Home A java based simulator with user interface to simulate ventilated patients
Article Open Access

A java based simulator with user interface to simulate ventilated patients

  • P. Stehle , T. Lehmann , D. Redmond , K. Möller and J. Kretschmer EMAIL logo
Published/Copyright: September 12, 2015

Abstract

Mechanical ventilation is a life-saving intervention, which despite its use on a routine basis, poses the risk of inflicting further damage to the lung tissue if ventilator settings are chosen inappropriately. Medical decision support systems may help to prevent such injuries while providing the optimal settings to reach a defined clinical goal. In order to develop and verify decision support algorithms, a test bench simulating a patient’s behaviour is needed. We propose a Java based system that allows simulation of respiratory mechanics, gas exchange and cardiovascular dynamics of a mechanically ventilated patient. The implemented models are allowed to interact and are interchangeable enabling the simulation of various clinical scenarios. Model simulations are running in real-time and show physiologically plausible results.

1 Introduction

Mechanical ventilation is a commonly used treatment in intensive care. The aim is to support the gas exchange of patients that are unable to maintain sufficient oxygenation and carbon dioxide removal because of surgical interventions or traumata.

Clinicians adjust the ventilator settings based on their knowledge of the pathophysiology of the patient’s lung and the current clinical condition of the patient as well as his past medical history [1]. By applying inappropriate parameters for mechanical ventilation it is possible to inflict further damage to the lung tissue e.g. high ventilation pressures can lead to harmful barotrauma of the alveoli [2]. Patients with decreased lung compliance and impaired gas exchange (e.g. patients suffering from ARDS) are especially difficult to find optimal ventilator settings for, as conflicting goals might exist (high airway pressure to recruit alveoli versus low airway pressure to protect healthy lung tissue). To prevent those so called ”ventilator induced lung injuries” (VILI), medical decision support systems may be used. Those systems optimize therapy either based on expert knowledge and gold-standard procedures (knowledge-based systems) [3, 4] or on mathematical models representing the physiology of an individual patient (model-based systems) [5, 6].

In order to develop and test such algorithms before implementing them into commercially available systems, they must be tested with either animal trials, clinical (i.e. human) trials or with the help of patient simulators. Various patient simulators are available commercially or are described in literature. Mannequin simulators focused on training ICU nurses and clinicians such as HPS (CAE Healthcare, Saint-Laurent, Canada) or SimMan® 3G (Laerdal Medical, Stavanger, Norway) lack sufficient interfaces to communicate with decision support systems and thus are not useful for the evaluation of those. Along with other software simulators intended for internal use such as SmartPatient (Dräger Medical, Lübeck, Germany) [7] the mechanical and/or mathematical models used to simulate the patient are not fully disclosed, thus there is no knowledge on how the simulated data was created. Simulators described in literature provide detailed information about the implemented mathematical models, but focus on only a limited number of physiological compartments [1, 8].

Mechanical ventilation mostly affects three areas of the human physiology: respiratory mechanics, gas exchange and cardiovascular dynamics. To provide a realistic simulation of a patient’s reaction to mechanical ventilation, all of those areas should be implemented in the simulation. A previously developed system allows combining models of respiratory mechanics, gas exchange and cardiovascular dynamics to form a complex patient model [9].

The goal of this work aims to provide a user interface that allows simulating a mechanically ventilated patient with different disease scenarios. It should be able to run in real-time on a standard PC and implement sufficient interfaces to save simulated data and to allow communication with decision support systems.

2 Methods

2.1 Model system

The system of models considered in this paper consists of three main model families each comprising models of different complexity and simulation focus [9]. The implemented models will be described in short below.

To enable communication between the models and thus allow simulating physiological interactions a set of interfaces has been defined: Intrathoracic pressure (Pth) influences cardiovascular dynamics, which in turn influences gas exchange through cardiac output (CO). Additionally, alveolar volume (VA) and alveolar gas flow (VA) computed in respiratory mechanics influence gas exchange [9]. Figure 1 gives a schematic overview of the interfaces.

The model family of respiratory mechanics comprises five models of 1st and 2nd order including one to seven model parameters. The implemented models are a first order model with one resistance and one compliance, a model with two resistances and two compliances to simulate viscoelastic behaviour in the inspiratory pause [10], a model as proposed by Khoo to simulate effects of gas compressibility [11], and two recruitment models of which one comprises viscoelastic characteristics [12, 13]. All models have been extended to include a separate chest wall compliance to compute intrathoracic pressure.

The family of gas exchange models is divided mainly into two types. The first and less complex types assume constant and laminar flow of gas. Therefore, no inspiration and expiration is considered. They model lung gas exchange either with a single alveolar compartment with shunt [14] or dual alveolar compartments to include ffV/Q mismatch [15]. The second type of gas exchange models considers tidal flow of gas. Here, a dead space compartment is added as described by Benallal et al. [16].

The implemented cardiovascular dynamics models range from a simple three-compartment model with a singular cardiac compartment [17] to a serially arranged model with 14-compartments [18] and a parallel structured 19-compartment model [19]. This model family also includes a discrete beat-to-beat model for discontinuous simulation of blood pressure. The beat-to-beat model as well as the 14- and 19-compartment models have been extended to react to intrathoracic pressure changes [20].

2.2 Disease simulation

In order to use the different model combinations as a training tool for clinicians and as a test bench for decision support algorithms, it is necessary to be able to simulate different lung diseases and pathophysiological symptoms. We have thus implemented the possibility to select the models that should be combined to form the patient model and to change model parameters for the respiratory mechanics, the gas exchange and the cardiovascular dynamics during simulation. Additionally, the user is enabled to save specific parameter sets and to import previously created artificial patients.

Figure 1 Interactions between the three models and the ventilator simulation. FiO2 – oxygen content in inspired air, Paw – airway pressure,  – air flow.
Figure 1

Interactions between the three models and the ventilator simulation. FiO2 – oxygen content in inspired air, Paw – airway pressure, – air flow.

2.3 Software implementation

All models as well as a separate ventilator simulation have been coded in Java (1.7.0_51, Oracle, Corporation, Redwood Shores, USA) and have been tested separately to ensure operability within physiological limits. Each model is represented by a class. Complex models in each family (e.g. the 19-compartment cardiovascular model) are derived from less complex models by inheriting and extending their attributes and methods. Java does not allow inheritance from multiple parent classes, thus in models derived from multiple models in the family (e.g. the viscoelastic recruitment model) inheritance was limited to one class/model. A separate class describes the ventilator simulating volume or pressure controlled ventilation.

The differential equations of the selected models were solved employing a simple Euler solver with a fixed step size of 0.0001s. After each simulation step, the interface parameters are exchanged between models. The user interface was created using NetBeans IDE 8.0.2 (Oracle Corporation). Graphical representation of the vital parameters was realized employing the JFreeChart library distributed under the GNU lesser general public license.

3 Results

The user interface consists out of two main panes as shown in Figure 2. The pane located on the left side of the frame acts as a display panel for different graphs which show the vital data of the simulated patient. It is possible to monitor six vital parameters at the same time. In the presented example, these are the airway pressure (Paw), the arterial blood pressure, the air flow, the alveolar volume and the arterial partial pressure of oxygen (PaO2) and carbon dioxide (PaCO2). The user can choose which vital parameters should be visible by selecting them in the menu.

The second pane on the right of the user interface is the control panel for the simulation settings which is divided into three tabs. The first tab allows selecting the mathematical models to simulate respiratory mechanics, gas exchange and cardiovascular dynamics as described in the methods section. As all models incorporate the same interfaces, models can be swapped without stopping the simulation. In the second tab ventilator settings can be adjusted via slider or textbox input. The settings depend on whether ventilation is selected to be pressure or volume controlled. The maximum and minimum values of all sliders have been set to reasonable physiological limits to prevent irrational settings. During runtime it is possible to change the settings; they become valid after finishing the actual breath. In the third tab the user has the possibility to save the displayed data in the graphs into a text file (.txt). The text file can be used to reproduce and analyze the gathered data e.g. in MATLAB (The Mathworks, Natick, USA) or Excel (Microsoft Corporation, Redmond, USA).

The menu bar of the user interface provides the opportunity to change patient specific parameters by either adjusting them manually for each of the implemented models or by importing predefined parameters from a text file. Figure 3 provides an overview of the manually adjustable parameters.

The graphs in Figure 2 show results for a patient model consisting of the viscoelastic respiratory mechanics model, the dual alveolar gas exchange model with dead space and the 19-compartment model of cardiovascular dynamics ventilated in pressure controlled mode with a respiration frequency of 14/min, a maximum airway pressure of 35 mmHg, a PEEP of 5 mmHg, and FiO2 set to 40%. Arterial pressure exhibits superimposed oscillations with a frequency equal to the simulated respiration rate. Gas exchange results (PaO2, PaCO2) show two superimposed variations with different frequencies, one being equal to the respiration rate, one being in agreement with the simulated heart rate (i.e. 60/min).

4 Discussion

This work describes a patient simulator that allows simulating a mechanically ventilated patient. The implemented user interface enables the user to dynamically select various models to be combined and form a complex patient model. Additionally, it allows to select ventilator settings and to simulate different clinical scenarios by adapting model parameters or importing predefined parameter sets.

The implemented models have either been validated by their respective authors through comparison with data found in literature [14, 18, 19] and experimental data [10, 12, 13, 15, 16] or have been verified by others [10, 21]. Simulation results show influence of respiratory mechanics on cardiovascular dynamics visible as superimposed pressure variations. Similar findings have been reported in literature [22]. Changes in blood flow also show to influence PaO2 and PaCO2 where minor oscillations are observable. Both exhibit additional periodic variations in inspiration and expiration caused by changes in alveolar volume and flow. Analogous findings in animals are reported by Purves [23].

A goal of the presented work was to provide a real-time simulation of a ventilated patient. Previously published implementations of the presented model combinations in MATLAB showed to be computationally expensive, thus impeding the use as a tool for both clinical training and evaluation of decision support algorithms [24]. The presented implementation is JAVA based and is able to run in real-time on a standard PC for all possible model combinations.

Model-based decision support systems need to be adapted to a patient’s individual physiology, usually by identifying the values of free model parameters using previously recorded clinical data. To obtain those data, various ventilation manoeuvres need to be applied, preferably triggered by the decision support system on an as-needed basis. To provide a realistic patient simulation, decision support algorithms need be able to trigger such manoeuvres externally. Adding the necessary interfaces along with the implementation of additional physiological models is planned for future work.

Figure 2 The user interface with graphs showing the current simulation results.
Figure 2

The user interface with graphs showing the current simulation results.

Figure 3 Menu to manually adjust model parameters.
Figure 3

Menu to manually adjust model parameters.


J. Kretschmer: Institute of Technical Medicine, Furtwangen University, Villingen-Schwenningen, Germany, phone: +49 7720 307 4370, fax: +49 7720 307 4616

Author’s Statement

  1. Conflict of interest: Authors state no conflict of interest. Material and Methods: Informed consent: Informed consent has been obtained from all individuals included in this study. Ethical approval: The research related to human use has been complied with all the relevant national regulations, institutional policies and in accordance the tenets of the Helsinki Declaration, and has been approved by the authors’ institutional review board or equivalent committee.

References

[1] H. F. Kowk, M. Mahfouf, K. M. Goode, G. H. Mills, and D. A. Linkens, ”The use of a patient simulator for knowledge acquisition from the clinicians,”Int J Simulation, vol. 4 (1&2), pp. 50-61, 2003.Search in Google Scholar

[2] D. Dreyfuss and G. Saumon, ”From ventilator-induced lung injury to multiple organ dysfunction,”Intensive Care Med, vol. 24 (2), pp. 102-104, 1998.10.1007/s001340050529Search in Google Scholar

[3] C. Spreckelsen and K. Spitzer, Wissensbasen und Expertensysteme in der Medizin. Wiesbaden: Vieweg+Teubner, 2008.10.1007/978-3-8348-9294-2Search in Google Scholar

[4] R. S. Campbell, R. D. Branson, and J. A. Johannigman, ”Adaptive support ventilation,”Respir Care Clin N Am, vol. 7 (3), pp. 425-40, ix, 2001.10.1016/S1078-5337(05)70049-6Search in Google Scholar

[5] G. W. Rutledge, G. E. Thomsen, B. R. Farr, M. A. Tovar, J. X. Polaschek, I. A. Beinlich, L. B. Sheiner, and L. M. Fagan, ”The design and implementation of a ventilator-management advisor,”Artif Intell Med, vol. 5 (1), pp. 67-82, 1993.10.1016/0933-3657(93)90006-OSearch in Google Scholar

[6] F. T. Tehrani and S. Abbasi, ”A model-based decision support system for critiquing mechanical ventilation treatments,”J Clin Monit Comput, vol. 26 (3), pp. 207-15, 2012.10.1007/s10877-012-9362-0Search in Google Scholar PubMed

[7] F. Galia, ”Supervision automatique de la ventilation artifi-cielle en soins intensifs: investigation d’un syst[ccaron]me existant et propositions d’extensions.,” PhD Thesis, Engineering Sciences, Université Paris-Est, Paris, 2010.Search in Google Scholar

[8] T. Heldt, R. Mukkamala, G. B. Moody, and R. G. Mark, ”CVSimml: An Open-Source Cardiovascular Simulator for Teaching and Research,”Open Pacing Electrophysiol Ther J, vol. 3, pp. 45-54, 2010.Search in Google Scholar

[9] J. Kretschmer, A. Wahl, and K. Moller, ”Dynamically generated models for medical decision support systems,”Comput Biol Med, vol. 41 (10), pp. 899-907, 2011.10.1016/j.compbiomed.2011.08.001Search in Google Scholar PubMed

[10] C. Schranz, P. D. Docherty, Y. S. Chiew, K. Moller, and J. G. Chase, ”Iterative integral parameter identification of a respiratory mechanics model,”Biomed Eng Online, vol. 11, p. 38, 2012.10.1186/1475-925X-11-38Search in Google Scholar PubMed PubMed Central

[11] M. C. K. Khoo, Physiological control systems: Analysis, simulation, and estimation vol. 3. Hoboken, New Jersey: John Wiley & Sons, 1999.10.1109/9780470545515Search in Google Scholar

[12] C. Schranz, P. D. Docherty, Y. S. Chiew, J. G. Chase, and K. Möller, ”Structural Identifiability and Practical Applicability of an Alveolar Recruitment Model for ARDS Patients,”IEEE Trans Biomed Eng., vol. 59 (12), pp. 3396-404, 2012.10.1109/TBME.2012.2216526Search in Google Scholar PubMed

[13] C. Schranz, J. Kretschmer, and K. Moller, ”Hierarchical individualization of a recruitment model with a viscoelastic component for ARDS patients,”Conf Proc IEEE Eng Med Biol Soc, vol. 2013, pp. 5220-3, 2013.10.1109/EMBC.2013.6610725Search in Google Scholar PubMed

[14] L. Chiari, G. Avanzolini, and M. Ursino, ”A comprehensive simulator of the human respiratory systemml: validation with experimental and simulated data,”Ann Biomed Eng, vol. 25 (6), pp. 985-99, 1997.10.1007/BF02684134Search in Google Scholar

[15] M. F. V. Melo, J. A. Loeppky, A. Caprihan, and U. C. Luft, ”Alveolar ventilation to perfusion heterogeneity and diffusion impairment in a mathematical model of gas exchange,”Comput Biomed Res, vol. 26 (2), pp. 103-120, 1993.10.1006/cbmr.1993.1007Search in Google Scholar

[16] H. Benallal, C. Denis, F. Prieur, and T. Busso, ”Modeling of end-tidal and arterial PCO2 gradient: comparison with experimental data,”Med Sci Sports Exerc, vol. 34 (4), pp. 622-9, 2002.10.1249/00005768-200204000-00010Search in Google Scholar

[17] T. Parlikar and G. Verghese, ”A simple cycle-averaged model for cardiovascular dynamics,”Conf Proc IEEE Eng Med Biol Soc, vol. 5, pp. 5490-4, 2005.10.1109/IEMBS.2005.1615726Search in Google Scholar

[18] M. Danielsen and J. T. Ottesen, ”A cardiovascular model,” in Applied mathematical models in human physiology, J. T. Ottesen,et al., Eds., ed Philadelphia: Society for Industrial and Applied Mathematics, 2004, pp. 113-126.10.1137/1.9780898718287.ch6Search in Google Scholar

[19] M. S. Leaning, H. E. Pullen, E. R. Carson, and L. Finkelstein, ”Modelling a complex biological systemml: the human cardiovascular system — 1. Methodology and model description,”T I Meas Control, vol. 5 (2), pp. 71-86, 1983.10.1177/014233128300500202Search in Google Scholar

[20] J. Kretschmer, T. Haunsberger, E. Drost, E. Koch, and K. Moller, ”Simulating physiological interactions in a hybrid system of mathematical models,”J Clin Monit Comput, vol. 28 (6), pp. 513-23, 2014.10.1007/s10877-013-9502-1Search in Google Scholar

[21] C. Schranz, J. Guttmann, and K. Möller, ”An Approach towards Parameter Identification in Hierarchical Models of Respiratory Mechanics,”Biomed Tech., vol. 55 (Suppl. 1) 2010.Search in Google Scholar

[22] D. Laude, M. Goldman, P. Escourrou, and J. L. Elghozi, ”Effect of breathing pattern on blood pressure and heart rate oscillations in humans,”Clin Exp Pharmacol Physiol, vol. 20 (10), pp. 619-26, 1993.10.1111/j.1440-1681.1993.tb01643.xSearch in Google Scholar

[23] M. J. Purves, ”Fluctuations of arterial oxygen tension which have the same period as respiration,”Respir Physiol, vol. 1 (3), pp. 281-96, 1966.10.1016/0034-5687(66)90047-8Search in Google Scholar

[24] Kretschmer, J., Schranz, C., Knöbel, C., Wingender, J., Koch, E., and Möller, K. (2013). Eflcient Computation Of Interacting Model Systems. J Biomed Inform, vol. 46 (3), pp. 401-9.10.1016/j.jbi.2013.01.004Search in Google Scholar PubMed

Published Online: 2015-9-12
Published in Print: 2015-9-1

© 2015 by Walter de Gruyter GmbH, Berlin/Boston

This article is distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Articles in the same Issue

  1. Research Article
  2. Development and characterization of superparamagnetic coatings
  3. Research Article
  4. The development of an experimental setup to measure acousto-electric interaction signal
  5. Research Article
  6. Stability analysis of ferrofluids
  7. Research Article
  8. Investigation of endothelial growth using a sensors-integrated microfluidic system to simulate physiological barriers
  9. Research Article
  10. Energy harvesting for active implants: powering a ruminal pH-monitoring system
  11. Research Article
  12. New type of fluxgate magnetometer for the heart’s magnetic fields detection
  13. Research Article
  14. Field mapping of ballistic pressure pulse sources
  15. Research Article
  16. Development of a new homecare sleep monitor using body sounds and motion tracking
  17. Research Article
  18. Noise properties of textile, capacitive EEG electrodes
  19. Research Article
  20. Detecting phase singularities and rotor center trajectories based on the Hilbert transform of intraatrial electrograms in an atrial voxel model
  21. Research Article
  22. Spike sorting: the overlapping spikes challenge
  23. Research Article
  24. Separating the effect of respiration from the heart rate variability for cases of constant harmonic breathing
  25. Research Article
  26. Locating regions of arrhythmogenic substrate by analyzing the duration of triggered atrial activities
  27. Research Article
  28. Combining different ECG derived respiration tracking methods to create an optimal reconstruction of the breathing pattern
  29. Research Article
  30. Atrial and ventricular signal averaging electrocardiography in pacemaker and cardiac resynchronization therapy
  31. Research Article
  32. Estimation of a respiratory signal from a single-lead ECG using the 4th order central moments
  33. Research Article
  34. Compressed sensing of multi-lead ECG signals by compressive multiplexing
  35. Research Article
  36. Heart rate monitoring in ultra-high-field MRI using frequency information obtained from video signals of the human skin compared to electrocardiography and pulse oximetry
  37. Research Article
  38. Synchronization in wireless biomedical-sensor networks with Bluetooth Low Energy
  39. Research Article
  40. Automated classification of stages of anaesthesia by populations of evolutionary optimized fuzzy rules
  41. Research Article
  42. Effects of sampling rate on automated fatigue recognition in surface EMG signals
  43. Research Article
  44. Closed-loop transcranial alternating current stimulation of slow oscillations
  45. Research Article
  46. Cardiac index in atrio- and interventricular delay optimized cardiac resynchronization therapy and cardiac contractility modulation
  47. Research Article
  48. The role of expert evaluation for microsleep detection
  49. Research Article
  50. The impact of baseline wander removal techniques on the ST segment in simulated ischemic 12-lead ECGs
  51. Research Article
  52. Metal artifact reduction by projection replacements and non-local prior image integration
  53. Research Article
  54. A novel coaxial nozzle for in-process adjustment of electrospun scaffolds’ fiber diameter
  55. Research Article
  56. Processing of membranes for oxygenation using the Bellhouse-effect
  57. Research Article
  58. Inkjet printing of viable human dental follicle stem cells
  59. Research Article
  60. The use of an icebindingprotein out of the snowflea Hypogastrura harveyi as a cryoprotectant in the cryopreservation of mesenchymal stem cells
  61. Research Article
  62. New NIR spectroscopy based method to determine ischemia in vivo in liver – a first study on rats
  63. Research Article
  64. QRS and QT ventricular conduction times and permanent pacemaker therapy after transcatheter aortic valve implantation
  65. Research Article
  66. Adopting oculopressure tonometry as a transient in vivo rabbit glaucoma model
  67. Research Article
  68. Next-generation vision testing: the quick CSF
  69. Research Article
  70. Improving tactile sensation in laparoscopic surgery by overcoming size restrictions
  71. Research Article
  72. Design and control of a 3-DOF hydraulic driven surgical instrument
  73. Research Article
  74. Evaluation of endourological tools to improve the diagnosis and therapy of ureteral tumors – from model development to clinical application
  75. Research Article
  76. Frequency based assessment of surgical activities
  77. Research Article
  78. “Hands free for intervention”, a new approach for transoral endoscopic surgery
  79. Research Article
  80. Pseudo-haptic feedback in medical teleoperation
  81. Research Article
  82. Feasibility of interactive gesture control of a robotic microscope
  83. Research Article
  84. Towards structuring contextual information for workflow-driven surgical assistance functionalities
  85. Research Article
  86. Towards a framework for standardized semantic workflow modeling and management in the surgical domain
  87. Research Article
  88. Closed-loop approach for situation awareness of medical devices and operating room infrastructure
  89. Research Article
  90. Kinect based physiotherapy system for home use
  91. Research Article
  92. Evaluating the microsoft kinect skeleton joint tracking as a tool for home-based physiotherapy
  93. Research Article
  94. Integrating multimodal information for intraoperative assistance in neurosurgery
  95. Research Article
  96. Respiratory motion tracking using Microsoft’s Kinect v2 camera
  97. Research Article
  98. Using smart glasses for ultrasound diagnostics
  99. Research Article
  100. Measurement of needle susceptibility artifacts in magnetic resonance images
  101. Research Article
  102. Dimensionality reduction of medical image descriptors for multimodal image registration
  103. Research Article
  104. Experimental evaluation of different weighting schemes in magnetic particle imaging reconstruction
  105. Research Article
  106. Evaluation of CT capability for the detection of thin bone structures
  107. Research Article
  108. Towards contactless optical coherence elastography with acoustic tissue excitation
  109. Research Article
  110. Development and implementation of algorithms for automatic and robust measurement of the 2D:4D digit ratio using image data
  111. Research Article
  112. Automated high-throughput analysis of B cell spreading on immobilized antibodies with whole slide imaging
  113. Research Article
  114. Tissue segmentation from head MRI: a ground truth validation for feature-enhanced tracking
  115. Research Article
  116. Video tracking of swimming rodents on a reflective water surface
  117. Research Article
  118. MR imaging of model drug distribution in simulated vitreous
  119. Research Article
  120. Studying the extracellular contribution to the double wave vector diffusion-weighted signal
  121. Research Article
  122. Artifacts in field free line magnetic particle imaging in the presence of inhomogeneous and nonlinear magnetic fields
  123. Research Article
  124. Introducing a frequency-tunable magnetic particle spectrometer
  125. Research Article
  126. Imaging of aortic valve dynamics in 4D OCT
  127. Research Article
  128. Intravascular optical coherence tomography (OCT) as an additional tool for the assessment of stent structures
  129. Research Article
  130. Simple concept for a wide-field lensless digital holographic microscope using a laser diode
  131. Research Article
  132. Intraoperative identification of somato-sensory brain areas using optical imaging and standard RGB camera equipment – a feasibility study
  133. Research Article
  134. Respiratory surface motion measurement by Microsoft Kinect
  135. Research Article
  136. Improving image quality in EIT imaging by measurement of thorax excursion
  137. Research Article
  138. A clustering based dual model framework for EIT imaging: first experimental results
  139. Research Article
  140. Three-dimensional anisotropic regularization for limited angle tomography
  141. Research Article
  142. GPU-based real-time generation of large ultrasound volumes from freehand 3D sweeps
  143. Research Article
  144. Experimental computer tomograph
  145. Research Article
  146. US-tracked steered FUS in a respiratory ex vivo ovine liver phantom
  147. Research Article
  148. Contribution of brownian rotation and particle assembly polarisation to the particle response in magnetic particle spectrometry
  149. Research Article
  150. Preliminary investigations of magnetic modulated nanoparticles for microwave breast cancer detection
  151. Research Article
  152. Construction of a device for magnetic separation of superparamagnetic iron oxide nanoparticles
  153. Research Article
  154. An IHE-conform telecooperation platform supporting the treatment of dementia patients
  155. Research Article
  156. Automated respiratory therapy system based on the ARDSNet protocol with systemic perfusion control
  157. Research Article
  158. Identification of surgical instruments using UHF-RFID technology
  159. Research Article
  160. A generic concept for the development of model-guided clinical decision support systems
  161. Research Article
  162. Evaluation of local alterations in femoral bone mineral density measured via quantitative CT
  163. Research Article
  164. Creating 3D gelatin phantoms for experimental evaluation in biomedicine
  165. Research Article
  166. Influence of short-term fixation with mixed formalin or ethanol solution on the mechanical properties of human cortical bone
  167. Research Article
  168. Analysis of the release kinetics of surface-bound proteins via laser-induced fluorescence
  169. Research Article
  170. Tomographic particle image velocimetry of a water-jet for low volume harvesting of fat tissue for regenerative medicine
  171. Research Article
  172. Wireless medical sensors – context, robustness and safety
  173. Research Article
  174. Sequences for real-time magnetic particle imaging
  175. Research Article
  176. Speckle-based off-axis holographic detection for non-contact photoacoustic tomography
  177. Research Article
  178. A machine learning approach for planning valve-sparing aortic root reconstruction
  179. Research Article
  180. An in-ear pulse wave velocity measurement system using heart sounds as time reference
  181. Research Article
  182. Measuring different oxygenation levels in a blood perfusion model simulating the human head using NIRS
  183. Research Article
  184. Multisegmental fusion of the lumbar spine a curse or a blessing?
  185. Research Article
  186. Numerical analysis of the biomechanical complications accompanying the total hip replacement with NANOS-Prosthetic: bone remodelling and prosthesis migration
  187. Research Article
  188. A muscle model for hybrid muscle activation
  189. Research Article
  190. Mathematical, numerical and in-vitro investigation of cooling performance of an intra-carotid catheter for selective brain hypothermia
  191. Research Article
  192. An ideally parameterized unscented Kalman filter for the inverse problem of electrocardiography
  193. Research Article
  194. Interactive visualization of cardiac anatomy and atrial excitation for medical diagnosis and research
  195. Research Article
  196. Virtualizing clinical cases of atrial flutter in a fast marching simulation including conduction velocity and ablation scars
  197. Research Article
  198. Mesh structure-independent modeling of patient-specific atrial fiber orientation
  199. Research Article
  200. Accelerating mono-domain cardiac electrophysiology simulations using OpenCL
  201. Research Article
  202. Understanding the cellular mode of action of vernakalant using a computational model: answers and new questions
  203. Research Article
  204. A java based simulator with user interface to simulate ventilated patients
  205. Research Article
  206. Evaluation of an algorithm to choose between competing models of respiratory mechanics
  207. Research Article
  208. Numerical simulation of low-pulsation gerotor pumps for use in the pharmaceutical industry and in biomedicine
  209. Research Article
  210. Numerical and experimental flow analysis in centifluidic systems for rapid allergy screening tests
  211. Research Article
  212. Biomechanical parameter determination of scaffold-free cartilage constructs (SFCCs) with the hyperelastic material models Yeoh, Ogden and Demiray
  213. Research Article
  214. FPGA controlled artificial vascular system
  215. Research Article
  216. Simulation based investigation of source-detector configurations for non-invasive fetal pulse oximetry
  217. Research Article
  218. Test setup for characterizing the efficacy of embolic protection devices
  219. Research Article
  220. Impact of electrode geometry on force generation during functional electrical stimulation
  221. Research Article
  222. 3D-based visual physical activity assessment of children
  223. Research Article
  224. Realtime assessment of foot orientation by Accelerometers and Gyroscopes
  225. Research Article
  226. Image based reconstruction for cystoscopy
  227. Research Article
  228. Image guided surgery innovation with graduate students - a new lecture format
  229. Research Article
  230. Multichannel FES parameterization for controlling foot motion in paretic gait
  231. Research Article
  232. Smartphone supported upper limb prosthesis
  233. Research Article
  234. Use of quantitative tremor evaluation to enhance target selection during deep brain stimulation surgery for essential tremor
  235. Research Article
  236. Evaluation of adhesion promoters for Parylene C on gold metallization
  237. Research Article
  238. The influence of metallic ions from CoCr28Mo6 on the osteogenic differentiation and cytokine release of human osteoblasts
  239. Research Article
  240. Increasing the visibility of thin NITINOL vascular implants
  241. Research Article
  242. Possible reasons for early artificial bone failure in biomechanical tests of ankle arthrodesis systems
  243. Research Article
  244. Development of a bending test procedure for the characterization of flexible ECoG electrode arrays
  245. Research Article
  246. Tubular manipulators: a new concept for intracochlear positioning of an auditory prosthesis
  247. Research Article
  248. Investigation of the dynamic diameter deformation of vascular stents during fatigue testing with radial loading
  249. Research Article
  250. Electrospun vascular grafts with anti-kinking properties
  251. Research Article
  252. Integration of temperature sensors in polyimide-based thin-film electrode arrays
  253. Research Article
  254. Use cases and usability challenges for head-mounted displays in healthcare
  255. Research Article
  256. Device- and service profiles for integrated or systems based on open standards
  257. Research Article
  258. Risk management for medical devices in research projects
  259. Research Article
  260. Simulation of varying femoral attachment sites of medial patellofemoral ligament using a musculoskeletal multi-body model
  261. Research Article
  262. Does enhancing consciousness for strategic planning processes support the effectiveness of problem-based learning concepts in biomedical education?
  263. Research Article
  264. SPIO processing in macrophages for MPI: The breast cancer MPI-SNLB-concept
  265. Research Article
  266. Numerical simulations of airflow in the human pharynx of OSAHS patients
Downloaded on 12.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/cdbme-2015-0102/html
Scroll to top button