Abstract
Mechanical ventilation is a life-saving intervention, which despite its use on a routine basis, poses the risk of inflicting further damage to the lung tissue if ventilator settings are chosen inappropriately. Medical decision support systems may help to prevent such injuries while providing the optimal settings to reach a defined clinical goal. In order to develop and verify decision support algorithms, a test bench simulating a patient’s behaviour is needed. We propose a Java based system that allows simulation of respiratory mechanics, gas exchange and cardiovascular dynamics of a mechanically ventilated patient. The implemented models are allowed to interact and are interchangeable enabling the simulation of various clinical scenarios. Model simulations are running in real-time and show physiologically plausible results.
1 Introduction
Mechanical ventilation is a commonly used treatment in intensive care. The aim is to support the gas exchange of patients that are unable to maintain sufficient oxygenation and carbon dioxide removal because of surgical interventions or traumata.
Clinicians adjust the ventilator settings based on their knowledge of the pathophysiology of the patient’s lung and the current clinical condition of the patient as well as his past medical history [1]. By applying inappropriate parameters for mechanical ventilation it is possible to inflict further damage to the lung tissue e.g. high ventilation pressures can lead to harmful barotrauma of the alveoli [2]. Patients with decreased lung compliance and impaired gas exchange (e.g. patients suffering from ARDS) are especially difficult to find optimal ventilator settings for, as conflicting goals might exist (high airway pressure to recruit alveoli versus low airway pressure to protect healthy lung tissue). To prevent those so called ”ventilator induced lung injuries” (VILI), medical decision support systems may be used. Those systems optimize therapy either based on expert knowledge and gold-standard procedures (knowledge-based systems) [3, 4] or on mathematical models representing the physiology of an individual patient (model-based systems) [5, 6].
In order to develop and test such algorithms before implementing them into commercially available systems, they must be tested with either animal trials, clinical (i.e. human) trials or with the help of patient simulators. Various patient simulators are available commercially or are described in literature. Mannequin simulators focused on training ICU nurses and clinicians such as HPS (CAE Healthcare, Saint-Laurent, Canada) or SimMan® 3G (Laerdal Medical, Stavanger, Norway) lack sufficient interfaces to communicate with decision support systems and thus are not useful for the evaluation of those. Along with other software simulators intended for internal use such as SmartPatient (Dräger Medical, Lübeck, Germany) [7] the mechanical and/or mathematical models used to simulate the patient are not fully disclosed, thus there is no knowledge on how the simulated data was created. Simulators described in literature provide detailed information about the implemented mathematical models, but focus on only a limited number of physiological compartments [1, 8].
Mechanical ventilation mostly affects three areas of the human physiology: respiratory mechanics, gas exchange and cardiovascular dynamics. To provide a realistic simulation of a patient’s reaction to mechanical ventilation, all of those areas should be implemented in the simulation. A previously developed system allows combining models of respiratory mechanics, gas exchange and cardiovascular dynamics to form a complex patient model [9].
The goal of this work aims to provide a user interface that allows simulating a mechanically ventilated patient with different disease scenarios. It should be able to run in real-time on a standard PC and implement sufficient interfaces to save simulated data and to allow communication with decision support systems.
2 Methods
2.1 Model system
The system of models considered in this paper consists of three main model families each comprising models of different complexity and simulation focus [9]. The implemented models will be described in short below.
To enable communication between the models and thus allow simulating physiological interactions a set of interfaces has been defined: Intrathoracic pressure (Pth) influences cardiovascular dynamics, which in turn influences gas exchange through cardiac output (CO). Additionally, alveolar volume (VA) and alveolar gas flow (VA) computed in respiratory mechanics influence gas exchange [9]. Figure 1 gives a schematic overview of the interfaces.
The model family of respiratory mechanics comprises five models of 1st and 2nd order including one to seven model parameters. The implemented models are a first order model with one resistance and one compliance, a model with two resistances and two compliances to simulate viscoelastic behaviour in the inspiratory pause [10], a model as proposed by Khoo to simulate effects of gas compressibility [11], and two recruitment models of which one comprises viscoelastic characteristics [12, 13]. All models have been extended to include a separate chest wall compliance to compute intrathoracic pressure.
The family of gas exchange models is divided mainly into two types. The first and less complex types assume constant and laminar flow of gas. Therefore, no inspiration and expiration is considered. They model lung gas exchange either with a single alveolar compartment with shunt [14] or dual alveolar compartments to include ffV/Q mismatch [15]. The second type of gas exchange models considers tidal flow of gas. Here, a dead space compartment is added as described by Benallal et al. [16].
The implemented cardiovascular dynamics models range from a simple three-compartment model with a singular cardiac compartment [17] to a serially arranged model with 14-compartments [18] and a parallel structured 19-compartment model [19]. This model family also includes a discrete beat-to-beat model for discontinuous simulation of blood pressure. The beat-to-beat model as well as the 14- and 19-compartment models have been extended to react to intrathoracic pressure changes [20].
2.2 Disease simulation
In order to use the different model combinations as a training tool for clinicians and as a test bench for decision support algorithms, it is necessary to be able to simulate different lung diseases and pathophysiological symptoms. We have thus implemented the possibility to select the models that should be combined to form the patient model and to change model parameters for the respiratory mechanics, the gas exchange and the cardiovascular dynamics during simulation. Additionally, the user is enabled to save specific parameter sets and to import previously created artificial patients.

Interactions between the three models and the ventilator simulation. FiO2 – oxygen content in inspired air, Paw – airway pressure, – air flow.
2.3 Software implementation
All models as well as a separate ventilator simulation have been coded in Java (1.7.0_51, Oracle, Corporation, Redwood Shores, USA) and have been tested separately to ensure operability within physiological limits. Each model is represented by a class. Complex models in each family (e.g. the 19-compartment cardiovascular model) are derived from less complex models by inheriting and extending their attributes and methods. Java does not allow inheritance from multiple parent classes, thus in models derived from multiple models in the family (e.g. the viscoelastic recruitment model) inheritance was limited to one class/model. A separate class describes the ventilator simulating volume or pressure controlled ventilation.
The differential equations of the selected models were solved employing a simple Euler solver with a fixed step size of 0.0001s. After each simulation step, the interface parameters are exchanged between models. The user interface was created using NetBeans IDE 8.0.2 (Oracle Corporation). Graphical representation of the vital parameters was realized employing the JFreeChart library distributed under the GNU lesser general public license.
3 Results
The user interface consists out of two main panes as shown in Figure 2. The pane located on the left side of the frame acts as a display panel for different graphs which show the vital data of the simulated patient. It is possible to monitor six vital parameters at the same time. In the presented example, these are the airway pressure (Paw), the arterial blood pressure, the air flow, the alveolar volume and the arterial partial pressure of oxygen (PaO2) and carbon dioxide (PaCO2). The user can choose which vital parameters should be visible by selecting them in the menu.
The second pane on the right of the user interface is the control panel for the simulation settings which is divided into three tabs. The first tab allows selecting the mathematical models to simulate respiratory mechanics, gas exchange and cardiovascular dynamics as described in the methods section. As all models incorporate the same interfaces, models can be swapped without stopping the simulation. In the second tab ventilator settings can be adjusted via slider or textbox input. The settings depend on whether ventilation is selected to be pressure or volume controlled. The maximum and minimum values of all sliders have been set to reasonable physiological limits to prevent irrational settings. During runtime it is possible to change the settings; they become valid after finishing the actual breath. In the third tab the user has the possibility to save the displayed data in the graphs into a text file (.txt). The text file can be used to reproduce and analyze the gathered data e.g. in MATLAB (The Mathworks, Natick, USA) or Excel (Microsoft Corporation, Redmond, USA).
The menu bar of the user interface provides the opportunity to change patient specific parameters by either adjusting them manually for each of the implemented models or by importing predefined parameters from a text file. Figure 3 provides an overview of the manually adjustable parameters.
The graphs in Figure 2 show results for a patient model consisting of the viscoelastic respiratory mechanics model, the dual alveolar gas exchange model with dead space and the 19-compartment model of cardiovascular dynamics ventilated in pressure controlled mode with a respiration frequency of 14/min, a maximum airway pressure of 35 mmHg, a PEEP of 5 mmHg, and FiO2 set to 40%. Arterial pressure exhibits superimposed oscillations with a frequency equal to the simulated respiration rate. Gas exchange results (PaO2, PaCO2) show two superimposed variations with different frequencies, one being equal to the respiration rate, one being in agreement with the simulated heart rate (i.e. 60/min).
4 Discussion
This work describes a patient simulator that allows simulating a mechanically ventilated patient. The implemented user interface enables the user to dynamically select various models to be combined and form a complex patient model. Additionally, it allows to select ventilator settings and to simulate different clinical scenarios by adapting model parameters or importing predefined parameter sets.
The implemented models have either been validated by their respective authors through comparison with data found in literature [14, 18, 19] and experimental data [10, 12, 13, 15, 16] or have been verified by others [10, 21]. Simulation results show influence of respiratory mechanics on cardiovascular dynamics visible as superimposed pressure variations. Similar findings have been reported in literature [22]. Changes in blood flow also show to influence PaO2 and PaCO2 where minor oscillations are observable. Both exhibit additional periodic variations in inspiration and expiration caused by changes in alveolar volume and flow. Analogous findings in animals are reported by Purves [23].
A goal of the presented work was to provide a real-time simulation of a ventilated patient. Previously published implementations of the presented model combinations in MATLAB showed to be computationally expensive, thus impeding the use as a tool for both clinical training and evaluation of decision support algorithms [24]. The presented implementation is JAVA based and is able to run in real-time on a standard PC for all possible model combinations.
Model-based decision support systems need to be adapted to a patient’s individual physiology, usually by identifying the values of free model parameters using previously recorded clinical data. To obtain those data, various ventilation manoeuvres need to be applied, preferably triggered by the decision support system on an as-needed basis. To provide a realistic patient simulation, decision support algorithms need be able to trigger such manoeuvres externally. Adding the necessary interfaces along with the implementation of additional physiological models is planned for future work.

The user interface with graphs showing the current simulation results.

Menu to manually adjust model parameters.
Author’s Statement
Conflict of interest: Authors state no conflict of interest. Material and Methods: Informed consent: Informed consent has been obtained from all individuals included in this study. Ethical approval: The research related to human use has been complied with all the relevant national regulations, institutional policies and in accordance the tenets of the Helsinki Declaration, and has been approved by the authors’ institutional review board or equivalent committee.
References
[1] H. F. Kowk, M. Mahfouf, K. M. Goode, G. H. Mills, and D. A. Linkens, ”The use of a patient simulator for knowledge acquisition from the clinicians,”Int J Simulation, vol. 4 (1&2), pp. 50-61, 2003.Search in Google Scholar
[2] D. Dreyfuss and G. Saumon, ”From ventilator-induced lung injury to multiple organ dysfunction,”Intensive Care Med, vol. 24 (2), pp. 102-104, 1998.10.1007/s001340050529Search in Google Scholar
[3] C. Spreckelsen and K. Spitzer, Wissensbasen und Expertensysteme in der Medizin. Wiesbaden: Vieweg+Teubner, 2008.10.1007/978-3-8348-9294-2Search in Google Scholar
[4] R. S. Campbell, R. D. Branson, and J. A. Johannigman, ”Adaptive support ventilation,”Respir Care Clin N Am, vol. 7 (3), pp. 425-40, ix, 2001.10.1016/S1078-5337(05)70049-6Search in Google Scholar
[5] G. W. Rutledge, G. E. Thomsen, B. R. Farr, M. A. Tovar, J. X. Polaschek, I. A. Beinlich, L. B. Sheiner, and L. M. Fagan, ”The design and implementation of a ventilator-management advisor,”Artif Intell Med, vol. 5 (1), pp. 67-82, 1993.10.1016/0933-3657(93)90006-OSearch in Google Scholar
[6] F. T. Tehrani and S. Abbasi, ”A model-based decision support system for critiquing mechanical ventilation treatments,”J Clin Monit Comput, vol. 26 (3), pp. 207-15, 2012.10.1007/s10877-012-9362-0Search in Google Scholar PubMed
[7] F. Galia, ”Supervision automatique de la ventilation artifi-cielle en soins intensifs: investigation d’un syst[ccaron]me existant et propositions d’extensions.,” PhD Thesis, Engineering Sciences, Université Paris-Est, Paris, 2010.Search in Google Scholar
[8] T. Heldt, R. Mukkamala, G. B. Moody, and R. G. Mark, ”CVSimml: An Open-Source Cardiovascular Simulator for Teaching and Research,”Open Pacing Electrophysiol Ther J, vol. 3, pp. 45-54, 2010.Search in Google Scholar
[9] J. Kretschmer, A. Wahl, and K. Moller, ”Dynamically generated models for medical decision support systems,”Comput Biol Med, vol. 41 (10), pp. 899-907, 2011.10.1016/j.compbiomed.2011.08.001Search in Google Scholar PubMed
[10] C. Schranz, P. D. Docherty, Y. S. Chiew, K. Moller, and J. G. Chase, ”Iterative integral parameter identification of a respiratory mechanics model,”Biomed Eng Online, vol. 11, p. 38, 2012.10.1186/1475-925X-11-38Search in Google Scholar PubMed PubMed Central
[11] M. C. K. Khoo, Physiological control systems: Analysis, simulation, and estimation vol. 3. Hoboken, New Jersey: John Wiley & Sons, 1999.10.1109/9780470545515Search in Google Scholar
[12] C. Schranz, P. D. Docherty, Y. S. Chiew, J. G. Chase, and K. Möller, ”Structural Identifiability and Practical Applicability of an Alveolar Recruitment Model for ARDS Patients,”IEEE Trans Biomed Eng., vol. 59 (12), pp. 3396-404, 2012.10.1109/TBME.2012.2216526Search in Google Scholar PubMed
[13] C. Schranz, J. Kretschmer, and K. Moller, ”Hierarchical individualization of a recruitment model with a viscoelastic component for ARDS patients,”Conf Proc IEEE Eng Med Biol Soc, vol. 2013, pp. 5220-3, 2013.10.1109/EMBC.2013.6610725Search in Google Scholar PubMed
[14] L. Chiari, G. Avanzolini, and M. Ursino, ”A comprehensive simulator of the human respiratory systemml: validation with experimental and simulated data,”Ann Biomed Eng, vol. 25 (6), pp. 985-99, 1997.10.1007/BF02684134Search in Google Scholar
[15] M. F. V. Melo, J. A. Loeppky, A. Caprihan, and U. C. Luft, ”Alveolar ventilation to perfusion heterogeneity and diffusion impairment in a mathematical model of gas exchange,”Comput Biomed Res, vol. 26 (2), pp. 103-120, 1993.10.1006/cbmr.1993.1007Search in Google Scholar
[16] H. Benallal, C. Denis, F. Prieur, and T. Busso, ”Modeling of end-tidal and arterial PCO2 gradient: comparison with experimental data,”Med Sci Sports Exerc, vol. 34 (4), pp. 622-9, 2002.10.1249/00005768-200204000-00010Search in Google Scholar
[17] T. Parlikar and G. Verghese, ”A simple cycle-averaged model for cardiovascular dynamics,”Conf Proc IEEE Eng Med Biol Soc, vol. 5, pp. 5490-4, 2005.10.1109/IEMBS.2005.1615726Search in Google Scholar
[18] M. Danielsen and J. T. Ottesen, ”A cardiovascular model,” in Applied mathematical models in human physiology, J. T. Ottesen,et al., Eds., ed Philadelphia: Society for Industrial and Applied Mathematics, 2004, pp. 113-126.10.1137/1.9780898718287.ch6Search in Google Scholar
[19] M. S. Leaning, H. E. Pullen, E. R. Carson, and L. Finkelstein, ”Modelling a complex biological systemml: the human cardiovascular system — 1. Methodology and model description,”T I Meas Control, vol. 5 (2), pp. 71-86, 1983.10.1177/014233128300500202Search in Google Scholar
[20] J. Kretschmer, T. Haunsberger, E. Drost, E. Koch, and K. Moller, ”Simulating physiological interactions in a hybrid system of mathematical models,”J Clin Monit Comput, vol. 28 (6), pp. 513-23, 2014.10.1007/s10877-013-9502-1Search in Google Scholar
[21] C. Schranz, J. Guttmann, and K. Möller, ”An Approach towards Parameter Identification in Hierarchical Models of Respiratory Mechanics,”Biomed Tech., vol. 55 (Suppl. 1) 2010.Search in Google Scholar
[22] D. Laude, M. Goldman, P. Escourrou, and J. L. Elghozi, ”Effect of breathing pattern on blood pressure and heart rate oscillations in humans,”Clin Exp Pharmacol Physiol, vol. 20 (10), pp. 619-26, 1993.10.1111/j.1440-1681.1993.tb01643.xSearch in Google Scholar
[23] M. J. Purves, ”Fluctuations of arterial oxygen tension which have the same period as respiration,”Respir Physiol, vol. 1 (3), pp. 281-96, 1966.10.1016/0034-5687(66)90047-8Search in Google Scholar
[24] Kretschmer, J., Schranz, C., Knöbel, C., Wingender, J., Koch, E., and Möller, K. (2013). Eflcient Computation Of Interacting Model Systems. J Biomed Inform, vol. 46 (3), pp. 401-9.10.1016/j.jbi.2013.01.004Search in Google Scholar PubMed
© 2015 by Walter de Gruyter GmbH, Berlin/Boston
This article is distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Articles in the same Issue
- Research Article
- Development and characterization of superparamagnetic coatings
- Research Article
- The development of an experimental setup to measure acousto-electric interaction signal
- Research Article
- Stability analysis of ferrofluids
- Research Article
- Investigation of endothelial growth using a sensors-integrated microfluidic system to simulate physiological barriers
- Research Article
- Energy harvesting for active implants: powering a ruminal pH-monitoring system
- Research Article
- New type of fluxgate magnetometer for the heart’s magnetic fields detection
- Research Article
- Field mapping of ballistic pressure pulse sources
- Research Article
- Development of a new homecare sleep monitor using body sounds and motion tracking
- Research Article
- Noise properties of textile, capacitive EEG electrodes
- Research Article
- Detecting phase singularities and rotor center trajectories based on the Hilbert transform of intraatrial electrograms in an atrial voxel model
- Research Article
- Spike sorting: the overlapping spikes challenge
- Research Article
- Separating the effect of respiration from the heart rate variability for cases of constant harmonic breathing
- Research Article
- Locating regions of arrhythmogenic substrate by analyzing the duration of triggered atrial activities
- Research Article
- Combining different ECG derived respiration tracking methods to create an optimal reconstruction of the breathing pattern
- Research Article
- Atrial and ventricular signal averaging electrocardiography in pacemaker and cardiac resynchronization therapy
- Research Article
- Estimation of a respiratory signal from a single-lead ECG using the 4th order central moments
- Research Article
- Compressed sensing of multi-lead ECG signals by compressive multiplexing
- Research Article
- Heart rate monitoring in ultra-high-field MRI using frequency information obtained from video signals of the human skin compared to electrocardiography and pulse oximetry
- Research Article
- Synchronization in wireless biomedical-sensor networks with Bluetooth Low Energy
- Research Article
- Automated classification of stages of anaesthesia by populations of evolutionary optimized fuzzy rules
- Research Article
- Effects of sampling rate on automated fatigue recognition in surface EMG signals
- Research Article
- Closed-loop transcranial alternating current stimulation of slow oscillations
- Research Article
- Cardiac index in atrio- and interventricular delay optimized cardiac resynchronization therapy and cardiac contractility modulation
- Research Article
- The role of expert evaluation for microsleep detection
- Research Article
- The impact of baseline wander removal techniques on the ST segment in simulated ischemic 12-lead ECGs
- Research Article
- Metal artifact reduction by projection replacements and non-local prior image integration
- Research Article
- A novel coaxial nozzle for in-process adjustment of electrospun scaffolds’ fiber diameter
- Research Article
- Processing of membranes for oxygenation using the Bellhouse-effect
- Research Article
- Inkjet printing of viable human dental follicle stem cells
- Research Article
- The use of an icebindingprotein out of the snowflea Hypogastrura harveyi as a cryoprotectant in the cryopreservation of mesenchymal stem cells
- Research Article
- New NIR spectroscopy based method to determine ischemia in vivo in liver – a first study on rats
- Research Article
- QRS and QT ventricular conduction times and permanent pacemaker therapy after transcatheter aortic valve implantation
- Research Article
- Adopting oculopressure tonometry as a transient in vivo rabbit glaucoma model
- Research Article
- Next-generation vision testing: the quick CSF
- Research Article
- Improving tactile sensation in laparoscopic surgery by overcoming size restrictions
- Research Article
- Design and control of a 3-DOF hydraulic driven surgical instrument
- Research Article
- Evaluation of endourological tools to improve the diagnosis and therapy of ureteral tumors – from model development to clinical application
- Research Article
- Frequency based assessment of surgical activities
- Research Article
- “Hands free for intervention”, a new approach for transoral endoscopic surgery
- Research Article
- Pseudo-haptic feedback in medical teleoperation
- Research Article
- Feasibility of interactive gesture control of a robotic microscope
- Research Article
- Towards structuring contextual information for workflow-driven surgical assistance functionalities
- Research Article
- Towards a framework for standardized semantic workflow modeling and management in the surgical domain
- Research Article
- Closed-loop approach for situation awareness of medical devices and operating room infrastructure
- Research Article
- Kinect based physiotherapy system for home use
- Research Article
- Evaluating the microsoft kinect skeleton joint tracking as a tool for home-based physiotherapy
- Research Article
- Integrating multimodal information for intraoperative assistance in neurosurgery
- Research Article
- Respiratory motion tracking using Microsoft’s Kinect v2 camera
- Research Article
- Using smart glasses for ultrasound diagnostics
- Research Article
- Measurement of needle susceptibility artifacts in magnetic resonance images
- Research Article
- Dimensionality reduction of medical image descriptors for multimodal image registration
- Research Article
- Experimental evaluation of different weighting schemes in magnetic particle imaging reconstruction
- Research Article
- Evaluation of CT capability for the detection of thin bone structures
- Research Article
- Towards contactless optical coherence elastography with acoustic tissue excitation
- Research Article
- Development and implementation of algorithms for automatic and robust measurement of the 2D:4D digit ratio using image data
- Research Article
- Automated high-throughput analysis of B cell spreading on immobilized antibodies with whole slide imaging
- Research Article
- Tissue segmentation from head MRI: a ground truth validation for feature-enhanced tracking
- Research Article
- Video tracking of swimming rodents on a reflective water surface
- Research Article
- MR imaging of model drug distribution in simulated vitreous
- Research Article
- Studying the extracellular contribution to the double wave vector diffusion-weighted signal
- Research Article
- Artifacts in field free line magnetic particle imaging in the presence of inhomogeneous and nonlinear magnetic fields
- Research Article
- Introducing a frequency-tunable magnetic particle spectrometer
- Research Article
- Imaging of aortic valve dynamics in 4D OCT
- Research Article
- Intravascular optical coherence tomography (OCT) as an additional tool for the assessment of stent structures
- Research Article
- Simple concept for a wide-field lensless digital holographic microscope using a laser diode
- Research Article
- Intraoperative identification of somato-sensory brain areas using optical imaging and standard RGB camera equipment – a feasibility study
- Research Article
- Respiratory surface motion measurement by Microsoft Kinect
- Research Article
- Improving image quality in EIT imaging by measurement of thorax excursion
- Research Article
- A clustering based dual model framework for EIT imaging: first experimental results
- Research Article
- Three-dimensional anisotropic regularization for limited angle tomography
- Research Article
- GPU-based real-time generation of large ultrasound volumes from freehand 3D sweeps
- Research Article
- Experimental computer tomograph
- Research Article
- US-tracked steered FUS in a respiratory ex vivo ovine liver phantom
- Research Article
- Contribution of brownian rotation and particle assembly polarisation to the particle response in magnetic particle spectrometry
- Research Article
- Preliminary investigations of magnetic modulated nanoparticles for microwave breast cancer detection
- Research Article
- Construction of a device for magnetic separation of superparamagnetic iron oxide nanoparticles
- Research Article
- An IHE-conform telecooperation platform supporting the treatment of dementia patients
- Research Article
- Automated respiratory therapy system based on the ARDSNet protocol with systemic perfusion control
- Research Article
- Identification of surgical instruments using UHF-RFID technology
- Research Article
- A generic concept for the development of model-guided clinical decision support systems
- Research Article
- Evaluation of local alterations in femoral bone mineral density measured via quantitative CT
- Research Article
- Creating 3D gelatin phantoms for experimental evaluation in biomedicine
- Research Article
- Influence of short-term fixation with mixed formalin or ethanol solution on the mechanical properties of human cortical bone
- Research Article
- Analysis of the release kinetics of surface-bound proteins via laser-induced fluorescence
- Research Article
- Tomographic particle image velocimetry of a water-jet for low volume harvesting of fat tissue for regenerative medicine
- Research Article
- Wireless medical sensors – context, robustness and safety
- Research Article
- Sequences for real-time magnetic particle imaging
- Research Article
- Speckle-based off-axis holographic detection for non-contact photoacoustic tomography
- Research Article
- A machine learning approach for planning valve-sparing aortic root reconstruction
- Research Article
- An in-ear pulse wave velocity measurement system using heart sounds as time reference
- Research Article
- Measuring different oxygenation levels in a blood perfusion model simulating the human head using NIRS
- Research Article
- Multisegmental fusion of the lumbar spine a curse or a blessing?
- Research Article
- Numerical analysis of the biomechanical complications accompanying the total hip replacement with NANOS-Prosthetic: bone remodelling and prosthesis migration
- Research Article
- A muscle model for hybrid muscle activation
- Research Article
- Mathematical, numerical and in-vitro investigation of cooling performance of an intra-carotid catheter for selective brain hypothermia
- Research Article
- An ideally parameterized unscented Kalman filter for the inverse problem of electrocardiography
- Research Article
- Interactive visualization of cardiac anatomy and atrial excitation for medical diagnosis and research
- Research Article
- Virtualizing clinical cases of atrial flutter in a fast marching simulation including conduction velocity and ablation scars
- Research Article
- Mesh structure-independent modeling of patient-specific atrial fiber orientation
- Research Article
- Accelerating mono-domain cardiac electrophysiology simulations using OpenCL
- Research Article
- Understanding the cellular mode of action of vernakalant using a computational model: answers and new questions
- Research Article
- A java based simulator with user interface to simulate ventilated patients
- Research Article
- Evaluation of an algorithm to choose between competing models of respiratory mechanics
- Research Article
- Numerical simulation of low-pulsation gerotor pumps for use in the pharmaceutical industry and in biomedicine
- Research Article
- Numerical and experimental flow analysis in centifluidic systems for rapid allergy screening tests
- Research Article
- Biomechanical parameter determination of scaffold-free cartilage constructs (SFCCs) with the hyperelastic material models Yeoh, Ogden and Demiray
- Research Article
- FPGA controlled artificial vascular system
- Research Article
- Simulation based investigation of source-detector configurations for non-invasive fetal pulse oximetry
- Research Article
- Test setup for characterizing the efficacy of embolic protection devices
- Research Article
- Impact of electrode geometry on force generation during functional electrical stimulation
- Research Article
- 3D-based visual physical activity assessment of children
- Research Article
- Realtime assessment of foot orientation by Accelerometers and Gyroscopes
- Research Article
- Image based reconstruction for cystoscopy
- Research Article
- Image guided surgery innovation with graduate students - a new lecture format
- Research Article
- Multichannel FES parameterization for controlling foot motion in paretic gait
- Research Article
- Smartphone supported upper limb prosthesis
- Research Article
- Use of quantitative tremor evaluation to enhance target selection during deep brain stimulation surgery for essential tremor
- Research Article
- Evaluation of adhesion promoters for Parylene C on gold metallization
- Research Article
- The influence of metallic ions from CoCr28Mo6 on the osteogenic differentiation and cytokine release of human osteoblasts
- Research Article
- Increasing the visibility of thin NITINOL vascular implants
- Research Article
- Possible reasons for early artificial bone failure in biomechanical tests of ankle arthrodesis systems
- Research Article
- Development of a bending test procedure for the characterization of flexible ECoG electrode arrays
- Research Article
- Tubular manipulators: a new concept for intracochlear positioning of an auditory prosthesis
- Research Article
- Investigation of the dynamic diameter deformation of vascular stents during fatigue testing with radial loading
- Research Article
- Electrospun vascular grafts with anti-kinking properties
- Research Article
- Integration of temperature sensors in polyimide-based thin-film electrode arrays
- Research Article
- Use cases and usability challenges for head-mounted displays in healthcare
- Research Article
- Device- and service profiles for integrated or systems based on open standards
- Research Article
- Risk management for medical devices in research projects
- Research Article
- Simulation of varying femoral attachment sites of medial patellofemoral ligament using a musculoskeletal multi-body model
- Research Article
- Does enhancing consciousness for strategic planning processes support the effectiveness of problem-based learning concepts in biomedical education?
- Research Article
- SPIO processing in macrophages for MPI: The breast cancer MPI-SNLB-concept
- Research Article
- Numerical simulations of airflow in the human pharynx of OSAHS patients
Articles in the same Issue
- Research Article
- Development and characterization of superparamagnetic coatings
- Research Article
- The development of an experimental setup to measure acousto-electric interaction signal
- Research Article
- Stability analysis of ferrofluids
- Research Article
- Investigation of endothelial growth using a sensors-integrated microfluidic system to simulate physiological barriers
- Research Article
- Energy harvesting for active implants: powering a ruminal pH-monitoring system
- Research Article
- New type of fluxgate magnetometer for the heart’s magnetic fields detection
- Research Article
- Field mapping of ballistic pressure pulse sources
- Research Article
- Development of a new homecare sleep monitor using body sounds and motion tracking
- Research Article
- Noise properties of textile, capacitive EEG electrodes
- Research Article
- Detecting phase singularities and rotor center trajectories based on the Hilbert transform of intraatrial electrograms in an atrial voxel model
- Research Article
- Spike sorting: the overlapping spikes challenge
- Research Article
- Separating the effect of respiration from the heart rate variability for cases of constant harmonic breathing
- Research Article
- Locating regions of arrhythmogenic substrate by analyzing the duration of triggered atrial activities
- Research Article
- Combining different ECG derived respiration tracking methods to create an optimal reconstruction of the breathing pattern
- Research Article
- Atrial and ventricular signal averaging electrocardiography in pacemaker and cardiac resynchronization therapy
- Research Article
- Estimation of a respiratory signal from a single-lead ECG using the 4th order central moments
- Research Article
- Compressed sensing of multi-lead ECG signals by compressive multiplexing
- Research Article
- Heart rate monitoring in ultra-high-field MRI using frequency information obtained from video signals of the human skin compared to electrocardiography and pulse oximetry
- Research Article
- Synchronization in wireless biomedical-sensor networks with Bluetooth Low Energy
- Research Article
- Automated classification of stages of anaesthesia by populations of evolutionary optimized fuzzy rules
- Research Article
- Effects of sampling rate on automated fatigue recognition in surface EMG signals
- Research Article
- Closed-loop transcranial alternating current stimulation of slow oscillations
- Research Article
- Cardiac index in atrio- and interventricular delay optimized cardiac resynchronization therapy and cardiac contractility modulation
- Research Article
- The role of expert evaluation for microsleep detection
- Research Article
- The impact of baseline wander removal techniques on the ST segment in simulated ischemic 12-lead ECGs
- Research Article
- Metal artifact reduction by projection replacements and non-local prior image integration
- Research Article
- A novel coaxial nozzle for in-process adjustment of electrospun scaffolds’ fiber diameter
- Research Article
- Processing of membranes for oxygenation using the Bellhouse-effect
- Research Article
- Inkjet printing of viable human dental follicle stem cells
- Research Article
- The use of an icebindingprotein out of the snowflea Hypogastrura harveyi as a cryoprotectant in the cryopreservation of mesenchymal stem cells
- Research Article
- New NIR spectroscopy based method to determine ischemia in vivo in liver – a first study on rats
- Research Article
- QRS and QT ventricular conduction times and permanent pacemaker therapy after transcatheter aortic valve implantation
- Research Article
- Adopting oculopressure tonometry as a transient in vivo rabbit glaucoma model
- Research Article
- Next-generation vision testing: the quick CSF
- Research Article
- Improving tactile sensation in laparoscopic surgery by overcoming size restrictions
- Research Article
- Design and control of a 3-DOF hydraulic driven surgical instrument
- Research Article
- Evaluation of endourological tools to improve the diagnosis and therapy of ureteral tumors – from model development to clinical application
- Research Article
- Frequency based assessment of surgical activities
- Research Article
- “Hands free for intervention”, a new approach for transoral endoscopic surgery
- Research Article
- Pseudo-haptic feedback in medical teleoperation
- Research Article
- Feasibility of interactive gesture control of a robotic microscope
- Research Article
- Towards structuring contextual information for workflow-driven surgical assistance functionalities
- Research Article
- Towards a framework for standardized semantic workflow modeling and management in the surgical domain
- Research Article
- Closed-loop approach for situation awareness of medical devices and operating room infrastructure
- Research Article
- Kinect based physiotherapy system for home use
- Research Article
- Evaluating the microsoft kinect skeleton joint tracking as a tool for home-based physiotherapy
- Research Article
- Integrating multimodal information for intraoperative assistance in neurosurgery
- Research Article
- Respiratory motion tracking using Microsoft’s Kinect v2 camera
- Research Article
- Using smart glasses for ultrasound diagnostics
- Research Article
- Measurement of needle susceptibility artifacts in magnetic resonance images
- Research Article
- Dimensionality reduction of medical image descriptors for multimodal image registration
- Research Article
- Experimental evaluation of different weighting schemes in magnetic particle imaging reconstruction
- Research Article
- Evaluation of CT capability for the detection of thin bone structures
- Research Article
- Towards contactless optical coherence elastography with acoustic tissue excitation
- Research Article
- Development and implementation of algorithms for automatic and robust measurement of the 2D:4D digit ratio using image data
- Research Article
- Automated high-throughput analysis of B cell spreading on immobilized antibodies with whole slide imaging
- Research Article
- Tissue segmentation from head MRI: a ground truth validation for feature-enhanced tracking
- Research Article
- Video tracking of swimming rodents on a reflective water surface
- Research Article
- MR imaging of model drug distribution in simulated vitreous
- Research Article
- Studying the extracellular contribution to the double wave vector diffusion-weighted signal
- Research Article
- Artifacts in field free line magnetic particle imaging in the presence of inhomogeneous and nonlinear magnetic fields
- Research Article
- Introducing a frequency-tunable magnetic particle spectrometer
- Research Article
- Imaging of aortic valve dynamics in 4D OCT
- Research Article
- Intravascular optical coherence tomography (OCT) as an additional tool for the assessment of stent structures
- Research Article
- Simple concept for a wide-field lensless digital holographic microscope using a laser diode
- Research Article
- Intraoperative identification of somato-sensory brain areas using optical imaging and standard RGB camera equipment – a feasibility study
- Research Article
- Respiratory surface motion measurement by Microsoft Kinect
- Research Article
- Improving image quality in EIT imaging by measurement of thorax excursion
- Research Article
- A clustering based dual model framework for EIT imaging: first experimental results
- Research Article
- Three-dimensional anisotropic regularization for limited angle tomography
- Research Article
- GPU-based real-time generation of large ultrasound volumes from freehand 3D sweeps
- Research Article
- Experimental computer tomograph
- Research Article
- US-tracked steered FUS in a respiratory ex vivo ovine liver phantom
- Research Article
- Contribution of brownian rotation and particle assembly polarisation to the particle response in magnetic particle spectrometry
- Research Article
- Preliminary investigations of magnetic modulated nanoparticles for microwave breast cancer detection
- Research Article
- Construction of a device for magnetic separation of superparamagnetic iron oxide nanoparticles
- Research Article
- An IHE-conform telecooperation platform supporting the treatment of dementia patients
- Research Article
- Automated respiratory therapy system based on the ARDSNet protocol with systemic perfusion control
- Research Article
- Identification of surgical instruments using UHF-RFID technology
- Research Article
- A generic concept for the development of model-guided clinical decision support systems
- Research Article
- Evaluation of local alterations in femoral bone mineral density measured via quantitative CT
- Research Article
- Creating 3D gelatin phantoms for experimental evaluation in biomedicine
- Research Article
- Influence of short-term fixation with mixed formalin or ethanol solution on the mechanical properties of human cortical bone
- Research Article
- Analysis of the release kinetics of surface-bound proteins via laser-induced fluorescence
- Research Article
- Tomographic particle image velocimetry of a water-jet for low volume harvesting of fat tissue for regenerative medicine
- Research Article
- Wireless medical sensors – context, robustness and safety
- Research Article
- Sequences for real-time magnetic particle imaging
- Research Article
- Speckle-based off-axis holographic detection for non-contact photoacoustic tomography
- Research Article
- A machine learning approach for planning valve-sparing aortic root reconstruction
- Research Article
- An in-ear pulse wave velocity measurement system using heart sounds as time reference
- Research Article
- Measuring different oxygenation levels in a blood perfusion model simulating the human head using NIRS
- Research Article
- Multisegmental fusion of the lumbar spine a curse or a blessing?
- Research Article
- Numerical analysis of the biomechanical complications accompanying the total hip replacement with NANOS-Prosthetic: bone remodelling and prosthesis migration
- Research Article
- A muscle model for hybrid muscle activation
- Research Article
- Mathematical, numerical and in-vitro investigation of cooling performance of an intra-carotid catheter for selective brain hypothermia
- Research Article
- An ideally parameterized unscented Kalman filter for the inverse problem of electrocardiography
- Research Article
- Interactive visualization of cardiac anatomy and atrial excitation for medical diagnosis and research
- Research Article
- Virtualizing clinical cases of atrial flutter in a fast marching simulation including conduction velocity and ablation scars
- Research Article
- Mesh structure-independent modeling of patient-specific atrial fiber orientation
- Research Article
- Accelerating mono-domain cardiac electrophysiology simulations using OpenCL
- Research Article
- Understanding the cellular mode of action of vernakalant using a computational model: answers and new questions
- Research Article
- A java based simulator with user interface to simulate ventilated patients
- Research Article
- Evaluation of an algorithm to choose between competing models of respiratory mechanics
- Research Article
- Numerical simulation of low-pulsation gerotor pumps for use in the pharmaceutical industry and in biomedicine
- Research Article
- Numerical and experimental flow analysis in centifluidic systems for rapid allergy screening tests
- Research Article
- Biomechanical parameter determination of scaffold-free cartilage constructs (SFCCs) with the hyperelastic material models Yeoh, Ogden and Demiray
- Research Article
- FPGA controlled artificial vascular system
- Research Article
- Simulation based investigation of source-detector configurations for non-invasive fetal pulse oximetry
- Research Article
- Test setup for characterizing the efficacy of embolic protection devices
- Research Article
- Impact of electrode geometry on force generation during functional electrical stimulation
- Research Article
- 3D-based visual physical activity assessment of children
- Research Article
- Realtime assessment of foot orientation by Accelerometers and Gyroscopes
- Research Article
- Image based reconstruction for cystoscopy
- Research Article
- Image guided surgery innovation with graduate students - a new lecture format
- Research Article
- Multichannel FES parameterization for controlling foot motion in paretic gait
- Research Article
- Smartphone supported upper limb prosthesis
- Research Article
- Use of quantitative tremor evaluation to enhance target selection during deep brain stimulation surgery for essential tremor
- Research Article
- Evaluation of adhesion promoters for Parylene C on gold metallization
- Research Article
- The influence of metallic ions from CoCr28Mo6 on the osteogenic differentiation and cytokine release of human osteoblasts
- Research Article
- Increasing the visibility of thin NITINOL vascular implants
- Research Article
- Possible reasons for early artificial bone failure in biomechanical tests of ankle arthrodesis systems
- Research Article
- Development of a bending test procedure for the characterization of flexible ECoG electrode arrays
- Research Article
- Tubular manipulators: a new concept for intracochlear positioning of an auditory prosthesis
- Research Article
- Investigation of the dynamic diameter deformation of vascular stents during fatigue testing with radial loading
- Research Article
- Electrospun vascular grafts with anti-kinking properties
- Research Article
- Integration of temperature sensors in polyimide-based thin-film electrode arrays
- Research Article
- Use cases and usability challenges for head-mounted displays in healthcare
- Research Article
- Device- and service profiles for integrated or systems based on open standards
- Research Article
- Risk management for medical devices in research projects
- Research Article
- Simulation of varying femoral attachment sites of medial patellofemoral ligament using a musculoskeletal multi-body model
- Research Article
- Does enhancing consciousness for strategic planning processes support the effectiveness of problem-based learning concepts in biomedical education?
- Research Article
- SPIO processing in macrophages for MPI: The breast cancer MPI-SNLB-concept
- Research Article
- Numerical simulations of airflow in the human pharynx of OSAHS patients