtained without turbulence model, with k and kω model are very similar to each other,

  2. the Reynolds number and the maximal velocity is decreased in the presence of a MAA and

  3. the pressure loss is decreased in the presence of a MAA.

Pharyngeal collapses may result of an awkward pressure distribution, e.g. a low pressure behind a constriction that deforms the soft tissue. Decreased pressure lossmay therefore be a sign for an improvement of the disease. Hence, the decreased pressure loss in the presence of a MAA is exactly what is expected from the MAA as a treatment of OSAHS and confirmed by the simulation results. For a future task it is important to validate this results with a larger scale of patient data, so it may be possible to even correlate quantitatively computed values of pressure and velocity with a reduction of OSAHS severity and use them as patho-physiological parameters for diagnosis and patient individual therapy evaluation.

A further future task is to include a turbulence model with a better near-wall treatment in the examination, because in the experimental comparison study [12] the k turbulence model suited on low Reynolds numbers without wall functions performed even superior to the simulation without turbulence model.

Funding

This work is supported by the SICAT GmbH & Co. KG, Bonn (www.sicat.de) and the Graduate School for Computing in Medicine and Life Science funded by Germany’s Excellence Initiative (DFG GSC 235/1).

Authors Statement

Conflict of interest: Authors state no conflict of interest. Material and Methods: Informed consent: Informed consent is not applicable. Ethical approval: The conducted research is not related to either human or animals use.

References

[1] American Academy of Sleep Medicine. International classification of sleep disorders, revised: Diagnostic and coding manual. Chicago: American Academy of Sleep Medicine 2001.Search in Google Scholar

[2] American Academy of Sleep Medicine Task Force. Sleep-related breathing disorders in adults: recommendations for syndrome definition and measurement techniques in clinical research. Sleep 1999; 22(5): 667–689.10.1093/sleep/22.5.667Search in Google Scholar

[3] Eckert DJ, Malhotra A. Pathophysiology of adult obstructive sleep apnea. Proc Am Thorac Soc 2008; 5(2): 144–153.10.1513/pats.200707-114MGSearch in Google Scholar PubMed PubMed Central

[4] Ryan CM, Bradley TD. Pathogenesis of obstructive sleep apnea. J Appl Physio 2005; 99: 2440–2450.10.1152/japplphysiol.00772.2005Search in Google Scholar PubMed

[5] Lavie P, Herer P, Hoffstein V. Obstructive sleep apnoea syndrome as a risk factor for hypertension: population study. BMJ 2000; 320: 479–482.10.1136/bmj.320.7233.479Search in Google Scholar PubMed PubMed Central

[6] Peppard PE, Young T, Palta M, Skatrud J. Prospective study of the association between sleep-disordered breathing and hypertension. New Eng J Med 2000; 342(19): 1378–1384.10.1056/NEJM200005113421901Search in Google Scholar PubMed

[7] Schroeder CM, O’Hara R. Depression and obstructive sleep apnea (OSA). An Gen Psych 2005; 4(13).10.1186/1744-859X-4-13Search in Google Scholar PubMed PubMed Central

[8] Yaggi HK, Concato J, Kernan W, Lichtman JH, Brass LM, Mohsenin V. Obstructive sleep apnea as a risk factor for stroke and death. New Eng J Med 2005; 353: 2034–2041.10.1056/NEJMoa043104Search in Google Scholar PubMed

[9] Keck T, Leiacker R, Riechelmann H, Rettinger G. Temperature profile in the nasal cavity. Laryngoscope 2000; 110: 615–654.10.1097/00005537-200004000-00021Search in Google Scholar PubMed

[10] Launder BE, Sharma BI. Application of energy dissipation model of turbulence to the calculation of flow near a spinning disc. Let Heat Mass Transf 2013; 1(2): 131–138.10.1016/0094-4548(74)90150-7Search in Google Scholar

[11] Wilcox DC. Turbulence modeling for CFD. 2nd ed. La Cañada: DCW Industries.Search in Google Scholar

[12] Kluck C, Buzug TM. Simulation of laminar-to-turbulent transitional flow with application to Obstructive Sleep Apnea. BMT 2014.Search in Google Scholar

Published Online: 2016-6-13
Published in Print: 2015-9-1

© 2015 Walter de Gruyter GmbH, Berlin/Boston

This article is distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Articles in the same Issue

  1. Research Article
  2. Development and characterization of superparamagnetic coatings
  3. Research Article
  4. The development of an experimental setup to measure acousto-electric interaction signal
  5. Research Article
  6. Stability analysis of ferrofluids
  7. Research Article
  8. Investigation of endothelial growth using a sensors-integrated microfluidic system to simulate physiological barriers
  9. Research Article
  10. Energy harvesting for active implants: powering a ruminal pH-monitoring system
  11. Research Article
  12. New type of fluxgate magnetometer for the heart’s magnetic fields detection
  13. Research Article
  14. Field mapping of ballistic pressure pulse sources
  15. Research Article
  16. Development of a new homecare sleep monitor using body sounds and motion tracking
  17. Research Article
  18. Noise properties of textile, capacitive EEG electrodes
  19. Research Article
  20. Detecting phase singularities and rotor center trajectories based on the Hilbert transform of intraatrial electrograms in an atrial voxel model
  21. Research Article
  22. Spike sorting: the overlapping spikes challenge
  23. Research Article
  24. Separating the effect of respiration from the heart rate variability for cases of constant harmonic breathing
  25. Research Article
  26. Locating regions of arrhythmogenic substrate by analyzing the duration of triggered atrial activities
  27. Research Article
  28. Combining different ECG derived respiration tracking methods to create an optimal reconstruction of the breathing pattern
  29. Research Article
  30. Atrial and ventricular signal averaging electrocardiography in pacemaker and cardiac resynchronization therapy
  31. Research Article
  32. Estimation of a respiratory signal from a single-lead ECG using the 4th order central moments
  33. Research Article
  34. Compressed sensing of multi-lead ECG signals by compressive multiplexing
  35. Research Article
  36. Heart rate monitoring in ultra-high-field MRI using frequency information obtained from video signals of the human skin compared to electrocardiography and pulse oximetry
  37. Research Article
  38. Synchronization in wireless biomedical-sensor networks with Bluetooth Low Energy
  39. Research Article
  40. Automated classification of stages of anaesthesia by populations of evolutionary optimized fuzzy rules
  41. Research Article
  42. Effects of sampling rate on automated fatigue recognition in surface EMG signals
  43. Research Article
  44. Closed-loop transcranial alternating current stimulation of slow oscillations
  45. Research Article
  46. Cardiac index in atrio- and interventricular delay optimized cardiac resynchronization therapy and cardiac contractility modulation
  47. Research Article
  48. The role of expert evaluation for microsleep detection
  49. Research Article
  50. The impact of baseline wander removal techniques on the ST segment in simulated ischemic 12-lead ECGs
  51. Research Article
  52. Metal artifact reduction by projection replacements and non-local prior image integration
  53. Research Article
  54. A novel coaxial nozzle for in-process adjustment of electrospun scaffolds’ fiber diameter
  55. Research Article
  56. Processing of membranes for oxygenation using the Bellhouse-effect
  57. Research Article
  58. Inkjet printing of viable human dental follicle stem cells
  59. Research Article
  60. The use of an icebindingprotein out of the snowflea Hypogastrura harveyi as a cryoprotectant in the cryopreservation of mesenchymal stem cells
  61. Research Article
  62. New NIR spectroscopy based method to determine ischemia in vivo in liver – a first study on rats
  63. Research Article
  64. QRS and QT ventricular conduction times and permanent pacemaker therapy after transcatheter aortic valve implantation
  65. Research Article
  66. Adopting oculopressure tonometry as a transient in vivo rabbit glaucoma model
  67. Research Article
  68. Next-generation vision testing: the quick CSF
  69. Research Article
  70. Improving tactile sensation in laparoscopic surgery by overcoming size restrictions
  71. Research Article
  72. Design and control of a 3-DOF hydraulic driven surgical instrument
  73. Research Article
  74. Evaluation of endourological tools to improve the diagnosis and therapy of ureteral tumors – from model development to clinical application
  75. Research Article
  76. Frequency based assessment of surgical activities
  77. Research Article
  78. “Hands free for intervention”, a new approach for transoral endoscopic surgery
  79. Research Article
  80. Pseudo-haptic feedback in medical teleoperation
  81. Research Article
  82. Feasibility of interactive gesture control of a robotic microscope
  83. Research Article
  84. Towards structuring contextual information for workflow-driven surgical assistance functionalities
  85. Research Article
  86. Towards a framework for standardized semantic workflow modeling and management in the surgical domain
  87. Research Article
  88. Closed-loop approach for situation awareness of medical devices and operating room infrastructure
  89. Research Article
  90. Kinect based physiotherapy system for home use
  91. Research Article
  92. Evaluating the microsoft kinect skeleton joint tracking as a tool for home-based physiotherapy
  93. Research Article
  94. Integrating multimodal information for intraoperative assistance in neurosurgery
  95. Research Article
  96. Respiratory motion tracking using Microsoft’s Kinect v2 camera
  97. Research Article
  98. Using smart glasses for ultrasound diagnostics
  99. Research Article
  100. Measurement of needle susceptibility artifacts in magnetic resonance images
  101. Research Article
  102. Dimensionality reduction of medical image descriptors for multimodal image registration
  103. Research Article
  104. Experimental evaluation of different weighting schemes in magnetic particle imaging reconstruction
  105. Research Article
  106. Evaluation of CT capability for the detection of thin bone structures
  107. Research Article
  108. Towards contactless optical coherence elastography with acoustic tissue excitation
  109. Research Article
  110. Development and implementation of algorithms for automatic and robust measurement of the 2D:4D digit ratio using image data
  111. Research Article
  112. Automated high-throughput analysis of B cell spreading on immobilized antibodies with whole slide imaging
  113. Research Article
  114. Tissue segmentation from head MRI: a ground truth validation for feature-enhanced tracking
  115. Research Article
  116. Video tracking of swimming rodents on a reflective water surface
  117. Research Article
  118. MR imaging of model drug distribution in simulated vitreous
  119. Research Article
  120. Studying the extracellular contribution to the double wave vector diffusion-weighted signal
  121. Research Article
  122. Artifacts in field free line magnetic particle imaging in the presence of inhomogeneous and nonlinear magnetic fields
  123. Research Article
  124. Introducing a frequency-tunable magnetic particle spectrometer
  125. Research Article
  126. Imaging of aortic valve dynamics in 4D OCT
  127. Research Article
  128. Intravascular optical coherence tomography (OCT) as an additional tool for the assessment of stent structures
  129. Research Article
  130. Simple concept for a wide-field lensless digital holographic microscope using a laser diode
  131. Research Article
  132. Intraoperative identification of somato-sensory brain areas using optical imaging and standard RGB camera equipment – a feasibility study
  133. Research Article
  134. Respiratory surface motion measurement by Microsoft Kinect
  135. Research Article
  136. Improving image quality in EIT imaging by measurement of thorax excursion
  137. Research Article
  138. A clustering based dual model framework for EIT imaging: first experimental results
  139. Research Article
  140. Three-dimensional anisotropic regularization for limited angle tomography
  141. Research Article
  142. GPU-based real-time generation of large ultrasound volumes from freehand 3D sweeps
  143. Research Article
  144. Experimental computer tomograph
  145. Research Article
  146. US-tracked steered FUS in a respiratory ex vivo ovine liver phantom
  147. Research Article
  148. Contribution of brownian rotation and particle assembly polarisation to the particle response in magnetic particle spectrometry
  149. Research Article
  150. Preliminary investigations of magnetic modulated nanoparticles for microwave breast cancer detection
  151. Research Article
  152. Construction of a device for magnetic separation of superparamagnetic iron oxide nanoparticles
  153. Research Article
  154. An IHE-conform telecooperation platform supporting the treatment of dementia patients
  155. Research Article
  156. Automated respiratory therapy system based on the ARDSNet protocol with systemic perfusion control
  157. Research Article
  158. Identification of surgical instruments using UHF-RFID technology
  159. Research Article
  160. A generic concept for the development of model-guided clinical decision support systems
  161. Research Article
  162. Evaluation of local alterations in femoral bone mineral density measured via quantitative CT
  163. Research Article
  164. Creating 3D gelatin phantoms for experimental evaluation in biomedicine
  165. Research Article
  166. Influence of short-term fixation with mixed formalin or ethanol solution on the mechanical properties of human cortical bone
  167. Research Article
  168. Analysis of the release kinetics of surface-bound proteins via laser-induced fluorescence
  169. Research Article
  170. Tomographic particle image velocimetry of a water-jet for low volume harvesting of fat tissue for regenerative medicine
  171. Research Article
  172. Wireless medical sensors – context, robustness and safety
  173. Research Article
  174. Sequences for real-time magnetic particle imaging
  175. Research Article
  176. Speckle-based off-axis holographic detection for non-contact photoacoustic tomography
  177. Research Article
  178. A machine learning approach for planning valve-sparing aortic root reconstruction
  179. Research Article
  180. An in-ear pulse wave velocity measurement system using heart sounds as time reference
  181. Research Article
  182. Measuring different oxygenation levels in a blood perfusion model simulating the human head using NIRS
  183. Research Article
  184. Multisegmental fusion of the lumbar spine a curse or a blessing?
  185. Research Article
  186. Numerical analysis of the biomechanical complications accompanying the total hip replacement with NANOS-Prosthetic: bone remodelling and prosthesis migration
  187. Research Article
  188. A muscle model for hybrid muscle activation
  189. Research Article
  190. Mathematical, numerical and in-vitro investigation of cooling performance of an intra-carotid catheter for selective brain hypothermia
  191. Research Article
  192. An ideally parameterized unscented Kalman filter for the inverse problem of electrocardiography
  193. Research Article
  194. Interactive visualization of cardiac anatomy and atrial excitation for medical diagnosis and research
  195. Research Article
  196. Virtualizing clinical cases of atrial flutter in a fast marching simulation including conduction velocity and ablation scars
  197. Research Article
  198. Mesh structure-independent modeling of patient-specific atrial fiber orientation
  199. Research Article
  200. Accelerating mono-domain cardiac electrophysiology simulations using OpenCL
  201. Research Article
  202. Understanding the cellular mode of action of vernakalant using a computational model: answers and new questions
  203. Research Article
  204. A java based simulator with user interface to simulate ventilated patients
  205. Research Article
  206. Evaluation of an algorithm to choose between competing models of respiratory mechanics
  207. Research Article
  208. Numerical simulation of low-pulsation gerotor pumps for use in the pharmaceutical industry and in biomedicine
  209. Research Article
  210. Numerical and experimental flow analysis in centifluidic systems for rapid allergy screening tests
  211. Research Article
  212. Biomechanical parameter determination of scaffold-free cartilage constructs (SFCCs) with the hyperelastic material models Yeoh, Ogden and Demiray
  213. Research Article
  214. FPGA controlled artificial vascular system
  215. Research Article
  216. Simulation based investigation of source-detector configurations for non-invasive fetal pulse oximetry
  217. Research Article
  218. Test setup for characterizing the efficacy of embolic protection devices
  219. Research Article
  220. Impact of electrode geometry on force generation during functional electrical stimulation
  221. Research Article
  222. 3D-based visual physical activity assessment of children
  223. Research Article
  224. Realtime assessment of foot orientation by Accelerometers and Gyroscopes
  225. Research Article
  226. Image based reconstruction for cystoscopy
  227. Research Article
  228. Image guided surgery innovation with graduate students - a new lecture format
  229. Research Article
  230. Multichannel FES parameterization for controlling foot motion in paretic gait
  231. Research Article
  232. Smartphone supported upper limb prosthesis
  233. Research Article
  234. Use of quantitative tremor evaluation to enhance target selection during deep brain stimulation surgery for essential tremor
  235. Research Article
  236. Evaluation of adhesion promoters for Parylene C on gold metallization
  237. Research Article
  238. The influence of metallic ions from CoCr28Mo6 on the osteogenic differentiation and cytokine release of human osteoblasts
  239. Research Article
  240. Increasing the visibility of thin NITINOL vascular implants
  241. Research Article
  242. Possible reasons for early artificial bone failure in biomechanical tests of ankle arthrodesis systems
  243. Research Article
  244. Development of a bending test procedure for the characterization of flexible ECoG electrode arrays
  245. Research Article
  246. Tubular manipulators: a new concept for intracochlear positioning of an auditory prosthesis
  247. Research Article
  248. Investigation of the dynamic diameter deformation of vascular stents during fatigue testing with radial loading
  249. Research Article
  250. Electrospun vascular grafts with anti-kinking properties
  251. Research Article
  252. Integration of temperature sensors in polyimide-based thin-film electrode arrays
  253. Research Article
  254. Use cases and usability challenges for head-mounted displays in healthcare
  255. Research Article
  256. Device- and service profiles for integrated or systems based on open standards
  257. Research Article
  258. Risk management for medical devices in research projects
  259. Research Article
  260. Simulation of varying femoral attachment sites of medial patellofemoral ligament using a musculoskeletal multi-body model
  261. Research Article
  262. Does enhancing consciousness for strategic planning processes support the effectiveness of problem-based learning concepts in biomedical education?
  263. Research Article
  264. SPIO processing in macrophages for MPI: The breast cancer MPI-SNLB-concept
  265. Research Article
  266. Numerical simulations of airflow in the human pharynx of OSAHS patients
Downloaded on 12.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/cdbme-2016-0003/html
Scroll to top button