Home Evaluation of local alterations in femoral bone mineral density measured via quantitative CT
Article Open Access

Evaluation of local alterations in femoral bone mineral density measured via quantitative CT

  • A. Sitzer EMAIL logo , L. Aulmann , R. Wendlandt , H. Handels , I. Weyers , A. P. Schulz and T. M. Buzug
Published/Copyright: September 12, 2015

Abstract

The aim of this study was to investigate the accuracy of bone mineral density (BMD) determined by quantitative computed tomography (qCT) based on in situ and ex situ scans of cadavers of variable stature. The influence of surrounding tissue on the quantification of CT images of ex situ scanned femora was investigated in air and in water and compared with the in situ scanned femora. The study showed that the surrounding tissue has an impact on the grey value-based representation of the scanned object as well as on the calibration of BMD, influencing the determination of BMD. Local differences in BMD of up to 17.5% were observed, which might originate from beam hardening artifacts.

1 Introduction

Patient-specific finite element (FE) analysis is a promising technique to preoperatively estimate the mechanical behaviour of bone in response to loads, which can be advantageous for clinical treatment such as the evaluation of fracture risks or implant design. The material property assignment of a FE model of bone is not trivial due to the inhomogeneous and anisotropic character of bone [1, 2]. Many authors generate homogenized continuum-level models based on elasticity-density laws available in the literature [13] linking the material properties such as Young’s modulus to bone mineral density (BMD) [47], mostly derived from ash or apparent bone density measured ex situ [5, 6]. For clinical practice it would be beneficial to base material properties on the radiological BMD of the patient’s bone derived by in vivo quantitative computed tomography (qCT). However, radiological BMD is solely an indicator of bone mineral content. Investigating the bone density revealed a correlation between ash and apparent density [8]. Ash density determined ex situ can be roughly assumed to be equal to in vivo radiological density [9]. However, without analysing the impact of surrounding tissue on the in vivo BMD measurement the validity of the material mapping method remains questionable.

Common reconstruction algorithms, such as filtered backprojection, are based on the assumption of monochromatic X-rays and thus describe the intensity of the signal depending on the attenuation coefficient and the thickness of the absorber but neglect alternating effective beam energies along the path [10, 11]. Low-energy beams are in general more absorbed compared to high-energy beams, changing the X-ray spectrum and thereby the mean intensities. Clinical X-ray detectors solely measure an intensity integral and are not able to distinguish different X-ray energies. The attenuation coefficients of surrounding tissue, i.e. muscles, fat and adjacent bone, in in vivo condition, have diverse energy dependencies resulting in alternating effective beam energies along lines of response and therefore causing inconsistencies in the reconstruction process [11]. Although CT numbers have been found to be related to mechanical properties in dissected bone [4, 7], the presence of surrounding tissue might degrade the quality of the material law approaches, since intensities and BMD may not be correctly determined in vivo. For qCT-based BMD determination, most authors use machined bone samples or dissected bones without soft tissue [7, 8]. In order to compensate for missing soft tissue, many authors scan their bone samples immersed in water [7, 8, 12].

The aim of this study was to investigate the accuracy of qCT determined patient-specific BMD results based on in situ and ex situ scans of body donors of variable stature. The influence of the surrounding tissue on the quantification of CT images was investigated at different anatomical locations of femora scanned in situ, in air and in water.

2 Material and methods

The right femora of three fresh human cadavers of obese, normal and slender stature were scanned in situ using a multislice CT scanner (Siemens SOMATOM Definition TM AS+, Erlangen, Germany) with the same scan protocol for all scans and the following baseline parameters: gantry rotation time 0.3 s, 120 kVp, 450 mAs, collimation 64 x 0.6 mm, pitch 0.5, slice thickness 1 mm, convolution kernel B31F. For the determination of BMD the femora were scanned with a five-chamber dipotassium phosphate phantom (Mindways, TX, USA) inside the field of view. In order to simulate common clinical procedures, no pre-processing calibrations, e.g. water calibration, or changes to the reconstruction process of the commercial CT-scanner were performed. Subsequently, the femora were extracted from the cadavers, cleaned of soft tissue and scanned under the same conditions. The phantom was covered with gel pads to reduce artifacts while the extracted femora were surrounded by air or immersed in a container filled with water.

An automatic grey value-based CT image registration was performed for all scans of one specific donor with AMIRA 5.3 (Visage Imaging, Inc., San Diego, USA), which allowed for a comparison between BMD in situ and ex situ . Regions of interest (ROIs) were drawn by a single observer at three different anatomical sites. In the centre of the femoral head, manual segmentation was performed by drawing a circle with a defined radius in order to investigate trabecular bone. A region-growing algorithm combined with morphological operations was applied for the segmentation of cortical bone within the diaphysis with a threshold of 500 Hounsfield Units (HU), whereas trabecular bone of the distal metaphysis was segmented using the same approach but lower thresholds (0-499 HU), as in Cheng et al. [13]. BMD was determined by the following equation:

(1)BMD=1σCTμROIβCTσCT,

where µROI describes the mean intensity in the segmented ROI, σCT defines the response of the CT scanner to dipotassium phosphate and βCT describes the characteristics of the CT number scale. σCT and βCT were derived from a least squares algorithm involving the mean intensities measured in all five calibrating rods of the investigated slices. Quantification of BMD was evaluated by comparing the BMDs of ex situ scans to the reference in situ scans of one specific donor at each anatomical location, in order to investigate the influence of different amount and type of surrounding tissue and surrounding medium, respectively. Deviations were further evaluated by observing the acquired mean intensities in the ROIs for in situ and ex situ scans. Additionally, the linear calibration equation was investigated for all scans, which had a major impact on the determination of BMD. In order to investigate potential changes in size of the ROI due to beam hardening, line profiles of the intensities were obtained at the location of the individual ROI. Additionally, changes in the area size of automatic segmented ROIs were measured.

3 Results

The differences in BMD of femora scanned ex situ with reference to the in situ results are illustrated in Figure 1 and Figure 2. In general, trends in the deviation of BMD with respect to stature could be observed for the diaphysis and the distal metaphysis in air as well as for the femoral head and the distal metaphysis in water. A universal trend was not observed for the different locations or types of bone. The highest deviation was found in the distal metaphysis of the obese donor scanned in air (17.5%). Deviations were lowest for the subject with normal stature. Scans in air showed higher deviations for trabecular bone regions and slightly lower deviations for cortical bone compared to water.

Figure 1 BMD deviation of femora scanned in air.
Figure 1

BMD deviation of femora scanned in air.

Figure 2 BMD deviation of femora scanned in water.
Figure 2

BMD deviation of femora scanned in water.

The scans in air resulted in higher HU compared to the cadaveric scan, which was counteracted by a decrease of the calibration slope. In this context, the data suggests that these effects are related to the stature. In water scans HU values and calibration slopes were closer to the reference. Typical linear BMD calibration equations for different media are shown in Figure 3. The slope and ordinate intercept changed in all measurements but water calibration equations were closer to the reference.

Figure 3 Calibration equation lines determined via a least squares algorithm from HU examined in all calibration rods of the phantom in equivalent slices of the distal metaphysis of obese donor scanned in situ, in air and in water.
Figure 3

Calibration equation lines determined via a least squares algorithm from HU examined in all calibration rods of the phantom in equivalent slices of the distal metaphysis of obese donor scanned in situ, in air and in water.

The projection of the image showed consistent deviations in different media as well, which is exemplarily illustrated in the line profile of the femoral head of the obese donor (see Figure 4). The projection drawn in red (air) is consistently narrower compared to the other projections. The projection values of water scans were in general closer to the projection values of cadaveric scans. The size of the automatic segmented ROI changed by up to 3%.

Figure 4 Femoral head line profiles of all media in the obese donor, illustrating distorted projections due to beam hardening.
Figure 4

Femoral head line profiles of all media in the obese donor, illustrating distorted projections due to beam hardening.

4 Discussion

The study showed deviations between BMD measured in situ and ex situ, depending on anatomical site, stature, structure of the bone and the surrounding media. It is challenging to isolate the impact of each influence on the outcome in water and air, respectively. BMD of trabecular bone was considerably underestimated in literature when scanned in air [14], which was confirmed by this study investigating trabecular bone in the femoral head and the distal metaphysis. Chen and Lam used dissected, dry bone and linked the difference to missing water inside the intraosseous space [14]. In the present study fresh bone was used and the intraosseous space was in a physiological condition indicating that the surrounding medium has an impact on the determination of BMD as well. Deviations were lower in water, suggesting that water is able to act as a surrogate of soft tissue to a certain extent. In the case of cortical bone, water could not improve results.

Although no universal trend could be observed, the results indicate a locally varying influence of stature on the BMD results. Differences in the type and amount of tissue surrounding the femora caused variations in the quantification of BMD, which have to be considered when assigning material properties with elasticity-density laws. In general, specific attenuation coefficients lead to beam hardening, occurring with different effects induced by different tissue types, which cannot be simultaneously corrected [10]. Hence, beam hardening is inevitable in clinical CT scanners with commercial reconstruction algorithms. Conclusions can be drawn that the specific attenuation coefficient of different adjacent tissues is a limiting factor for the radiological determination of BMD.

Mathematically, BMD is a result of the mean intensity in the ROI and the calibration equation. Alterations in the projection could be an indication of the presence of beam hardening, leading to a change in spectrum and altered mean intensities. This study showed that missing tissue affects the intensity in the ROI but also the intensity of the rods of the calibration phantom, thereby influencing the calibration equation. Conclusively, deviations in BMD are mutually dependent on the individual impact of the surrounding tissue on intensity measured in the body and in the rods of the phantom. Since beam hardening is different for varying anatomical locations due to the amount and type of tissue, deviations in intensity and calibration depend on anatomical location as well. Furthermore, the altered calibration equation might have a different impact on the determination of BMD in tissue with significantly different intensities, i.e. cortical or trabecular bone. Diverging intensities inside the ROI were lower in water and the calibration line was closer to the reference compared to air but the resulting impact on BMD was minor.

Keyak et al. investigated the influence of femoral image data obtained in situ and ex situ on the results of FE analysis. They found substantial differences in predicted fracture load [12]. This study showed that distorted projections alter automatically segmented geometries, which might further reduce the accuracy of FE models. In order to compensate for energy-dependent attenuation, the use of dual energy CT systems, i.e. scanning the patient at different voltages [11], might be beneficial.

One limitation of this study is the possible errors introduced by interpolation used during image registration, which could have distorted the results. Another limitation is the small number of investigated body donors and, on the technical side, quantum noise, which might have an effect on all results. Pre-filters integrated into the X-ray tube, as well as different reconstruction algorithms incorporating convolution kernels can be optimized to compensate for beam hardening [10, 11, 15]. In this case, only a commonly used medium smooth body convolution kernel was used, which is known to provide a better peak signal-to-noise ratio as well as lower root mean square errors and mean absolute errors compared to other kernels [15].

Acknowledgment

The authors would like to thank the Institute of Anatomy, University of Lübeck, for the supply and dissection of cadaveric material. We further thank Jörg Barkhausen and Attila Kovàcs from the Department of Radiology, University Medical Center Schleswig-Holstein, Lübeck, for the provision of technical equipment.

Author's Statement

  1. Conflict of interest: Authors state no conflict of interest. Material and Methods: Informed consent: Informed consent is not applicable. Ethical approval: The research related to human use has been complied with all the relevant national regulations and institutional policies. The human cadavers in this examination were used and dissected under permission of the „Gesetz über das Leichen-, Bestattungs- und Friedhofswesen (Bestattungsgesetz) des Landes Schleswig- Holstein vom 04.02.2005, Abschnitt II, § 9 (Leichenöffnung, anatomisch)“. In this case, it is allowed to dissect the bodies of donors (Körperspender/in) for scientific and/or educational purposes.

References

[1] Baca V, Horak Z, Mikulenka P, Dzupa V. Comparison of an inhomogeneous orthotropic and isotropic material models used for FE analyses. Med Eng Phys 2008; 30(7): 924-30.10.1016/j.medengphy.2007.12.009Search in Google Scholar

[2] Chen G, Schmutz B, Epari D, et al. A new approach for assigning bone material properties from CT images into finite element models. J Biomech 2010; 43(5): 1011-5.10.1016/j.jbiomech.2009.10.040Search in Google Scholar

[3] Zannoni C, Mantovani R, Viceconti M. Material properties assignment to finite element models of bone structures: a new method. Med Eng Phys 1998; 20(10): 735-40.10.1016/S1350-4533(98)00081-2Search in Google Scholar

[4] Rho JY, Hobatho MC, Ashman RB. Relations of mechanical properties to density and CT numbers in human bone. Med Eng Phys 1995; 17(5): 347-55.10.1016/1350-4533(95)97314-FSearch in Google Scholar

[5] Keller TS. Predicting the compressive mechanical behavior of bone. J Biomech 1994; 27(9): 1159-68.10.1016/0021-9290(94)90056-6Search in Google Scholar

[6] Morgan EF, Bayraktar HH, Keaveny TM. Trabecular bone modulus-density relationships depend on anatomic site. J Biomech 2003; 36(7): 897-904.10.1016/S0021-9290(03)00071-XSearch in Google Scholar

[7] Ciarelli MJ, Goldstein SA, Kuhn JL, Cody DD, Brown MB. Evaluation of orthogonal mechanical properties and density of human trabecular bone from the major metaphyseal regions with materials testing and computed tomography. J Orthop Res 1991; 9(5): 674-82.10.1002/jor.1100090507Search in Google Scholar PubMed

[8] Schileo E, Dall’ara E, Taddei F, et al. An accurate estimation of bone density improves the accuracy of subject-specific finite element models. J Biomech 2008; 41(11): 2483-91.10.1016/j.jbiomech.2008.05.017Search in Google Scholar PubMed

[9] Keyak JH, Lee IY, Skinner HB. Correlations between orthogonal mechanical properties and density of trabecular bone: use of different densitometric measures. J Biomed Mater Res 1994; 28(11): 1329-36.10.1002/jbm.820281111Search in Google Scholar PubMed

[10] Brooks RA, Di Chiro G. Beam hardening in x-ray reconstructive tomography. Phys Med Biol 1976; 21(3): 390-8.10.1088/0031-9155/21/3/004Search in Google Scholar PubMed

[11] Buzug TM. Computed tomography: from photon statistics to modern cone-beam CT. 1st ed. Berlin: Springer Verlag 2008.Search in Google Scholar

[12] Keyak JH, Falkinstein Y. Comparison of in situ and in vitro CT scan-based finite element model predictions of proximal femoral fracture load. Med Eng Phys 2003; 25(9): 781-7.10.1016/S1350-4533(03)00081-XSearch in Google Scholar

[13] Cheng XG, Lowet G, Boonen S, et al. Assessment of the strength of proximal femur in vitro: relationship to femoral bone mineral density and femoral geometry. Bone 1997; 20(3): 213-8.10.1016/S8756-3282(96)00383-3Search in Google Scholar

[14] Chen X, Lam YM. Technical note: CT determination of the mineral density of dry bone specimens using the dipotassium phosphate phantom. Am J Phys Anthropol 1997; 103(4): 557-60.10.1002/(SICI)1096-8644(199708)103:4<557::AID-AJPA10>3.0.CO;2-#Search in Google Scholar

[15] Jang KJ, Kweon DC, Lee JW, et al. Measurement of Image Quality in CT Images Reconstructed with Different Kernels. J Korean Phys Soc 2011; 58(2): 334-42.10.3938/jkps.58.334Search in Google Scholar

Published Online: 2015-9-12
Published in Print: 2015-9-1

© 2015 by Walter de Gruyter GmbH, Berlin/Boston

This article is distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Articles in the same Issue

  1. Research Article
  2. Development and characterization of superparamagnetic coatings
  3. Research Article
  4. The development of an experimental setup to measure acousto-electric interaction signal
  5. Research Article
  6. Stability analysis of ferrofluids
  7. Research Article
  8. Investigation of endothelial growth using a sensors-integrated microfluidic system to simulate physiological barriers
  9. Research Article
  10. Energy harvesting for active implants: powering a ruminal pH-monitoring system
  11. Research Article
  12. New type of fluxgate magnetometer for the heart’s magnetic fields detection
  13. Research Article
  14. Field mapping of ballistic pressure pulse sources
  15. Research Article
  16. Development of a new homecare sleep monitor using body sounds and motion tracking
  17. Research Article
  18. Noise properties of textile, capacitive EEG electrodes
  19. Research Article
  20. Detecting phase singularities and rotor center trajectories based on the Hilbert transform of intraatrial electrograms in an atrial voxel model
  21. Research Article
  22. Spike sorting: the overlapping spikes challenge
  23. Research Article
  24. Separating the effect of respiration from the heart rate variability for cases of constant harmonic breathing
  25. Research Article
  26. Locating regions of arrhythmogenic substrate by analyzing the duration of triggered atrial activities
  27. Research Article
  28. Combining different ECG derived respiration tracking methods to create an optimal reconstruction of the breathing pattern
  29. Research Article
  30. Atrial and ventricular signal averaging electrocardiography in pacemaker and cardiac resynchronization therapy
  31. Research Article
  32. Estimation of a respiratory signal from a single-lead ECG using the 4th order central moments
  33. Research Article
  34. Compressed sensing of multi-lead ECG signals by compressive multiplexing
  35. Research Article
  36. Heart rate monitoring in ultra-high-field MRI using frequency information obtained from video signals of the human skin compared to electrocardiography and pulse oximetry
  37. Research Article
  38. Synchronization in wireless biomedical-sensor networks with Bluetooth Low Energy
  39. Research Article
  40. Automated classification of stages of anaesthesia by populations of evolutionary optimized fuzzy rules
  41. Research Article
  42. Effects of sampling rate on automated fatigue recognition in surface EMG signals
  43. Research Article
  44. Closed-loop transcranial alternating current stimulation of slow oscillations
  45. Research Article
  46. Cardiac index in atrio- and interventricular delay optimized cardiac resynchronization therapy and cardiac contractility modulation
  47. Research Article
  48. The role of expert evaluation for microsleep detection
  49. Research Article
  50. The impact of baseline wander removal techniques on the ST segment in simulated ischemic 12-lead ECGs
  51. Research Article
  52. Metal artifact reduction by projection replacements and non-local prior image integration
  53. Research Article
  54. A novel coaxial nozzle for in-process adjustment of electrospun scaffolds’ fiber diameter
  55. Research Article
  56. Processing of membranes for oxygenation using the Bellhouse-effect
  57. Research Article
  58. Inkjet printing of viable human dental follicle stem cells
  59. Research Article
  60. The use of an icebindingprotein out of the snowflea Hypogastrura harveyi as a cryoprotectant in the cryopreservation of mesenchymal stem cells
  61. Research Article
  62. New NIR spectroscopy based method to determine ischemia in vivo in liver – a first study on rats
  63. Research Article
  64. QRS and QT ventricular conduction times and permanent pacemaker therapy after transcatheter aortic valve implantation
  65. Research Article
  66. Adopting oculopressure tonometry as a transient in vivo rabbit glaucoma model
  67. Research Article
  68. Next-generation vision testing: the quick CSF
  69. Research Article
  70. Improving tactile sensation in laparoscopic surgery by overcoming size restrictions
  71. Research Article
  72. Design and control of a 3-DOF hydraulic driven surgical instrument
  73. Research Article
  74. Evaluation of endourological tools to improve the diagnosis and therapy of ureteral tumors – from model development to clinical application
  75. Research Article
  76. Frequency based assessment of surgical activities
  77. Research Article
  78. “Hands free for intervention”, a new approach for transoral endoscopic surgery
  79. Research Article
  80. Pseudo-haptic feedback in medical teleoperation
  81. Research Article
  82. Feasibility of interactive gesture control of a robotic microscope
  83. Research Article
  84. Towards structuring contextual information for workflow-driven surgical assistance functionalities
  85. Research Article
  86. Towards a framework for standardized semantic workflow modeling and management in the surgical domain
  87. Research Article
  88. Closed-loop approach for situation awareness of medical devices and operating room infrastructure
  89. Research Article
  90. Kinect based physiotherapy system for home use
  91. Research Article
  92. Evaluating the microsoft kinect skeleton joint tracking as a tool for home-based physiotherapy
  93. Research Article
  94. Integrating multimodal information for intraoperative assistance in neurosurgery
  95. Research Article
  96. Respiratory motion tracking using Microsoft’s Kinect v2 camera
  97. Research Article
  98. Using smart glasses for ultrasound diagnostics
  99. Research Article
  100. Measurement of needle susceptibility artifacts in magnetic resonance images
  101. Research Article
  102. Dimensionality reduction of medical image descriptors for multimodal image registration
  103. Research Article
  104. Experimental evaluation of different weighting schemes in magnetic particle imaging reconstruction
  105. Research Article
  106. Evaluation of CT capability for the detection of thin bone structures
  107. Research Article
  108. Towards contactless optical coherence elastography with acoustic tissue excitation
  109. Research Article
  110. Development and implementation of algorithms for automatic and robust measurement of the 2D:4D digit ratio using image data
  111. Research Article
  112. Automated high-throughput analysis of B cell spreading on immobilized antibodies with whole slide imaging
  113. Research Article
  114. Tissue segmentation from head MRI: a ground truth validation for feature-enhanced tracking
  115. Research Article
  116. Video tracking of swimming rodents on a reflective water surface
  117. Research Article
  118. MR imaging of model drug distribution in simulated vitreous
  119. Research Article
  120. Studying the extracellular contribution to the double wave vector diffusion-weighted signal
  121. Research Article
  122. Artifacts in field free line magnetic particle imaging in the presence of inhomogeneous and nonlinear magnetic fields
  123. Research Article
  124. Introducing a frequency-tunable magnetic particle spectrometer
  125. Research Article
  126. Imaging of aortic valve dynamics in 4D OCT
  127. Research Article
  128. Intravascular optical coherence tomography (OCT) as an additional tool for the assessment of stent structures
  129. Research Article
  130. Simple concept for a wide-field lensless digital holographic microscope using a laser diode
  131. Research Article
  132. Intraoperative identification of somato-sensory brain areas using optical imaging and standard RGB camera equipment – a feasibility study
  133. Research Article
  134. Respiratory surface motion measurement by Microsoft Kinect
  135. Research Article
  136. Improving image quality in EIT imaging by measurement of thorax excursion
  137. Research Article
  138. A clustering based dual model framework for EIT imaging: first experimental results
  139. Research Article
  140. Three-dimensional anisotropic regularization for limited angle tomography
  141. Research Article
  142. GPU-based real-time generation of large ultrasound volumes from freehand 3D sweeps
  143. Research Article
  144. Experimental computer tomograph
  145. Research Article
  146. US-tracked steered FUS in a respiratory ex vivo ovine liver phantom
  147. Research Article
  148. Contribution of brownian rotation and particle assembly polarisation to the particle response in magnetic particle spectrometry
  149. Research Article
  150. Preliminary investigations of magnetic modulated nanoparticles for microwave breast cancer detection
  151. Research Article
  152. Construction of a device for magnetic separation of superparamagnetic iron oxide nanoparticles
  153. Research Article
  154. An IHE-conform telecooperation platform supporting the treatment of dementia patients
  155. Research Article
  156. Automated respiratory therapy system based on the ARDSNet protocol with systemic perfusion control
  157. Research Article
  158. Identification of surgical instruments using UHF-RFID technology
  159. Research Article
  160. A generic concept for the development of model-guided clinical decision support systems
  161. Research Article
  162. Evaluation of local alterations in femoral bone mineral density measured via quantitative CT
  163. Research Article
  164. Creating 3D gelatin phantoms for experimental evaluation in biomedicine
  165. Research Article
  166. Influence of short-term fixation with mixed formalin or ethanol solution on the mechanical properties of human cortical bone
  167. Research Article
  168. Analysis of the release kinetics of surface-bound proteins via laser-induced fluorescence
  169. Research Article
  170. Tomographic particle image velocimetry of a water-jet for low volume harvesting of fat tissue for regenerative medicine
  171. Research Article
  172. Wireless medical sensors – context, robustness and safety
  173. Research Article
  174. Sequences for real-time magnetic particle imaging
  175. Research Article
  176. Speckle-based off-axis holographic detection for non-contact photoacoustic tomography
  177. Research Article
  178. A machine learning approach for planning valve-sparing aortic root reconstruction
  179. Research Article
  180. An in-ear pulse wave velocity measurement system using heart sounds as time reference
  181. Research Article
  182. Measuring different oxygenation levels in a blood perfusion model simulating the human head using NIRS
  183. Research Article
  184. Multisegmental fusion of the lumbar spine a curse or a blessing?
  185. Research Article
  186. Numerical analysis of the biomechanical complications accompanying the total hip replacement with NANOS-Prosthetic: bone remodelling and prosthesis migration
  187. Research Article
  188. A muscle model for hybrid muscle activation
  189. Research Article
  190. Mathematical, numerical and in-vitro investigation of cooling performance of an intra-carotid catheter for selective brain hypothermia
  191. Research Article
  192. An ideally parameterized unscented Kalman filter for the inverse problem of electrocardiography
  193. Research Article
  194. Interactive visualization of cardiac anatomy and atrial excitation for medical diagnosis and research
  195. Research Article
  196. Virtualizing clinical cases of atrial flutter in a fast marching simulation including conduction velocity and ablation scars
  197. Research Article
  198. Mesh structure-independent modeling of patient-specific atrial fiber orientation
  199. Research Article
  200. Accelerating mono-domain cardiac electrophysiology simulations using OpenCL
  201. Research Article
  202. Understanding the cellular mode of action of vernakalant using a computational model: answers and new questions
  203. Research Article
  204. A java based simulator with user interface to simulate ventilated patients
  205. Research Article
  206. Evaluation of an algorithm to choose between competing models of respiratory mechanics
  207. Research Article
  208. Numerical simulation of low-pulsation gerotor pumps for use in the pharmaceutical industry and in biomedicine
  209. Research Article
  210. Numerical and experimental flow analysis in centifluidic systems for rapid allergy screening tests
  211. Research Article
  212. Biomechanical parameter determination of scaffold-free cartilage constructs (SFCCs) with the hyperelastic material models Yeoh, Ogden and Demiray
  213. Research Article
  214. FPGA controlled artificial vascular system
  215. Research Article
  216. Simulation based investigation of source-detector configurations for non-invasive fetal pulse oximetry
  217. Research Article
  218. Test setup for characterizing the efficacy of embolic protection devices
  219. Research Article
  220. Impact of electrode geometry on force generation during functional electrical stimulation
  221. Research Article
  222. 3D-based visual physical activity assessment of children
  223. Research Article
  224. Realtime assessment of foot orientation by Accelerometers and Gyroscopes
  225. Research Article
  226. Image based reconstruction for cystoscopy
  227. Research Article
  228. Image guided surgery innovation with graduate students - a new lecture format
  229. Research Article
  230. Multichannel FES parameterization for controlling foot motion in paretic gait
  231. Research Article
  232. Smartphone supported upper limb prosthesis
  233. Research Article
  234. Use of quantitative tremor evaluation to enhance target selection during deep brain stimulation surgery for essential tremor
  235. Research Article
  236. Evaluation of adhesion promoters for Parylene C on gold metallization
  237. Research Article
  238. The influence of metallic ions from CoCr28Mo6 on the osteogenic differentiation and cytokine release of human osteoblasts
  239. Research Article
  240. Increasing the visibility of thin NITINOL vascular implants
  241. Research Article
  242. Possible reasons for early artificial bone failure in biomechanical tests of ankle arthrodesis systems
  243. Research Article
  244. Development of a bending test procedure for the characterization of flexible ECoG electrode arrays
  245. Research Article
  246. Tubular manipulators: a new concept for intracochlear positioning of an auditory prosthesis
  247. Research Article
  248. Investigation of the dynamic diameter deformation of vascular stents during fatigue testing with radial loading
  249. Research Article
  250. Electrospun vascular grafts with anti-kinking properties
  251. Research Article
  252. Integration of temperature sensors in polyimide-based thin-film electrode arrays
  253. Research Article
  254. Use cases and usability challenges for head-mounted displays in healthcare
  255. Research Article
  256. Device- and service profiles for integrated or systems based on open standards
  257. Research Article
  258. Risk management for medical devices in research projects
  259. Research Article
  260. Simulation of varying femoral attachment sites of medial patellofemoral ligament using a musculoskeletal multi-body model
  261. Research Article
  262. Does enhancing consciousness for strategic planning processes support the effectiveness of problem-based learning concepts in biomedical education?
  263. Research Article
  264. SPIO processing in macrophages for MPI: The breast cancer MPI-SNLB-concept
  265. Research Article
  266. Numerical simulations of airflow in the human pharynx of OSAHS patients
Downloaded on 9.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/cdbme-2015-0081/html
Scroll to top button