Home The impact of baseline wander removal techniques on the ST segment in simulated ischemic 12-lead ECGs
Article Open Access

The impact of baseline wander removal techniques on the ST segment in simulated ischemic 12-lead ECGs

  • N.A. Pilia EMAIL logo , G. Lenis , A. Loewe , W.H.W. Schulze and O. Dössel
Published/Copyright: September 12, 2015

Abstract

Baseline wander removal is one important part of electrocardiogram (ECG) filtering. This can be achieved by many different approaches. This work investigates the influence of three different baseline wander removal techniques on ST changes. The chosen filters were phase-free Butterworth filtering, median filtering and baseline correction with cubic spline interpolation. 289 simulated ECGs containing ischemia were used to determine the influence of these filtering processes on the ST segment. Synthetic baseline wander and offsets were added to the simulated signals. All methods proved to be good approaches by removing most of the baseline wander in all signals. Correlation coefficients between the original signals and the filtered signals were greater than 0.93 for all ECGs. Cubic spline interpolation performed best regarding the preservation of the ST segment amplitude change when compared to the original signal. The approach modified the ST segment by 0.10 mV±0.06 mV at elevated K points. Median filtering introduced a variation of 0.33 mV±0.29 mV, Butterworth filtering reached 0.16 mV±0.14 mV at elevated K points. Thus, all methods manipulate the ST segment.

1 Introduction

Filtering is a standard signal processing method that is used regularly in clinical routine. Biosignals are typically disturbed by many kinds of interference. Although application of filters seems to be a matter of course, the signals can be modified by filtering enormously. Regarding filtering of the electrocardiogram (ECG), several publications focus on the influence of this process on the part of interest of the signal to be filtered [1]. Especially during diagnostic procedures, filter parameters are chosen very carefully in order not to remove any interesting part of the ECG for diagnosis. For example, ischemic areas in the heart can yield morphological change of the ST segment in the ECG [2]. Such changes need to be preserved after filtering to guarantee the physician an undisturbed signal that still includes all the relevant facts.

In this work, the influence of baseline wander filtering methods are evaluated using simulated ECG data with added synthetic artifacts.

2 Methods

2.1 Data used in this study

Data were used from a previous simulation study [3]. At this place, a short summary of the data generation is given: A cellular automaton was parameterized with action potentials from a monodomain simulation using an ischemia-adapted ten Tusscher model and a monodomain solver [4]. Several ischemia setups were established, each ischemic setup taking 17 AHA segments in the left ventricle into account with a different sizes of the ischemic region. These were applied to the anatomical model of the Visible Man. A 12-channel ECG was extracted from the forward calculated body surface potentials for each lead yielding one QRS complex and the T wave. The sampling rate was 500 Hz. The data consisted of both signals with ST change and electrically silent ischemia. An ischemia condition (IC) proposed in [2] was applied in this work. Signals exceeding a threshold set to 0.99 mV at s specific point in the ST segment were marked as signals with ST change.

2.2 Extending one beat ECG signals

As stated before, each set of ECG signals for a specific ischemic setup consisted of just one beat with a length of approximately half a second. Since baseline wander is mostly located at frequencies between 0 Hz and 0.5 Hz [5], a signal of at least two seconds is needed to include sufficient information in this frequency band. Therefore, each single signal was extended to a total length of 60 s (see Figure 1). To account for the variability in the RR intervals [6], beat dependent varying numbers of samples were added before and after the original signal. However, no morphological changes were applied to the original beats.

Figure 1 An extended simulated beat showing its ST segment at approximately 0 mV.
Figure 1

An extended simulated beat showing its ST segment at approximately 0 mV.

Figure 2 Spectrum of the baseline signal b (t) calculated with the Fast Fourier Transform.
Figure 2

Spectrum of the baseline signal b (t) calculated with the Fast Fourier Transform.

2.3 Modelling baseline wander and offsets

In a first step, a model accounting for baseline wander and an offset was introduced. Baseline wander originates from several phenomena, e.g. respiration. The frequency fraction is located between 0 Hz and 0.5 Hz [5]. A simple model was used to represent this kind of interference:

(1)bp(t)=k=050cos(2πk0.01Hzt+Φp)

bp(t) describes the baseline noise and offset (k = 0). Φp is a random phase shift applied to each individual cosine. The phase shift is uniformely distributed in the interval [0; 2π). The number of repetitions P was chosen to 50, therefore, p = 1, ..., P. The signal bp(t) and its spectrum |Bp(f)| are shown in Figures 3 and 2.

An additive model was used. Therefore, the disturbed ECG signal sd(t) consisted of the sum of the baseline wander model and the undisturbed signal su(t):

(2)sd(t)=su(t)+Abp(t)

The constant A ∈ ℝ is an amplitude scaling factor used to increase or decrease the influence of the baseline wander on the ECG signal. A was chosen such that the signal to noise ratio was -3 dB. The results in time and frequency domain are shown in Figures 3 and 4. The effect of the added baseline wander interference is especially visible in the frequency band between 0 Hz and 0.5 Hz. Furthermore, peaks at 1 Hz and its harmonics could be observed. These result from the fixed heart rate of 60 bpm.

Figure 3 Result of the additive noise model sd in time domain.
Figure 3

Result of the additive noise model sd in time domain.

Figure 4 Spectrum of sd calculated with the Fast Fourier Transform.
Figure 4

Spectrum of sd calculated with the Fast Fourier Transform.

2.4 Determination of ST changes

Physicians often look at the J point to evaluate a change of the ST segment. This point, however, is very hard to determine automatically since there is no hard decision rule on how to find it. Several approaches have been made to find this specific point, e.g. by estimating its position at a fixed time after the R peak [7]. Obviously, this does not account for individual changes of the electrical conduction of the heart. Therefore, in [2] a new method was introduced based on a more dynamic feature: the K point (KP). KP describes the minimum of the envelope signal accounting for all leads in an ECG:

(3)tk=argmint(maxl|s(l,t)|),

where tk is the temporal position of the KP, s is a set of discrete lead signals of an ECG and l is the lead of the ECG signal. The corresponding amplitude at KP (KPA) can be found by replacing arg min by min. This method was chosen to account for changes that do not occur at a specific instant of time. The IC was investigated at the K point.

2.5 Evaluated filters

Three different approaches for baseline wander removal were investigated regarding their influence on the signal:

  1. a second order infinite impulse response filter of type Butterworth with cutoff frequency at 0.5 Hz and phase free filtering operation resulting in an effective order of four (in the following BW).

  2. a combination of two median filters (as proposed in [8], in the following MED).

  3. a cubic spline baseline correction (as proposed in [9], in the following SPL).

This selection comprised for linear as well as non-linear filtering techniques.

2.6 Performance indices

To evaluate the influence of the filters, several methods were used. First, the similarity between the filtered noisy ECG signal and the original signal was evaluated. This was done by calculating the correlation coefficient (CORR). Furthermore, the l_operator (LOPA) as proposed in [10] was calculated:

(4)LOPA{x(t),t(t)}=E{x(t)y(t)}E{x2(t)+E{y2(t)}

In contrast to CORR, LOPA accounts for offsets and scaling of any of the two signals.

In addition, the absolute value of the change of the amplitude at the KP (KPAC) was determined. The latter analyses were conducted twice: once for all lead signals, and once for the subset of leads meeting the IC.

3 Results

A set of 289 extended and disturbed 12-lead ECGs was evaluated. Each resulting signal was filtered by all methods separately. To minimize the influence of the random phase shifts Фp in (1), all experiments were performed 50 times with different random values and averaged. These results were averaged over all leads. Mean and standard deviation (std) were calculated for the 289 previously averaged values. The results regarding the introduced performance measures are shown in Table 1 for the whole ECG data set and in Table 2 just for the ECG channels meeting the IC.

Taking CORR and LOPA into account, the similarity to the noise-free signal was best for MED and BW. Thus, most of the baseline interference was removed. SPL performed worst, but values were still greater than 0.93. All three methods showed small mean KPAC. MED and SPL showed higher std than BW making them less robust methods.

Table 1

Results (mean±std) for the whole dataset. KPAC is given in mV.

MeasureUnfilteredMEDBWSPL
CORR0.58±0.000.95±0.090.96±0.000.93±0.00
LOPA0.51±0.020.93±0.130.92±0.040.93±0.01
KPAC0.33±0.210.08±0.140.10±0.070.07±0.05
Table 2

Results (mean±std) for the channels meeting the IC. KPAC is given in mV.

MeasureUnfilteredMEDBWSPL
CORR0.58±0.000.83±0.130.96±0.000.93±0.00
LOPA0.53±0.030.74±0.210.90±0.060.93±0.01
KPAC0.42±0.260.33±0.290.16±0.140.10±0.06

The 104 channels, which met the IC, performed best for SPL (see Table 2). The other methods had a large influence on KPA with values up to 1.89 mV. Correlation based methods were on a high level for SPL and BW, but clearly smaller for MED.

4 Discussion

As most signal channels did not meet the IC, the results for KPAC in Table 1 could not sufficiently substantiate the ST deviation preservation. So, small deviations did only underline the functionality of the filters, as the correlation based methods did that, too.

However, the signals used for Table 2 allowed the evaluation of the influence of the filters on ST deviation. In this case, BW and MED performed worst. Nevertheless, high stds reveal large differences in the results. On the other hand, SPL reached indeed a small std, but the average was exceeding the threshold set for ST changes. Therefore, each method seemed to manipulate the KPA. This is problematic since physicians could interpret such a difference as a missing ST change although it was originally present (see Figure 5).

Figure 5 Typical result after the filtering process. MED lowered the amplitude at KP to almost 0 mV. ORG: unfiltered extended noise-free signal.
Figure 5

Typical result after the filtering process. MED lowered the amplitude at KP to almost 0 mV. ORG: unfiltered extended noise-free signal.

In this study, a baseline wander model consisting of different cosine functions was used. This predicts that some filters could have a crucial impact on the ST segment.

5 Limitations and prospects

The set of filtering techniques that were used in this study was limited to three. Even though there is a vast field of different methods, it was only possible to evaluate a part of them in this work. In future work, the set should be extended to search for an optimal method and optimal filtering parameters.

Although an influence of the filters on the ST segment could be demonstrated, the relation between signal and filtering method has to be investigated in future work to exclude further possible influencing factors.

As the proposed noise model only accounts for baseline wander, possible influences of other noise types cannot be evaluated. Future studies should deal with an extended noise model concerning e.g. for broadband noise, powerline interference, etc.

At last, one should keep in mind, that signals used in this study were generated in simulations with early ischemia. Although covered with some model uncertainties, it was possible to get pure undisturbed ST deviations caused by ischemia.

Author’s Statement

  1. Conflict of interest: Authors state no conflict of interest. Material and Methods: Informed consent: Informed consent has been obtained from all individuals included in this study. Ethical approval: The research related to human use has been complied with all the relevant national regulations, institutional policies and in accordance the tenets of the Helsinki Declaration, and has been approved by the authors’ institutional review board or equivalent committee.

References

[1] Luo S, Paul Johnston P. A review of electrocardiogram filtering. Journal of Electrocardiology 2010; 43(6): 486-496.10.1016/j.jelectrocard.2010.07.007Search in Google Scholar

[2] Loewe A, Schulze WHW, Jiang Y, Wilhelms M, Luik A, Dössel O, Seemann G. ECG-based detection of early myocardial ischemia in a computational model: impact of additional electrodes, optimal placement, and a new feature for ST deviation. BioMed Research International 2015: Article ID 530352, in press.10.1155/2015/530352Search in Google Scholar

[3] Loewe A, Schulze WHW, Jiang Y, Wilhelms M, Dössel O. Determination of optimal electrode positions of a wearable ECG monitoring system for detection of myocardial ischemia: a simulation study. Computing in Cardiology 2011; 38: 741-744.Search in Google Scholar

[4] Weiss DL, Ifland M, Sachse FB, Seemann G, Dössel O. Modeling of cardiac ischemia in human myocytes and tissue including spatiotemporal electrophysiological variations. Biomedizinische Technik 2009; 54(3): 107-125.10.1515/BMT.2009.016Search in Google Scholar

[5] Sörnmo L, Laguna P. Electrocardiogram (ECG) signal processing. Wiley Encyclopedia of Biomedical Engineering 2006.10.1002/9780471740360.ebs1482Search in Google Scholar

[6] Stauss HM. Heart rate variability. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 2003; 285(5): R927-R931.10.1152/ajpregu.00452.2003Search in Google Scholar

[7] Maglaveras N, Stamkopoulos T, Diamantaras K, Pappas C, Strintzis M. ECG pattern recognition and classification using non-linear transformations and neural networks: a review. International journal of medical informatics 1998; 52(1): 191-208.10.1016/S1386-5056(98)00138-5Search in Google Scholar

[8] De Chazal P, Heneghan C, Sheridan E, Reilly R, Nolan P, O’Malley M. Automated processing of the single-lead electrocardiogram for the detection of obstructive sleep apnoea. IEEE Transactions on Biomedical Engineering 2003; 50(6): 686-696.10.1109/TBME.2003.812203Search in Google Scholar

[9] Meyer CR, Keiser HN. Electrocardiogram baseline noise estimation and removal using cubic splines and state-space computation techniques. Computers and Biomedical Research 1977; 10(5): 459-470.10.1016/0010-4809(77)90021-0Search in Google Scholar

[10] Lenis G, Lutz Y, Seemann G, García-Alberola A, Rojo-Álvarez JL, Barquero-Peréz O, Gil E, Dössel O. Post extrasystolic T wave change in subjects with structural healthy ventricles – measurement and simulation. Computing in Cardiology 2014; 41: 1069-1072.Search in Google Scholar

Published Online: 2015-9-12
Published in Print: 2015-9-1

© 2015 by Walter de Gruyter GmbH, Berlin/Boston

This article is distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Articles in the same Issue

  1. Research Article
  2. Development and characterization of superparamagnetic coatings
  3. Research Article
  4. The development of an experimental setup to measure acousto-electric interaction signal
  5. Research Article
  6. Stability analysis of ferrofluids
  7. Research Article
  8. Investigation of endothelial growth using a sensors-integrated microfluidic system to simulate physiological barriers
  9. Research Article
  10. Energy harvesting for active implants: powering a ruminal pH-monitoring system
  11. Research Article
  12. New type of fluxgate magnetometer for the heart’s magnetic fields detection
  13. Research Article
  14. Field mapping of ballistic pressure pulse sources
  15. Research Article
  16. Development of a new homecare sleep monitor using body sounds and motion tracking
  17. Research Article
  18. Noise properties of textile, capacitive EEG electrodes
  19. Research Article
  20. Detecting phase singularities and rotor center trajectories based on the Hilbert transform of intraatrial electrograms in an atrial voxel model
  21. Research Article
  22. Spike sorting: the overlapping spikes challenge
  23. Research Article
  24. Separating the effect of respiration from the heart rate variability for cases of constant harmonic breathing
  25. Research Article
  26. Locating regions of arrhythmogenic substrate by analyzing the duration of triggered atrial activities
  27. Research Article
  28. Combining different ECG derived respiration tracking methods to create an optimal reconstruction of the breathing pattern
  29. Research Article
  30. Atrial and ventricular signal averaging electrocardiography in pacemaker and cardiac resynchronization therapy
  31. Research Article
  32. Estimation of a respiratory signal from a single-lead ECG using the 4th order central moments
  33. Research Article
  34. Compressed sensing of multi-lead ECG signals by compressive multiplexing
  35. Research Article
  36. Heart rate monitoring in ultra-high-field MRI using frequency information obtained from video signals of the human skin compared to electrocardiography and pulse oximetry
  37. Research Article
  38. Synchronization in wireless biomedical-sensor networks with Bluetooth Low Energy
  39. Research Article
  40. Automated classification of stages of anaesthesia by populations of evolutionary optimized fuzzy rules
  41. Research Article
  42. Effects of sampling rate on automated fatigue recognition in surface EMG signals
  43. Research Article
  44. Closed-loop transcranial alternating current stimulation of slow oscillations
  45. Research Article
  46. Cardiac index in atrio- and interventricular delay optimized cardiac resynchronization therapy and cardiac contractility modulation
  47. Research Article
  48. The role of expert evaluation for microsleep detection
  49. Research Article
  50. The impact of baseline wander removal techniques on the ST segment in simulated ischemic 12-lead ECGs
  51. Research Article
  52. Metal artifact reduction by projection replacements and non-local prior image integration
  53. Research Article
  54. A novel coaxial nozzle for in-process adjustment of electrospun scaffolds’ fiber diameter
  55. Research Article
  56. Processing of membranes for oxygenation using the Bellhouse-effect
  57. Research Article
  58. Inkjet printing of viable human dental follicle stem cells
  59. Research Article
  60. The use of an icebindingprotein out of the snowflea Hypogastrura harveyi as a cryoprotectant in the cryopreservation of mesenchymal stem cells
  61. Research Article
  62. New NIR spectroscopy based method to determine ischemia in vivo in liver – a first study on rats
  63. Research Article
  64. QRS and QT ventricular conduction times and permanent pacemaker therapy after transcatheter aortic valve implantation
  65. Research Article
  66. Adopting oculopressure tonometry as a transient in vivo rabbit glaucoma model
  67. Research Article
  68. Next-generation vision testing: the quick CSF
  69. Research Article
  70. Improving tactile sensation in laparoscopic surgery by overcoming size restrictions
  71. Research Article
  72. Design and control of a 3-DOF hydraulic driven surgical instrument
  73. Research Article
  74. Evaluation of endourological tools to improve the diagnosis and therapy of ureteral tumors – from model development to clinical application
  75. Research Article
  76. Frequency based assessment of surgical activities
  77. Research Article
  78. “Hands free for intervention”, a new approach for transoral endoscopic surgery
  79. Research Article
  80. Pseudo-haptic feedback in medical teleoperation
  81. Research Article
  82. Feasibility of interactive gesture control of a robotic microscope
  83. Research Article
  84. Towards structuring contextual information for workflow-driven surgical assistance functionalities
  85. Research Article
  86. Towards a framework for standardized semantic workflow modeling and management in the surgical domain
  87. Research Article
  88. Closed-loop approach for situation awareness of medical devices and operating room infrastructure
  89. Research Article
  90. Kinect based physiotherapy system for home use
  91. Research Article
  92. Evaluating the microsoft kinect skeleton joint tracking as a tool for home-based physiotherapy
  93. Research Article
  94. Integrating multimodal information for intraoperative assistance in neurosurgery
  95. Research Article
  96. Respiratory motion tracking using Microsoft’s Kinect v2 camera
  97. Research Article
  98. Using smart glasses for ultrasound diagnostics
  99. Research Article
  100. Measurement of needle susceptibility artifacts in magnetic resonance images
  101. Research Article
  102. Dimensionality reduction of medical image descriptors for multimodal image registration
  103. Research Article
  104. Experimental evaluation of different weighting schemes in magnetic particle imaging reconstruction
  105. Research Article
  106. Evaluation of CT capability for the detection of thin bone structures
  107. Research Article
  108. Towards contactless optical coherence elastography with acoustic tissue excitation
  109. Research Article
  110. Development and implementation of algorithms for automatic and robust measurement of the 2D:4D digit ratio using image data
  111. Research Article
  112. Automated high-throughput analysis of B cell spreading on immobilized antibodies with whole slide imaging
  113. Research Article
  114. Tissue segmentation from head MRI: a ground truth validation for feature-enhanced tracking
  115. Research Article
  116. Video tracking of swimming rodents on a reflective water surface
  117. Research Article
  118. MR imaging of model drug distribution in simulated vitreous
  119. Research Article
  120. Studying the extracellular contribution to the double wave vector diffusion-weighted signal
  121. Research Article
  122. Artifacts in field free line magnetic particle imaging in the presence of inhomogeneous and nonlinear magnetic fields
  123. Research Article
  124. Introducing a frequency-tunable magnetic particle spectrometer
  125. Research Article
  126. Imaging of aortic valve dynamics in 4D OCT
  127. Research Article
  128. Intravascular optical coherence tomography (OCT) as an additional tool for the assessment of stent structures
  129. Research Article
  130. Simple concept for a wide-field lensless digital holographic microscope using a laser diode
  131. Research Article
  132. Intraoperative identification of somato-sensory brain areas using optical imaging and standard RGB camera equipment – a feasibility study
  133. Research Article
  134. Respiratory surface motion measurement by Microsoft Kinect
  135. Research Article
  136. Improving image quality in EIT imaging by measurement of thorax excursion
  137. Research Article
  138. A clustering based dual model framework for EIT imaging: first experimental results
  139. Research Article
  140. Three-dimensional anisotropic regularization for limited angle tomography
  141. Research Article
  142. GPU-based real-time generation of large ultrasound volumes from freehand 3D sweeps
  143. Research Article
  144. Experimental computer tomograph
  145. Research Article
  146. US-tracked steered FUS in a respiratory ex vivo ovine liver phantom
  147. Research Article
  148. Contribution of brownian rotation and particle assembly polarisation to the particle response in magnetic particle spectrometry
  149. Research Article
  150. Preliminary investigations of magnetic modulated nanoparticles for microwave breast cancer detection
  151. Research Article
  152. Construction of a device for magnetic separation of superparamagnetic iron oxide nanoparticles
  153. Research Article
  154. An IHE-conform telecooperation platform supporting the treatment of dementia patients
  155. Research Article
  156. Automated respiratory therapy system based on the ARDSNet protocol with systemic perfusion control
  157. Research Article
  158. Identification of surgical instruments using UHF-RFID technology
  159. Research Article
  160. A generic concept for the development of model-guided clinical decision support systems
  161. Research Article
  162. Evaluation of local alterations in femoral bone mineral density measured via quantitative CT
  163. Research Article
  164. Creating 3D gelatin phantoms for experimental evaluation in biomedicine
  165. Research Article
  166. Influence of short-term fixation with mixed formalin or ethanol solution on the mechanical properties of human cortical bone
  167. Research Article
  168. Analysis of the release kinetics of surface-bound proteins via laser-induced fluorescence
  169. Research Article
  170. Tomographic particle image velocimetry of a water-jet for low volume harvesting of fat tissue for regenerative medicine
  171. Research Article
  172. Wireless medical sensors – context, robustness and safety
  173. Research Article
  174. Sequences for real-time magnetic particle imaging
  175. Research Article
  176. Speckle-based off-axis holographic detection for non-contact photoacoustic tomography
  177. Research Article
  178. A machine learning approach for planning valve-sparing aortic root reconstruction
  179. Research Article
  180. An in-ear pulse wave velocity measurement system using heart sounds as time reference
  181. Research Article
  182. Measuring different oxygenation levels in a blood perfusion model simulating the human head using NIRS
  183. Research Article
  184. Multisegmental fusion of the lumbar spine a curse or a blessing?
  185. Research Article
  186. Numerical analysis of the biomechanical complications accompanying the total hip replacement with NANOS-Prosthetic: bone remodelling and prosthesis migration
  187. Research Article
  188. A muscle model for hybrid muscle activation
  189. Research Article
  190. Mathematical, numerical and in-vitro investigation of cooling performance of an intra-carotid catheter for selective brain hypothermia
  191. Research Article
  192. An ideally parameterized unscented Kalman filter for the inverse problem of electrocardiography
  193. Research Article
  194. Interactive visualization of cardiac anatomy and atrial excitation for medical diagnosis and research
  195. Research Article
  196. Virtualizing clinical cases of atrial flutter in a fast marching simulation including conduction velocity and ablation scars
  197. Research Article
  198. Mesh structure-independent modeling of patient-specific atrial fiber orientation
  199. Research Article
  200. Accelerating mono-domain cardiac electrophysiology simulations using OpenCL
  201. Research Article
  202. Understanding the cellular mode of action of vernakalant using a computational model: answers and new questions
  203. Research Article
  204. A java based simulator with user interface to simulate ventilated patients
  205. Research Article
  206. Evaluation of an algorithm to choose between competing models of respiratory mechanics
  207. Research Article
  208. Numerical simulation of low-pulsation gerotor pumps for use in the pharmaceutical industry and in biomedicine
  209. Research Article
  210. Numerical and experimental flow analysis in centifluidic systems for rapid allergy screening tests
  211. Research Article
  212. Biomechanical parameter determination of scaffold-free cartilage constructs (SFCCs) with the hyperelastic material models Yeoh, Ogden and Demiray
  213. Research Article
  214. FPGA controlled artificial vascular system
  215. Research Article
  216. Simulation based investigation of source-detector configurations for non-invasive fetal pulse oximetry
  217. Research Article
  218. Test setup for characterizing the efficacy of embolic protection devices
  219. Research Article
  220. Impact of electrode geometry on force generation during functional electrical stimulation
  221. Research Article
  222. 3D-based visual physical activity assessment of children
  223. Research Article
  224. Realtime assessment of foot orientation by Accelerometers and Gyroscopes
  225. Research Article
  226. Image based reconstruction for cystoscopy
  227. Research Article
  228. Image guided surgery innovation with graduate students - a new lecture format
  229. Research Article
  230. Multichannel FES parameterization for controlling foot motion in paretic gait
  231. Research Article
  232. Smartphone supported upper limb prosthesis
  233. Research Article
  234. Use of quantitative tremor evaluation to enhance target selection during deep brain stimulation surgery for essential tremor
  235. Research Article
  236. Evaluation of adhesion promoters for Parylene C on gold metallization
  237. Research Article
  238. The influence of metallic ions from CoCr28Mo6 on the osteogenic differentiation and cytokine release of human osteoblasts
  239. Research Article
  240. Increasing the visibility of thin NITINOL vascular implants
  241. Research Article
  242. Possible reasons for early artificial bone failure in biomechanical tests of ankle arthrodesis systems
  243. Research Article
  244. Development of a bending test procedure for the characterization of flexible ECoG electrode arrays
  245. Research Article
  246. Tubular manipulators: a new concept for intracochlear positioning of an auditory prosthesis
  247. Research Article
  248. Investigation of the dynamic diameter deformation of vascular stents during fatigue testing with radial loading
  249. Research Article
  250. Electrospun vascular grafts with anti-kinking properties
  251. Research Article
  252. Integration of temperature sensors in polyimide-based thin-film electrode arrays
  253. Research Article
  254. Use cases and usability challenges for head-mounted displays in healthcare
  255. Research Article
  256. Device- and service profiles for integrated or systems based on open standards
  257. Research Article
  258. Risk management for medical devices in research projects
  259. Research Article
  260. Simulation of varying femoral attachment sites of medial patellofemoral ligament using a musculoskeletal multi-body model
  261. Research Article
  262. Does enhancing consciousness for strategic planning processes support the effectiveness of problem-based learning concepts in biomedical education?
  263. Research Article
  264. SPIO processing in macrophages for MPI: The breast cancer MPI-SNLB-concept
  265. Research Article
  266. Numerical simulations of airflow in the human pharynx of OSAHS patients
Downloaded on 7.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/cdbme-2015-0025/html
Scroll to top button