Home Construction of a device for magnetic separation of superparamagnetic iron oxide nanoparticles
Article Open Access

Construction of a device for magnetic separation of superparamagnetic iron oxide nanoparticles

  • Kerstin Kläser , Matthias Graeser , Dirk Steinhagen and Kerstin Luedtke-Buzug EMAIL logo
Published/Copyright: September 12, 2015

Abstract

Suspensions of iron oxide particles, so called ferrofluids, are successfully used in various technical, biochemical and medical applications. For example they find use in the area of sensor engineering, magnetic resonance imaging (MRI) and especially magnetic particle imaging (MPI). MPI is a new tomographic imaging technique that determines the spatial distribution of superparamagnetic iron oxide nanoparticles (SPIONs). Besides a very high spatial and temporal resolution MPI provides quantitative realtime imageing. The nanoparticles cause a magnetization change that can be measured. As the particle size distribution has a huge impact on the magnetization behavior is an important parameter for optimization. While synthesizing, SPIONs particles with various dimensions are formed what necessitates a systematically separation by size. For this purpose a construction of a simple device for magnetic separation of SPIONs has been developed. First attemps of separation show the potential of this method.

1 Introduction

Today in the area of medical engineering there are various techniques for medical imaging. These techniques differ in costs aviable bore sizes or resolution, as well as quantitativeness and sensitivity. MPI provides high resolution images without radiation like in CT, has a faster acquisition than magnetic resonance imaging and works with non-harmful iron oxide based tracer [1]. Therefor it combines the advantages of the imaging methods. It quantitatively measures the spatial distribution of superparamagnetic iron oxide nanoparticles (SPIONs) and is able to capture even fast distribution changes of those particles. Hence it is possible to create realtime high-resolution images without using radioactive tracers or ionizing radiation. To reach this, MPI exploits the nonlinear magnetization behaviour of SPIONs to determine their spatial distribution and concentration in the field of view. To measure a particle response, they have to be excited by a sinusoidal oscillating magnetic field. This leads to a change of the particle magnetization, which is recorded by a receive coil. Since Resovist is the only tracer approved for human use, which is not optimised for MPI, the synthesis and characterization of suitable tracers is required for further research. Simulations have shown that mono-modal suspensions of particles with a magnetic core size of approximately 30 nm are most suitable for MPI [2]. During the wet-chemical synthesis particles of various sizes are produced, what makes systematically separation necessary. This work presents a technical realization of a separation apparatus that uses the magnetic properties of the particles. Particles with a larger core diameter are supposed to be held by magnetic attracting force in the separator by an oscillating magnetic field whereas particles having a smaller core diameter will be rinsed out. The separation results are then evaluated by means of the Magnetic Particle Spectroscopy (MPS).

2 Material and methods

The basic idea of the separation relies on the theory that particles with a larger core size will experience a larger magnetic attracting force and will be held in the measurement chamber by the magnetic field. Small particles however will be washed out. Therefore, a separation device has to provide a sufficient large magnetic field inside the separation chamber.

2.1 Magnetic field configuration

As providing large magnetic fields with air coils is very power consuming one can increase the magnetic field enormously by winding the coil around a magnetically soft iron core. The relative permeabilities µ of those cores is greater than the permeability of free space µ0 which is most often expressed by a relative permeability m~ur=μμ0. Since the separation chamber has to be placed within the magnetic field, an iron core with an air gap is the basis of the construction. If the air gap is sufficiently small, one can assume, that the magnetic flux density B in both the iron core and the air is constant (see Fig. 1). However the magnetic field strength is given by

(1)Hair=Bμ0andHiron=Bμ0μr.

Since the magnetic field strength is just the flux per average field line length l the magnetic flux Θ is

(2)H=ΘlΘ=Hl.

Moreover the magnetic flux is defined by

(3)Θ=NII=ΘN

where N is the amount of windings and I the current. According to the mesh rule the current that is required to generate a specific magnetic flux density is [4]

(4)I=BNμ0(lironμr+lair).
Figure 1 An iron core with the average field line length liron. The magnetic field lines run right throught an air gap lair . The current I through the windings N generates the magnetic flux [4].
Figure 1

An iron core with the average field line length liron. The magnetic field lines run right throught an air gap lair . The current I through the windings N generates the magnetic flux [4].

2.2 Magnetic separation chamber

Magnetic columns made by Miltenyi Biotec are filled with small iron spheres and are often used in the particle size separation. Those iron spheres increase the local field gradient by a factor of 10.000 and produce an inhomogeneous field inside the column. This is the reason why magnetic particles stay in the column whereas non magnetic particles rinse out. After the small fraction of the particles are washed out, the big particles can be extracted by switching off the external magnetic field.

Figure 2 a) Recreated separation column made from a plastic syringe and untreated steel wool. b) LD-Column by Miltenyi Biotec.
Figure 2

a) Recreated separation column made from a plastic syringe and untreated steel wool. b) LD-Column by Miltenyi Biotec.

A similar behavior can be reached by reconstructing the columns. In order to avoid eddy current loss the casing of the column is preferably made from an electrically non-conductive material like plastic. To amplify the magnetic field in the separation chamber soft magnetic matrices are used. Materials that are suitable for this purpose are metallic spheres, needles, frits, pinhole apertures and wires in the form of grids or steel wool. Fig. 2a shows a self build separation column that is made from a plastic syringe and untreated steel wool.

2.3 Assembly of the construction

The coil for the construction is made from a toroidal iron powder core by Micromentals and braid wire by Elektrisola (Cross-section: 1.9635 mm2, 1000 single wires à 0.5 µ m). Powder cores have the advantage, that there is much lower eddy current loss since the iron powder is mixed with an insulator before it is pressed. As the isolation gives no contribution to the magnetic flux, those cores provide lower permeabilities. The iron powder core that is used for the construction has a permeability of µr = 10 and suitable for applications up to 500 MHz[5]. To place the separation column in the magnetic core, a two centimeter gap has been cutted. Before the chamber is integrated, the cut surfaces are coated with stainless lacquer so that no metal powder will be removed from the interior of the core.

The implemented coil has 200 windings with a mean field line length 39.9 cm. From the equations mentioned above, a needed current of 4.6 A is needed to generate a 20 mT strong magnetic field within the air gap. This value is checked with a gaussmeter and the result is that a current of 12.7 A is needed to generate the desired magnetic field. This difference could result from the fact that the air gap is too wide so that the magnetic field lines will not go straight through the gap.

In order to generate the desired current of 12.7 A Signal Generator Rigol DG1022 is connected to a power amplifier AE Techron 7724. For an optimal output the resistance of source and load have to be matched. At a frequency of 500 Hz, the inductance of the coil is measured to be LTx = 1.95 mH with an equivalent serial resistance of 340 m . The desired load resistance of the amplifier is given to be 8 Ohm [6]. The adjustment is made by an impedance converter, which is realized by parallel and series circuits of capacities. Fig. 3 shows the circuit of the impedance converter. In order to adapt the source and load resistance to each other, the values of the capacities must be calculated. The result of the calculation for the parallel capacity Cp and the series capacity Cs is then

(5)Cs=71.18μFandCp=192.45μF.
Figure 3 Circuit of the impedance converter.
Figure 3

Circuit of the impedance converter.

Since one can buy capacitors only in terms of the E-series, a standardized sequence of characteristic values of electrical components, the impedance matching is realized with the following capacitors

(6)Cs=68μFandCp=220μF.

These capacitance difference shifts both the resonance frequency and load. As the amplifier can handle these small differences the chosen capacitors were used for the implementation.

2.4 Separation process

Once the column is placed in the air gap a sinusoidal signal of 500 Hz with a field strength of 20 mT is applied. To avoid changes of the field strength current and voltage of the system can be controlled on an oscilloscope. When the field amplitude is stably reached, one pours 8 mL of a nanoparticle suspension into the column. Subsequently, 8 mL of distilled water are added to the column and the washout is collected in a sample bottle. This rinsing procedure is repeated four to six times. After that the field is switched off, before the remaining devices can be turned off. In the last step the column is rinsed out a final time and the eluate is collected again.

3 Results

For the quality of imaging with MPI, the core diameter is crucial, which should be as consistent as possible. This parameter is measured with the Magnetic Particle Spectrometer (MPS), which is described below. Furthermore the finished construction is provided with a safety enclosure and is shown in Fig. 5.

3.1 Magnetic particle spectrometer

Magnetic Particle Spectroscopy has been developed as a supporting method for evaluating the properties of magnetic nanoparticle tracers for MPI. It was demonstrated that one is able to reconstruct the core size distribution from the measured MPS spectrum [8]. MPS is basically a zero-dimensional MPI scanner. It consists of one drive field coil and one receive coil. In contrast to a MPI scanner, no gradient field is applied. Thus, all particles are subjected to the same oscillation field. The magnetization response is then picked up by an receive coil and transformed into frequency space to get the harmonic spectrum. By using a mathematical model, that describes the signal chain and the magnetization behaviour of the particles, it is possible to estimate the particle core size distribution by means of curve fitting the model to the measured signal spectrum. [7] Fig. 4 shows the core size distribution after a separation process.

Figure 4 Particle size distribution after separation with a recreated separation column measured with MPS.
Figure 4

Particle size distribution after separation with a recreated separation column measured with MPS.

Figure 5 Constructed device for magnetic separation with a safety enclosure.
Figure 5

Constructed device for magnetic separation with a safety enclosure.

4 Discussion

In this work we discussed the construction of a simple device for magnetic separation of SPIONs. Considering the particle size distribution in Fig. 4 it can be seen that the particles of the first rinsing have the largest average core diameter (19 nm) and the particles of the residue the smallest one (11 nm). Considering the remaining curves, it is noticeable that the maximum of the particle size distribution moves with each additional rinsing a little further to lower diameters. This result contraindicate the original separation theory.

One reason that the particles are not separated in a particular order might be that the pressure exerted by the distilled water in the column on the particles is too high and no particles are held by the magnetic field so that they are consequently pressed out of the column. Further results with other nanoparticle suspensions have shown that the particles are separated, but there is no particular separation order. Summing up it can be said that the separation with the recreated column is a promising approach for magnetic separation. Other column types and field strength as well as frequencies can easily be tested to gain more detailed information about the exact mechanism behind the separation.

Acknowledgment

The authors acknowledge the financial support by the Federal Ministry of Education and Research, Germany (BMBF): 13GW0069A.

Author's Statement

  1. Conflict of interest: Authors state no conflict of interest. Material and Methods: Informed consent: Informed consent has been obtained from all individuals included in this study. Ethical approval: The research related to human use has been complied with all the relevant national regulations, institutional policies and in accordance the tenets of the Helsinki Declaration, and has been approved by the authors’ institutional review board or equivalent committee.

References

[1] B. Gleich and J. Weizenecker, Tomographic imaging using the nonlinear response of magnetic particles. In: Nature . Vol. 435, 2005, pp.1214-1217, 10.1038/nature03808Search in Google Scholar PubMed

[2] T. M. Buzug et al.: Magnetic Particle Imaging: Introduction to Imaging and Hardware Realization. In: Z Med Phys Vol. 22, 2012, pp. 323-334, 10.1016/j.zemedi.2012.07.004Search in Google Scholar PubMed

[3] H. Bannwarth et al.: Basiswissen Physik, Chemie und Biochemie. Springer Vieweg, 2014, pp. 57-5910.1007/978-3-642-36635-2Search in Google Scholar

[4] W. Plassmann: Handbuch Elektrotechnik. Springer Vieweg, 2013, pp. 252-287Search in Google Scholar

[5] MICROMENTALS, Datenblatt, www.micromentals.com, Last checked: 12.03.2015Search in Google Scholar

[6] AE TECHRON, Datenblatt, http://www.aetechron.com/pdf/7224specsheet.pdf, Last checked: 12.03.2015Search in Google Scholar

[7] T. Wawrzik et al.: Perspectives of Magnetic Particle Spectroscopy for Magnetic Nanoparticle Characterization. Springer Proceedings in Physics, Vol. 140, 2012, pp 41-4510.1007/978-3-642-24133-8_7Search in Google Scholar

[8] S. Biederer et al.: Magnetization Response Spectroscopy of Superparamagnetic Nanoparticles for Magnetic Particle Imaging Journal of Physics D: Applied Physics, Vol. 42, 2009, pp 20500710.1088/0022-3727/42/20/205007Search in Google Scholar

Published Online: 2015-9-12
Published in Print: 2015-9-1

© 2015 by Walter de Gruyter GmbH, Berlin/Boston

This article is distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Articles in the same Issue

  1. Research Article
  2. Development and characterization of superparamagnetic coatings
  3. Research Article
  4. The development of an experimental setup to measure acousto-electric interaction signal
  5. Research Article
  6. Stability analysis of ferrofluids
  7. Research Article
  8. Investigation of endothelial growth using a sensors-integrated microfluidic system to simulate physiological barriers
  9. Research Article
  10. Energy harvesting for active implants: powering a ruminal pH-monitoring system
  11. Research Article
  12. New type of fluxgate magnetometer for the heart’s magnetic fields detection
  13. Research Article
  14. Field mapping of ballistic pressure pulse sources
  15. Research Article
  16. Development of a new homecare sleep monitor using body sounds and motion tracking
  17. Research Article
  18. Noise properties of textile, capacitive EEG electrodes
  19. Research Article
  20. Detecting phase singularities and rotor center trajectories based on the Hilbert transform of intraatrial electrograms in an atrial voxel model
  21. Research Article
  22. Spike sorting: the overlapping spikes challenge
  23. Research Article
  24. Separating the effect of respiration from the heart rate variability for cases of constant harmonic breathing
  25. Research Article
  26. Locating regions of arrhythmogenic substrate by analyzing the duration of triggered atrial activities
  27. Research Article
  28. Combining different ECG derived respiration tracking methods to create an optimal reconstruction of the breathing pattern
  29. Research Article
  30. Atrial and ventricular signal averaging electrocardiography in pacemaker and cardiac resynchronization therapy
  31. Research Article
  32. Estimation of a respiratory signal from a single-lead ECG using the 4th order central moments
  33. Research Article
  34. Compressed sensing of multi-lead ECG signals by compressive multiplexing
  35. Research Article
  36. Heart rate monitoring in ultra-high-field MRI using frequency information obtained from video signals of the human skin compared to electrocardiography and pulse oximetry
  37. Research Article
  38. Synchronization in wireless biomedical-sensor networks with Bluetooth Low Energy
  39. Research Article
  40. Automated classification of stages of anaesthesia by populations of evolutionary optimized fuzzy rules
  41. Research Article
  42. Effects of sampling rate on automated fatigue recognition in surface EMG signals
  43. Research Article
  44. Closed-loop transcranial alternating current stimulation of slow oscillations
  45. Research Article
  46. Cardiac index in atrio- and interventricular delay optimized cardiac resynchronization therapy and cardiac contractility modulation
  47. Research Article
  48. The role of expert evaluation for microsleep detection
  49. Research Article
  50. The impact of baseline wander removal techniques on the ST segment in simulated ischemic 12-lead ECGs
  51. Research Article
  52. Metal artifact reduction by projection replacements and non-local prior image integration
  53. Research Article
  54. A novel coaxial nozzle for in-process adjustment of electrospun scaffolds’ fiber diameter
  55. Research Article
  56. Processing of membranes for oxygenation using the Bellhouse-effect
  57. Research Article
  58. Inkjet printing of viable human dental follicle stem cells
  59. Research Article
  60. The use of an icebindingprotein out of the snowflea Hypogastrura harveyi as a cryoprotectant in the cryopreservation of mesenchymal stem cells
  61. Research Article
  62. New NIR spectroscopy based method to determine ischemia in vivo in liver – a first study on rats
  63. Research Article
  64. QRS and QT ventricular conduction times and permanent pacemaker therapy after transcatheter aortic valve implantation
  65. Research Article
  66. Adopting oculopressure tonometry as a transient in vivo rabbit glaucoma model
  67. Research Article
  68. Next-generation vision testing: the quick CSF
  69. Research Article
  70. Improving tactile sensation in laparoscopic surgery by overcoming size restrictions
  71. Research Article
  72. Design and control of a 3-DOF hydraulic driven surgical instrument
  73. Research Article
  74. Evaluation of endourological tools to improve the diagnosis and therapy of ureteral tumors – from model development to clinical application
  75. Research Article
  76. Frequency based assessment of surgical activities
  77. Research Article
  78. “Hands free for intervention”, a new approach for transoral endoscopic surgery
  79. Research Article
  80. Pseudo-haptic feedback in medical teleoperation
  81. Research Article
  82. Feasibility of interactive gesture control of a robotic microscope
  83. Research Article
  84. Towards structuring contextual information for workflow-driven surgical assistance functionalities
  85. Research Article
  86. Towards a framework for standardized semantic workflow modeling and management in the surgical domain
  87. Research Article
  88. Closed-loop approach for situation awareness of medical devices and operating room infrastructure
  89. Research Article
  90. Kinect based physiotherapy system for home use
  91. Research Article
  92. Evaluating the microsoft kinect skeleton joint tracking as a tool for home-based physiotherapy
  93. Research Article
  94. Integrating multimodal information for intraoperative assistance in neurosurgery
  95. Research Article
  96. Respiratory motion tracking using Microsoft’s Kinect v2 camera
  97. Research Article
  98. Using smart glasses for ultrasound diagnostics
  99. Research Article
  100. Measurement of needle susceptibility artifacts in magnetic resonance images
  101. Research Article
  102. Dimensionality reduction of medical image descriptors for multimodal image registration
  103. Research Article
  104. Experimental evaluation of different weighting schemes in magnetic particle imaging reconstruction
  105. Research Article
  106. Evaluation of CT capability for the detection of thin bone structures
  107. Research Article
  108. Towards contactless optical coherence elastography with acoustic tissue excitation
  109. Research Article
  110. Development and implementation of algorithms for automatic and robust measurement of the 2D:4D digit ratio using image data
  111. Research Article
  112. Automated high-throughput analysis of B cell spreading on immobilized antibodies with whole slide imaging
  113. Research Article
  114. Tissue segmentation from head MRI: a ground truth validation for feature-enhanced tracking
  115. Research Article
  116. Video tracking of swimming rodents on a reflective water surface
  117. Research Article
  118. MR imaging of model drug distribution in simulated vitreous
  119. Research Article
  120. Studying the extracellular contribution to the double wave vector diffusion-weighted signal
  121. Research Article
  122. Artifacts in field free line magnetic particle imaging in the presence of inhomogeneous and nonlinear magnetic fields
  123. Research Article
  124. Introducing a frequency-tunable magnetic particle spectrometer
  125. Research Article
  126. Imaging of aortic valve dynamics in 4D OCT
  127. Research Article
  128. Intravascular optical coherence tomography (OCT) as an additional tool for the assessment of stent structures
  129. Research Article
  130. Simple concept for a wide-field lensless digital holographic microscope using a laser diode
  131. Research Article
  132. Intraoperative identification of somato-sensory brain areas using optical imaging and standard RGB camera equipment – a feasibility study
  133. Research Article
  134. Respiratory surface motion measurement by Microsoft Kinect
  135. Research Article
  136. Improving image quality in EIT imaging by measurement of thorax excursion
  137. Research Article
  138. A clustering based dual model framework for EIT imaging: first experimental results
  139. Research Article
  140. Three-dimensional anisotropic regularization for limited angle tomography
  141. Research Article
  142. GPU-based real-time generation of large ultrasound volumes from freehand 3D sweeps
  143. Research Article
  144. Experimental computer tomograph
  145. Research Article
  146. US-tracked steered FUS in a respiratory ex vivo ovine liver phantom
  147. Research Article
  148. Contribution of brownian rotation and particle assembly polarisation to the particle response in magnetic particle spectrometry
  149. Research Article
  150. Preliminary investigations of magnetic modulated nanoparticles for microwave breast cancer detection
  151. Research Article
  152. Construction of a device for magnetic separation of superparamagnetic iron oxide nanoparticles
  153. Research Article
  154. An IHE-conform telecooperation platform supporting the treatment of dementia patients
  155. Research Article
  156. Automated respiratory therapy system based on the ARDSNet protocol with systemic perfusion control
  157. Research Article
  158. Identification of surgical instruments using UHF-RFID technology
  159. Research Article
  160. A generic concept for the development of model-guided clinical decision support systems
  161. Research Article
  162. Evaluation of local alterations in femoral bone mineral density measured via quantitative CT
  163. Research Article
  164. Creating 3D gelatin phantoms for experimental evaluation in biomedicine
  165. Research Article
  166. Influence of short-term fixation with mixed formalin or ethanol solution on the mechanical properties of human cortical bone
  167. Research Article
  168. Analysis of the release kinetics of surface-bound proteins via laser-induced fluorescence
  169. Research Article
  170. Tomographic particle image velocimetry of a water-jet for low volume harvesting of fat tissue for regenerative medicine
  171. Research Article
  172. Wireless medical sensors – context, robustness and safety
  173. Research Article
  174. Sequences for real-time magnetic particle imaging
  175. Research Article
  176. Speckle-based off-axis holographic detection for non-contact photoacoustic tomography
  177. Research Article
  178. A machine learning approach for planning valve-sparing aortic root reconstruction
  179. Research Article
  180. An in-ear pulse wave velocity measurement system using heart sounds as time reference
  181. Research Article
  182. Measuring different oxygenation levels in a blood perfusion model simulating the human head using NIRS
  183. Research Article
  184. Multisegmental fusion of the lumbar spine a curse or a blessing?
  185. Research Article
  186. Numerical analysis of the biomechanical complications accompanying the total hip replacement with NANOS-Prosthetic: bone remodelling and prosthesis migration
  187. Research Article
  188. A muscle model for hybrid muscle activation
  189. Research Article
  190. Mathematical, numerical and in-vitro investigation of cooling performance of an intra-carotid catheter for selective brain hypothermia
  191. Research Article
  192. An ideally parameterized unscented Kalman filter for the inverse problem of electrocardiography
  193. Research Article
  194. Interactive visualization of cardiac anatomy and atrial excitation for medical diagnosis and research
  195. Research Article
  196. Virtualizing clinical cases of atrial flutter in a fast marching simulation including conduction velocity and ablation scars
  197. Research Article
  198. Mesh structure-independent modeling of patient-specific atrial fiber orientation
  199. Research Article
  200. Accelerating mono-domain cardiac electrophysiology simulations using OpenCL
  201. Research Article
  202. Understanding the cellular mode of action of vernakalant using a computational model: answers and new questions
  203. Research Article
  204. A java based simulator with user interface to simulate ventilated patients
  205. Research Article
  206. Evaluation of an algorithm to choose between competing models of respiratory mechanics
  207. Research Article
  208. Numerical simulation of low-pulsation gerotor pumps for use in the pharmaceutical industry and in biomedicine
  209. Research Article
  210. Numerical and experimental flow analysis in centifluidic systems for rapid allergy screening tests
  211. Research Article
  212. Biomechanical parameter determination of scaffold-free cartilage constructs (SFCCs) with the hyperelastic material models Yeoh, Ogden and Demiray
  213. Research Article
  214. FPGA controlled artificial vascular system
  215. Research Article
  216. Simulation based investigation of source-detector configurations for non-invasive fetal pulse oximetry
  217. Research Article
  218. Test setup for characterizing the efficacy of embolic protection devices
  219. Research Article
  220. Impact of electrode geometry on force generation during functional electrical stimulation
  221. Research Article
  222. 3D-based visual physical activity assessment of children
  223. Research Article
  224. Realtime assessment of foot orientation by Accelerometers and Gyroscopes
  225. Research Article
  226. Image based reconstruction for cystoscopy
  227. Research Article
  228. Image guided surgery innovation with graduate students - a new lecture format
  229. Research Article
  230. Multichannel FES parameterization for controlling foot motion in paretic gait
  231. Research Article
  232. Smartphone supported upper limb prosthesis
  233. Research Article
  234. Use of quantitative tremor evaluation to enhance target selection during deep brain stimulation surgery for essential tremor
  235. Research Article
  236. Evaluation of adhesion promoters for Parylene C on gold metallization
  237. Research Article
  238. The influence of metallic ions from CoCr28Mo6 on the osteogenic differentiation and cytokine release of human osteoblasts
  239. Research Article
  240. Increasing the visibility of thin NITINOL vascular implants
  241. Research Article
  242. Possible reasons for early artificial bone failure in biomechanical tests of ankle arthrodesis systems
  243. Research Article
  244. Development of a bending test procedure for the characterization of flexible ECoG electrode arrays
  245. Research Article
  246. Tubular manipulators: a new concept for intracochlear positioning of an auditory prosthesis
  247. Research Article
  248. Investigation of the dynamic diameter deformation of vascular stents during fatigue testing with radial loading
  249. Research Article
  250. Electrospun vascular grafts with anti-kinking properties
  251. Research Article
  252. Integration of temperature sensors in polyimide-based thin-film electrode arrays
  253. Research Article
  254. Use cases and usability challenges for head-mounted displays in healthcare
  255. Research Article
  256. Device- and service profiles for integrated or systems based on open standards
  257. Research Article
  258. Risk management for medical devices in research projects
  259. Research Article
  260. Simulation of varying femoral attachment sites of medial patellofemoral ligament using a musculoskeletal multi-body model
  261. Research Article
  262. Does enhancing consciousness for strategic planning processes support the effectiveness of problem-based learning concepts in biomedical education?
  263. Research Article
  264. SPIO processing in macrophages for MPI: The breast cancer MPI-SNLB-concept
  265. Research Article
  266. Numerical simulations of airflow in the human pharynx of OSAHS patients
Downloaded on 7.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/cdbme-2015-0076/html
Scroll to top button