Home Noise properties of textile, capacitive EEG electrodes
Article Open Access

Noise properties of textile, capacitive EEG electrodes

  • Sara Nazari Asl EMAIL logo , Frank Ludwig and Meinhard Schilling
Published/Copyright: September 12, 2015

Abstract

The rigid surface of the conventional PCB-based capacitive electrode produces an undefined distance between the skin and the electrode surface. Therefore, the capacitance introduced by them is uncertain and can vary from electrode to electrode due to their different positions on the scalp. However, textile electrodes which use conductive fabric as electrode surfaces, are bendable over the scalp. Therefore, it provides a certain value of the capacitance which is predictable and calculable accurately if the effective distance to the scalp surface can be determined. In this paper noise characteristics of textile electrodes with different fabric sizes as electrode’s surface and capacity calculations related to each size are presented to determine the effective distances for each electrode size.

1 Introduction

Capacitive electrodes for the evaluation of human body bioelectric potentials are a very attractive alternative to conventional galvanically coupled electrodes for long term diagnostic applications especially when the signals have to be measured through insulating materials like cloth. These electrodes are always constructed in a similar way based on ideas which have been proposed already in the middle of the last century [1, 5]. In the last years many research groups have developed new applications based on these electrodes [2, 3, 6]. We concentrated in our work on the application in a multichannel helmet for electroencephalography (EEG) application e.g. in a brain-computer interface [4]. The common geometric arrangement of the first stage of a capacitive electrode is depicted in Fig. 1.

A capacitive electrode for bioelectric potential measurements consists of a piece of conductive material which forms a capacitor together with some part of the body surface. The electric charges on the body surface caused by the electric body potentials interact with corresponding charges in the conductive electrode which is placed above the body surface separated by some insulating material. As insulator either air or any other dielectric can be employed. Therefore, we will have a capacity Ce of

(1)Ce=є0єrAed.

Here є = єrє0 is the permittivity of the dielectric between capacitor’s layers, d is the distance between them, and Ae is the area of the layers.

Figure 1 Electronic network circuit of the electrode determining the frequency response
Figure 1

Electronic network circuit of the electrode determining the frequency response

Together with the input resistance Rin of the impedance converter stage the capacitance is part of an electronic high-pass filter. Normally, the cut-off frequency of the high-pass filter fc which is given by

(2)fc=12π·Rin·Ce

is chosen at about 0.1 Hz in agreement with the bandpass filters used commonly in electrocardiography or electroencephalography.

Here Rin is the bias resistor in parallel with the input resistor of the amplifier which is almost equal to the bias resistor because the input impedance of the amplifier is larger than the bias resistor.

2 Method

We used stretchable conductive fabric which is made from interwoven copper wires. The fabric is not solderable, therefore, we used conductive glue to paste it to the main electronic circuit. For these measurements a PCB plate is used as second side of the input capacitor which is connected to the input and lays underneath the fabric, thus forming the input capacitance Ce.

According to equation (2) to have a lower cut-off frequency, the input resistance Rin and input capacity Ce have to be chosen high enough to let the physiologically interesting frequency components pass. The use of textile electrodes with fabric surface causes smaller average effective distances, thus increases the capacitance compared to stiff PCB electrodes because of better flexible attachment to the body surface.

In this paper we measured the transfer function and noise spectra of electrodes with areas of the fabric electrodes of 64 cm2, 32 cm2, and 16 cm2.

3 Results

In figure 2, the transfer function of the circuit with different areas of the fabric is depicted, the input resistor Rin is 1 in all measurements.

Figure 2 Transfer function of textile electrode with different sizes of the fabric
Figure 2

Transfer function of textile electrode with different sizes of the fabric

From figure 2 we obtain a 3dB cut-off frequency of 0.23 Hz for an area of 64 cm2, 0.52 Hz for an area of 32 cm2, and 0.90 Hz for an area of 16cm2. The corresponding capacitance values for each of the areas can be determined from equation (2). We find Ce(64 cm2) = 0.688 nF, Ce(32 cm2) = 0.305 nF, Ce(16 cm2) = 0.176 nF.

Figure 3 shows the dependence of the cut-off frequency and the electrode capacity on the area of the electrode surface. According to equation (1) and (2), Ce should be proportional to the fabric area while the cut-off frequency should be inversely proportional to the area.

Taking these capacity values and assuming air as dielectric between the surfaces of the capacitors, the distances d were calculated by equation (1) to be about 0.1 mm for all cases. However, looking at figure 3 one sees that the data points for the capacitance vs. area do not lie on a straight line as expected for a constant distance d. To estimate the uncertainty in the distance d, we repeated measurements of the transfer function after assembling and disassembling the capacitors. For the fabric electrode with 16 cm2, we determined the standard deviation of the cutoff frequency as 0.25 Hz. With

(3)δC=12πRf¯3dB2δf3dB

one can calculate the uncertaintyC to 0.034 nF with C¯=0, 177 nF. The uncertainty in the distance between electrodes is determined by the uncertainty in the fabric area δA and the contribution from the uncertainty δC. It is found that the contribution to the uncertainty in distance d of δC by far exceeds that of δA. Thus, the uncertainty in the distance can be calculated by

(4)δd=єrє0AC¯2δc

resulting in an uncertainty valued = 0.015 mm.

Figure 3 Cut-off frequency fc and input capacity Ce versus area of the fabric, error bars were determined with equation (3).
Figure 3

Cut-off frequency fc and input capacity Ce versus area of the fabric, error bars were determined with equation (3).

Figure 4 Equivalent noise model circuit
Figure 4

Equivalent noise model circuit

The voltage noise spectra of the electrodes with different areas of fabric are depicted in Fig. 5. The simplified noise model of the electrode is shown in fig. 4. The effect of the noise of the resistor at the output can be calculated by

(5)Sv,Rtootal=11+jωRC4kRTδf

in which k is Boltzmann constant, T is temperature, R is the input resistor, C is input capacitor and δf is the bandwidth. The total noise of the electrode is

(6)Sv,Tootal=Sv,Rtootal2+Sv,op2

The white noise of the spectra is the noise of the amplifier Sv, op and slope is caused by the characteristics of the high pass filter. As it is clear in Fig. 5 while the white noise level is the same for all electrode areas, the low-frequency noise decreases with increasing the area. This is expected because cut-off frequency of high-pass filter for larger areas is smaller consequently less noise at lower frequency can pass through it.

4 Conclusion

The cut-off frequency of the high-pass filter of the capacitive electrodes is determined by the input capacity which is received from the electrode surface parallel to the skin surface and the input resistance. In order to have a lower cut-off frequency, the value of input resistor or capacitor should increase. In rigid surface electrodes, an increase in the capacity by increasing the surface of the electrode is not possible because the area of the electrode surface which has a small distance to the scalp is rather small and unpredictable. However, by using conductive fabric as an electrode surface it is possible to increase the area quite considerably while still maintaining the same distance between layers over the whole surface which consequently results in a definite capacity in the input. Therefore, it is possible to shift the cut-off frequency to lower frequencies by increasing the size of fabric in textile electrodes. Simultaneously the voltage noise at lower frequencies is reduced. The distance measured in this work (d = 0.1 mm) is in rough agreement with what we measured for the thickness of the fabric. However, it is clear that more measurement with different fabric should be done to predict what distance should be expected for new unknown fabric.

Figure 5 Voltage noise spectrum of textile electrode with different sizes of the fabric and the simulated noise for 64 cm2
Figure 5

Voltage noise spectrum of textile electrode with different sizes of the fabric and the simulated noise for 64 cm2

Acknowledgment

The author S.N. gratefully acknowledges the financial support by the Braunschweig International Graduate School of Metrology (B-IGSM)(PhD Scholarship,S.N.).

Author’s Statement

  1. Conflict of interest: Authors state no conflict of interest. Material and Methods: Informed consent: Informed consent has been obtained from all individuals included in this study. Ethical approval: The research related to human use has been complied with all the relevant national regulations, institutional policies and in accordance the tenets of the Helsinki Declaration, and has been approved by the authors’ institutional review board or equivalent committee.

References

[1] Geddes L, Baker L. Principles of applied biomedical instrumentation. Wiley: New York 1989 3rd ed.Search in Google Scholar

[2] Harland C, Clark T, Peters N, Everitt M, Stiffell P. A compact electric potential sensor array for the acquisition and reconstruction of the 7-lead electrocardiogram without electrical charge contact with the skin. Physio. Meas.2005; 26: 939–950.10.1088/0967-3334/26/6/005Search in Google Scholar PubMed

[3] Lim Y, Kim K, Park K. ECG measurement on a chair without conductive contact,” IEEE Trans. Biomed. Eng. 2006: 53, 956–959.10.1109/TBME.2006.872823Search in Google Scholar PubMed

[4] Oehler M, Neumann P, Becker M, Curio G, Schilling M. Extraction of SSVEP signals of a capacitive EEG helmet for human machine interface. Vancouver: Proc. 30th Annual Conf. IEEE EMBS 2008: 4495–4498.10.1109/IEMBS.2008.4650211Search in Google Scholar PubMed

[5] Richardson P. The insulated electrode: a pasteless electrocardiographic technique. 20th Annual Conference on Engineering in Medicine and Biology 1967; 15.7.Search in Google Scholar

[6] Schommartz A., Eilebrecht B., Wartzek T., Walter M., Leonhardt S. Advances in Modern Capacitive ECG Systems for Continuous Cardiovascular Monitoring. Acta Polytechnica 2011: 51. 5, 100–105.10.14311/1456Search in Google Scholar

Published Online: 2015-9-12
Published in Print: 2015-9-1

© 2015 by Walter de Gruyter GmbH, Berlin/Boston

This article is distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Articles in the same Issue

  1. Research Article
  2. Development and characterization of superparamagnetic coatings
  3. Research Article
  4. The development of an experimental setup to measure acousto-electric interaction signal
  5. Research Article
  6. Stability analysis of ferrofluids
  7. Research Article
  8. Investigation of endothelial growth using a sensors-integrated microfluidic system to simulate physiological barriers
  9. Research Article
  10. Energy harvesting for active implants: powering a ruminal pH-monitoring system
  11. Research Article
  12. New type of fluxgate magnetometer for the heart’s magnetic fields detection
  13. Research Article
  14. Field mapping of ballistic pressure pulse sources
  15. Research Article
  16. Development of a new homecare sleep monitor using body sounds and motion tracking
  17. Research Article
  18. Noise properties of textile, capacitive EEG electrodes
  19. Research Article
  20. Detecting phase singularities and rotor center trajectories based on the Hilbert transform of intraatrial electrograms in an atrial voxel model
  21. Research Article
  22. Spike sorting: the overlapping spikes challenge
  23. Research Article
  24. Separating the effect of respiration from the heart rate variability for cases of constant harmonic breathing
  25. Research Article
  26. Locating regions of arrhythmogenic substrate by analyzing the duration of triggered atrial activities
  27. Research Article
  28. Combining different ECG derived respiration tracking methods to create an optimal reconstruction of the breathing pattern
  29. Research Article
  30. Atrial and ventricular signal averaging electrocardiography in pacemaker and cardiac resynchronization therapy
  31. Research Article
  32. Estimation of a respiratory signal from a single-lead ECG using the 4th order central moments
  33. Research Article
  34. Compressed sensing of multi-lead ECG signals by compressive multiplexing
  35. Research Article
  36. Heart rate monitoring in ultra-high-field MRI using frequency information obtained from video signals of the human skin compared to electrocardiography and pulse oximetry
  37. Research Article
  38. Synchronization in wireless biomedical-sensor networks with Bluetooth Low Energy
  39. Research Article
  40. Automated classification of stages of anaesthesia by populations of evolutionary optimized fuzzy rules
  41. Research Article
  42. Effects of sampling rate on automated fatigue recognition in surface EMG signals
  43. Research Article
  44. Closed-loop transcranial alternating current stimulation of slow oscillations
  45. Research Article
  46. Cardiac index in atrio- and interventricular delay optimized cardiac resynchronization therapy and cardiac contractility modulation
  47. Research Article
  48. The role of expert evaluation for microsleep detection
  49. Research Article
  50. The impact of baseline wander removal techniques on the ST segment in simulated ischemic 12-lead ECGs
  51. Research Article
  52. Metal artifact reduction by projection replacements and non-local prior image integration
  53. Research Article
  54. A novel coaxial nozzle for in-process adjustment of electrospun scaffolds’ fiber diameter
  55. Research Article
  56. Processing of membranes for oxygenation using the Bellhouse-effect
  57. Research Article
  58. Inkjet printing of viable human dental follicle stem cells
  59. Research Article
  60. The use of an icebindingprotein out of the snowflea Hypogastrura harveyi as a cryoprotectant in the cryopreservation of mesenchymal stem cells
  61. Research Article
  62. New NIR spectroscopy based method to determine ischemia in vivo in liver – a first study on rats
  63. Research Article
  64. QRS and QT ventricular conduction times and permanent pacemaker therapy after transcatheter aortic valve implantation
  65. Research Article
  66. Adopting oculopressure tonometry as a transient in vivo rabbit glaucoma model
  67. Research Article
  68. Next-generation vision testing: the quick CSF
  69. Research Article
  70. Improving tactile sensation in laparoscopic surgery by overcoming size restrictions
  71. Research Article
  72. Design and control of a 3-DOF hydraulic driven surgical instrument
  73. Research Article
  74. Evaluation of endourological tools to improve the diagnosis and therapy of ureteral tumors – from model development to clinical application
  75. Research Article
  76. Frequency based assessment of surgical activities
  77. Research Article
  78. “Hands free for intervention”, a new approach for transoral endoscopic surgery
  79. Research Article
  80. Pseudo-haptic feedback in medical teleoperation
  81. Research Article
  82. Feasibility of interactive gesture control of a robotic microscope
  83. Research Article
  84. Towards structuring contextual information for workflow-driven surgical assistance functionalities
  85. Research Article
  86. Towards a framework for standardized semantic workflow modeling and management in the surgical domain
  87. Research Article
  88. Closed-loop approach for situation awareness of medical devices and operating room infrastructure
  89. Research Article
  90. Kinect based physiotherapy system for home use
  91. Research Article
  92. Evaluating the microsoft kinect skeleton joint tracking as a tool for home-based physiotherapy
  93. Research Article
  94. Integrating multimodal information for intraoperative assistance in neurosurgery
  95. Research Article
  96. Respiratory motion tracking using Microsoft’s Kinect v2 camera
  97. Research Article
  98. Using smart glasses for ultrasound diagnostics
  99. Research Article
  100. Measurement of needle susceptibility artifacts in magnetic resonance images
  101. Research Article
  102. Dimensionality reduction of medical image descriptors for multimodal image registration
  103. Research Article
  104. Experimental evaluation of different weighting schemes in magnetic particle imaging reconstruction
  105. Research Article
  106. Evaluation of CT capability for the detection of thin bone structures
  107. Research Article
  108. Towards contactless optical coherence elastography with acoustic tissue excitation
  109. Research Article
  110. Development and implementation of algorithms for automatic and robust measurement of the 2D:4D digit ratio using image data
  111. Research Article
  112. Automated high-throughput analysis of B cell spreading on immobilized antibodies with whole slide imaging
  113. Research Article
  114. Tissue segmentation from head MRI: a ground truth validation for feature-enhanced tracking
  115. Research Article
  116. Video tracking of swimming rodents on a reflective water surface
  117. Research Article
  118. MR imaging of model drug distribution in simulated vitreous
  119. Research Article
  120. Studying the extracellular contribution to the double wave vector diffusion-weighted signal
  121. Research Article
  122. Artifacts in field free line magnetic particle imaging in the presence of inhomogeneous and nonlinear magnetic fields
  123. Research Article
  124. Introducing a frequency-tunable magnetic particle spectrometer
  125. Research Article
  126. Imaging of aortic valve dynamics in 4D OCT
  127. Research Article
  128. Intravascular optical coherence tomography (OCT) as an additional tool for the assessment of stent structures
  129. Research Article
  130. Simple concept for a wide-field lensless digital holographic microscope using a laser diode
  131. Research Article
  132. Intraoperative identification of somato-sensory brain areas using optical imaging and standard RGB camera equipment – a feasibility study
  133. Research Article
  134. Respiratory surface motion measurement by Microsoft Kinect
  135. Research Article
  136. Improving image quality in EIT imaging by measurement of thorax excursion
  137. Research Article
  138. A clustering based dual model framework for EIT imaging: first experimental results
  139. Research Article
  140. Three-dimensional anisotropic regularization for limited angle tomography
  141. Research Article
  142. GPU-based real-time generation of large ultrasound volumes from freehand 3D sweeps
  143. Research Article
  144. Experimental computer tomograph
  145. Research Article
  146. US-tracked steered FUS in a respiratory ex vivo ovine liver phantom
  147. Research Article
  148. Contribution of brownian rotation and particle assembly polarisation to the particle response in magnetic particle spectrometry
  149. Research Article
  150. Preliminary investigations of magnetic modulated nanoparticles for microwave breast cancer detection
  151. Research Article
  152. Construction of a device for magnetic separation of superparamagnetic iron oxide nanoparticles
  153. Research Article
  154. An IHE-conform telecooperation platform supporting the treatment of dementia patients
  155. Research Article
  156. Automated respiratory therapy system based on the ARDSNet protocol with systemic perfusion control
  157. Research Article
  158. Identification of surgical instruments using UHF-RFID technology
  159. Research Article
  160. A generic concept for the development of model-guided clinical decision support systems
  161. Research Article
  162. Evaluation of local alterations in femoral bone mineral density measured via quantitative CT
  163. Research Article
  164. Creating 3D gelatin phantoms for experimental evaluation in biomedicine
  165. Research Article
  166. Influence of short-term fixation with mixed formalin or ethanol solution on the mechanical properties of human cortical bone
  167. Research Article
  168. Analysis of the release kinetics of surface-bound proteins via laser-induced fluorescence
  169. Research Article
  170. Tomographic particle image velocimetry of a water-jet for low volume harvesting of fat tissue for regenerative medicine
  171. Research Article
  172. Wireless medical sensors – context, robustness and safety
  173. Research Article
  174. Sequences for real-time magnetic particle imaging
  175. Research Article
  176. Speckle-based off-axis holographic detection for non-contact photoacoustic tomography
  177. Research Article
  178. A machine learning approach for planning valve-sparing aortic root reconstruction
  179. Research Article
  180. An in-ear pulse wave velocity measurement system using heart sounds as time reference
  181. Research Article
  182. Measuring different oxygenation levels in a blood perfusion model simulating the human head using NIRS
  183. Research Article
  184. Multisegmental fusion of the lumbar spine a curse or a blessing?
  185. Research Article
  186. Numerical analysis of the biomechanical complications accompanying the total hip replacement with NANOS-Prosthetic: bone remodelling and prosthesis migration
  187. Research Article
  188. A muscle model for hybrid muscle activation
  189. Research Article
  190. Mathematical, numerical and in-vitro investigation of cooling performance of an intra-carotid catheter for selective brain hypothermia
  191. Research Article
  192. An ideally parameterized unscented Kalman filter for the inverse problem of electrocardiography
  193. Research Article
  194. Interactive visualization of cardiac anatomy and atrial excitation for medical diagnosis and research
  195. Research Article
  196. Virtualizing clinical cases of atrial flutter in a fast marching simulation including conduction velocity and ablation scars
  197. Research Article
  198. Mesh structure-independent modeling of patient-specific atrial fiber orientation
  199. Research Article
  200. Accelerating mono-domain cardiac electrophysiology simulations using OpenCL
  201. Research Article
  202. Understanding the cellular mode of action of vernakalant using a computational model: answers and new questions
  203. Research Article
  204. A java based simulator with user interface to simulate ventilated patients
  205. Research Article
  206. Evaluation of an algorithm to choose between competing models of respiratory mechanics
  207. Research Article
  208. Numerical simulation of low-pulsation gerotor pumps for use in the pharmaceutical industry and in biomedicine
  209. Research Article
  210. Numerical and experimental flow analysis in centifluidic systems for rapid allergy screening tests
  211. Research Article
  212. Biomechanical parameter determination of scaffold-free cartilage constructs (SFCCs) with the hyperelastic material models Yeoh, Ogden and Demiray
  213. Research Article
  214. FPGA controlled artificial vascular system
  215. Research Article
  216. Simulation based investigation of source-detector configurations for non-invasive fetal pulse oximetry
  217. Research Article
  218. Test setup for characterizing the efficacy of embolic protection devices
  219. Research Article
  220. Impact of electrode geometry on force generation during functional electrical stimulation
  221. Research Article
  222. 3D-based visual physical activity assessment of children
  223. Research Article
  224. Realtime assessment of foot orientation by Accelerometers and Gyroscopes
  225. Research Article
  226. Image based reconstruction for cystoscopy
  227. Research Article
  228. Image guided surgery innovation with graduate students - a new lecture format
  229. Research Article
  230. Multichannel FES parameterization for controlling foot motion in paretic gait
  231. Research Article
  232. Smartphone supported upper limb prosthesis
  233. Research Article
  234. Use of quantitative tremor evaluation to enhance target selection during deep brain stimulation surgery for essential tremor
  235. Research Article
  236. Evaluation of adhesion promoters for Parylene C on gold metallization
  237. Research Article
  238. The influence of metallic ions from CoCr28Mo6 on the osteogenic differentiation and cytokine release of human osteoblasts
  239. Research Article
  240. Increasing the visibility of thin NITINOL vascular implants
  241. Research Article
  242. Possible reasons for early artificial bone failure in biomechanical tests of ankle arthrodesis systems
  243. Research Article
  244. Development of a bending test procedure for the characterization of flexible ECoG electrode arrays
  245. Research Article
  246. Tubular manipulators: a new concept for intracochlear positioning of an auditory prosthesis
  247. Research Article
  248. Investigation of the dynamic diameter deformation of vascular stents during fatigue testing with radial loading
  249. Research Article
  250. Electrospun vascular grafts with anti-kinking properties
  251. Research Article
  252. Integration of temperature sensors in polyimide-based thin-film electrode arrays
  253. Research Article
  254. Use cases and usability challenges for head-mounted displays in healthcare
  255. Research Article
  256. Device- and service profiles for integrated or systems based on open standards
  257. Research Article
  258. Risk management for medical devices in research projects
  259. Research Article
  260. Simulation of varying femoral attachment sites of medial patellofemoral ligament using a musculoskeletal multi-body model
  261. Research Article
  262. Does enhancing consciousness for strategic planning processes support the effectiveness of problem-based learning concepts in biomedical education?
  263. Research Article
  264. SPIO processing in macrophages for MPI: The breast cancer MPI-SNLB-concept
  265. Research Article
  266. Numerical simulations of airflow in the human pharynx of OSAHS patients
Downloaded on 16.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/cdbme-2015-0009/html
Scroll to top button