Home Respiratory surface motion measurement by Microsoft Kinect
Article Open Access

Respiratory surface motion measurement by Microsoft Kinect

implementation and evaluation of a clinical setup
  • J. Ortmüller EMAIL logo , T. Gauer , M. Wilms , H. Handels and R. Werner
Published/Copyright: September 12, 2015

Abstract

In radiotherapy of abdominal and thoracic tumors, respiratory motion is a problem for an accurate treatment. Most current motion compensation techniques rely on externally acquired breathing signals of the patient. The systems in clinical use usually work with 1D surface motion signals to describe internal structure respiratory motion patterns. As a 1D signal is not able to describe complex motion patterns and breathing variations, in this work the Microsoft Kinect, which can record multidimensional respiratory surface motion signals, is proposed to be used instead. For the Kinect, a clinically acceptable measurement setup is designed and Kinect measurements are compared to the Varian RPM system (clinical standard). The results show that the signals are well aligned. An additional comparison of Kinect signals from different regions of interest on the chest further reveals variations between them. This illustrates that the use of a system that provides multidimensional signals is worthwhile; the knowledge about breathing variations could be applied for optimization of current clinical workflows.

1 Introduction

Radiation therapy is – besides surgery and chemotherapy – one important component in tumor therapy. For tumors in abdominal or thoracic regions, respiratory motion is a major challenge during therapy. It leads to a movement of the tumor during the respiratory cycle up to two centimetres [1]. One way to compensate for tumor motion is to increase safety margins to cover the complete motion range. Technical solutions for motion compensation are tumor tracking [2] and gating [3]. Tumor tracking is an active process with the radiation beam following the tumor motion. Gating means that radiation is only active when the tumor is located at a predefined position window. For the use of this technique, a breathing signal from the patient is required. Similarly, breathing signals are required for reconstruction of 4D-CT data, which often form the basis of treatment planning for abdominal and thoracic tumors. There are two different kinds of breathing signals an internal or external breathing signal. An example for an internal breathing signal is the movement of the diaphragm captured with fluoroscopy imaging. By fluoroscopy imaging, the patient is exposed to extra radiation, so mostly external breathing signals are used. External signals used in clinical practise are often one-dimensional surrogate signals like spirometers, abdominal belts or the Varian RPM system. The RPM system tracks the surface motion at one certain point of the chest, and a possible change from, e.g., abdominal to thoracic breathing can not be captured. This kind of changes in respiratory motion is a problem during imaging and radiation. To describe these motion variations, it is necessary to use multidimensional breathing signals [4]. Multidimensional breathing signals can for example be acquired using range image systems, which usually work with structured light [5] (e.g. Microsoft Kinect) or with Time-of-Flight (ToF) [6]. Such systems do not need any additional marker on the surface, and it is possible to simultaneously extract signals from different surface regions.

The equipment for recording respiratory surface motion in the University Medical Center Hamburg-Eppendorf is the RPM system. In this work, a setup for recording multidimensional breathing signals with a low cost range imaging camera – here the Microsoft Kinect – is designed, evaluated and signals acquired with the Kinect are compared to the RPM system signals.

Figure 1 Depth map from a test person, acquired by the Microsoft Kinect. The colormap show the Kinect raw values. The test person is located in front of the CT on the CT couch. Areas coloured in dark red indicate that the Kinect does not receive any dot patterns; for these areas, no depth information is available.
Figure 1

Depth map from a test person, acquired by the Microsoft Kinect. The colormap show the Kinect raw values. The test person is located in front of the CT on the CT couch. Areas coloured in dark red indicate that the Kinect does not receive any dot patterns; for these areas, no depth information is available.

2 Material and methods

2.1 Hard and software equipment

2.1.1 Microsoft Kinect

2.1.1.1 Camera system

The Microsoft Kinect is a low cost camera system, which is equipped with three different devices: a colour camera, an infrared camera and an infrared projector. The infrared sensor of the Kinect has a resolution of 1200 x 960 pixels but for further processing and bandwidth limitation of the USB port the resolution is reduced to 640x480 pixels. The opening angle of the camera is 43° in vertical and 57° in horizontal. The framerate of the Kinect is 30 frames/second and the principle of the depth measurement of the sensor is structured light. The Kinect emits a infrared dot pattern that is reflected from an object in front of the camera and is captured by the infrared camera. By comparison of the received dot pattern to a reference pattern, the distance to the object is calculated. For further information see [7]. To connect the Kinect with a computer, we use the libfreenect software developed by the OpenKinect Project [8] and an in-house developed Python program. Recorded Kinect signals and captured depth maps (see Figure 1) are saved as Matlab matrices. For the signal extraction, a Matlab program is used, which averages the distance values from a predefined region of interest in every recorded time step. It is possible to select several regions of interest of the entire field of view for evaluation purposes.

2.1.1.2 Calibration of the depth measurement

To calibrate the Kinect raw disparity values draw to the real distance D of an object to the camera, the mathematical model of [7] is applied: There exists a linear relation between the inverse of the real distance D to the measured value draw of the Kinect: D–1 = a · draw + b

To determine the parameters a and b, a linear regression is performed based on a series of measurements for known object to sensor distances.

2.1.2 Varian RPM system and 4D motion platform

The Varian RPM system is an established clinical system to measure external respiratory motion signals. For measurement, a marker block with six reflective markers is placed on the patient’s surface and the movement of this block is captured in all spatial directions by an infrared camera. This infrared camera captures the reflected infrared light from the marker block. From the marker block position over the time, a 1D motion signal is calculated [9].

For a first analysis of the potential of the Kinect as a respiratory motion sensor, a 4D motion platform is used [10]. This platform is computer–controlled and able to move in all three spatial directions whereby it is possible to reproducibly simulate arbitrary motion trajectories. This motion trajectories can be simple sinusoidal trajectories or real patient trajectories, using for example an extracted RPM signal.

2.2 Study design

2.2.1 Measurement setup

In the first part of our study, the measurement setup is installed in the CT room with relation to a potential application of the Kinect measurements to reconstruction of 4D-CT data sets. The goal was to find a camera position on condition that the setup does not interfere with the clinical workflow. Thus, one important clinical restriction was to place the Kinect camera in such a way that the RPM system and signals were not influenced. Furthermore, the Kinect itself has some restrictions, which should be noted during the design of the setup: At first, the distance from the measured surface to the camera should be between 0.7 and 1 m to obtain a signal with reasonable noise ratio. A second parameter is the angle between the optical axis of the Kinect to the measured surface; large angles result in an increased fraction of reflected light from the surface to be captured by the camera. Corresponding setups for recording respiratory motion with Kinect or ToF cameras [5, 6] had also an influence on the design.

2.2.2 Experiments

At first, a Kinect calibration measurement series was performed and the calibration parameters were computed (cf. section 2.1.1.2). The second experiment was a comparison between the RPM and Kinect signals for a sinusoidal movement of the 4D motion platform and test person runs. In the third experiment, we compared Kinect signals that were extracted from different regions on the upper body of a test person, e.g. a thoracic region vs. a abdominal region.

3 Results and discussion

The general requirements for the Kinect measurement setup in the CT room were described in section 2.2.1. According to these, the Kinect was positioned centrally over the CT table. In this way, the Kinect field of view covers the whole chest of a person and the RPM system is not affected as the RPM system field of view is always below the Kinect mounting; see Figure 2. The construction is clamped to the table. The advantage of this setting is that it is not necessary to compensate for the table movement during (spiral) CT scanning. The height of the camera above the person is individually adjustable to make sure that the gantry of the CT does not interfere with the field of view of the Kinect. Test runs with this setup showed that neither the table movement or in-room lasers used for patient positioning influence the Kinect image quality.

For the Kinect calibration, depth images for 19 well-known object to sensor distances from 0.7 m to 1.22 m were acquired. The analysis of the linear fitting delivered the two calibration parameters: a = −2.74 · 10−6 and b = 0.0031. These parameters were used in the subsequent experiments for conversion from the Kinect raw disparity values to real world distance values in millimetres.

3.1 Comparison Kinect to RPM signals

A first comparison of breathing signals acquired by the Kinect and the RPM system has been conducted using the 4D motion platform. 12 sinusoidal motion trajectories in anterior-posterior (AP) direction with amplitudes from 8 to 24 mm were programmed. The comparison between the Kinect and the RPM signals revealed that they were temporally as well as regarding the measured motion amplitudes very well aligned and sufficiently capture the phantom motion (see Figure 3). The average overall amplitude difference between RPM and Kinect signals for the phantom experiments was 0.50 ± 0.35 mm (comparison of signal peak-to-peak deviations).

Figure 2 The Kinect setup implemented for this study.
Figure 2

The Kinect setup implemented for this study.

Figure 3 Comparison of Kinect and RPM signals for a sinusoidal motion phantom movement of 12 millimeter amplitude. The two signals are very well aligned.
Figure 3

Comparison of Kinect and RPM signals for a sinusoidal motion phantom movement of 12 millimeter amplitude. The two signals are very well aligned.

A similar comparison has been performed for test person measurements. Again, the RPM signal has been recorded in parallel to the Kinect. The comparison between the two signals (RPM signal; Kinect signal from the chest wall region with the RPM marker block) results in high correlation coefficients up to 0.98 and an average difference in motion amplitude of 0.92 ± 0.29 mm.

Both phantom and test person experiments therefore indicate that the Kinect has the potential to reliably capture respiratory surface motion.

3.2 Comparison of Kinect signals from different anatomical positions

A major advantage of the Kinect compared to the RPM system is the possibility to extract breathing signals from different anatomical regions by a single measurement. In this work, breathing signals from thoracic and abdominal regions of the upper part of the body were analysed. It can be observed that regions of interest (ROIs) that are close together yield almost identical signals (correlation coefficients of signals between of 0.97 and 0.99). But for regions with larger distances from another – like ROIs at the abdomen and the thorax –, the correlation coefficient decreases to 0.55. Figure 4 shows two different signals simultaneously acquired from the abdomen and the thorax of a test person for illustration purposes. The most notable difference between the two signals is their amplitude. In the first three breathing periods, the test person was asked to perform normal breathing. Then, the breathing pattern has been asked to be changed to thoracic breathing, which is observable by the strong increase of the amplitude of the signal from the thoracic region. For normal breathing, the average amplitude from all test persons for the thoracic ROI is 4.63 ± 0.78 mm; for the abdominal ROI it is 7.67 ± 0.62 mm. For forced thoracic breathing the measured motion amplitudes are 7.49 ± 1.68 mm (thorax) and 10.25 ± 1.81 mm (abdomen), respectively. A possible global phase shift between the signal from the different ROIs could not be detected. Only some specific breathing cycles exhibited a phase shift up 0.3 sec between the two signals.

Figure 4 Comparison of two Kinect signals extracted from thoracic and abdominal regions of the chest. The signal of the thoracic region has a lower motion amplitude than the signal from the abdomen – with the exception of a period of forced thoracic breathing of the test person (starting from t=13 sec).
Figure 4

Comparison of two Kinect signals extracted from thoracic and abdominal regions of the chest. The signal of the thoracic region has a lower motion amplitude than the signal from the abdomen – with the exception of a period of forced thoracic breathing of the test person (starting from t=13 sec).

4 Conclusion

In this work, we analysed the feasibility of an implementation of a clinical setup for respiratory surface motion measurement by the Microsoft Kinect. The results of the experiments indicate that the Kinect has the potential to measure respiratory motion in a clinical environment. The comparison of the signals of different chest wall regions reveal variations between the signals. This fact is important as the clinically applied RPM system is limited to the measurement of the surface movement at one single point of the chest wall; potential complex breathing pattern changes during treatment can be assumed to be insufficiently reflected by a single point.

Future investigations will focus on a detailed analysis of the variability and differences between breathing curves acquired for different regions of the chest wall and the potential influence on, e.g., 4D-CT reconstruction.

Author's Statement

  1. Conflict of interest: Authors state no conflict of interest. Informed consent: Informed consent has been obtained from all individuals included in this study. Ethical approval: The research related to human use has been complied with all the relevant national regulations, institutional policies and in accordance the tenets of the Helsinki Declaration, and has been approved by the authors’ institutional review board or equivalent committee.

References

[1] Seppenwoolde Y, Shirato H, Kitamura K, et al. Precise and real-time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy. Int J Radiat Oncol Biol Phys 2002, 53: 822–834.10.1016/S0360-3016(02)02803-1Search in Google Scholar

[2] Schweikard A, Glosser G, Bodduluri M, Murphy MJ, Adler JR. Robotic motion compensation for respiratory movement during radiosurgery. Computer Aided Surg 2000, 5: 263–277.10.3109/10929080009148894Search in Google Scholar

[3] Kubo HD, Hill BC. Respiration gated radiotherapy treatment: a technical study. Phys Med Biol 1996, 41: 83–91.10.1088/0031-9155/41/1/007Search in Google Scholar PubMed

[4] McClelland JR, Hawkes DJ, Schaeffter T, King AP. Respiratory motion models: A review. Med Image Anal 2013, 17: 19–42.10.1016/j.media.2012.09.005Search in Google Scholar PubMed

[5] Tahavori F, Alnowami M, Wells K. Markerless respiratory motion modeling using the Microsoft Kinect for Windows. Proc. SPIE 2014, 9036: 90360K.10.1117/12.2043569Search in Google Scholar

[6] Wentz T, Fayad H, Bert J, et al. Accuracy of dynamic patient surface monitoring using a time-of-flight camera and B-spline modeling for respiratory motion characterization. Phys Med Biol 2012, 57: 4175–4193.10.1088/0031-9155/57/13/4175Search in Google Scholar PubMed

[7] Khoshelham K, Elberrink SO. Accuracy and resolution of Kinect depth data for indoor mapping applications. Sensors 2012, 12: 1437–1454.10.3390/s120201437Search in Google Scholar PubMed PubMed Central

[8] Openkinect. http://openkinect.org/wiki/Main_Page, accessed 2015-01-12.Search in Google Scholar

[9] Varian Medical Systems: RPM Respiratory Gating System Reference Guide, Version 1.7, 2012.Search in Google Scholar

[10] Grohmann C, Frenzel T, Werner R, Cremers F. Design, performance characteristics and application examples of a new 4D motion platform. Z Med Phys 2014 [epub ahead of print].10.1016/j.zemedi.2014.09.003Search in Google Scholar PubMed

Published Online: 2015-9-12
Published in Print: 2015-9-1

© 2015 by Walter de Gruyter GmbH, Berlin/Boston

This article is distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Articles in the same Issue

  1. Research Article
  2. Development and characterization of superparamagnetic coatings
  3. Research Article
  4. The development of an experimental setup to measure acousto-electric interaction signal
  5. Research Article
  6. Stability analysis of ferrofluids
  7. Research Article
  8. Investigation of endothelial growth using a sensors-integrated microfluidic system to simulate physiological barriers
  9. Research Article
  10. Energy harvesting for active implants: powering a ruminal pH-monitoring system
  11. Research Article
  12. New type of fluxgate magnetometer for the heart’s magnetic fields detection
  13. Research Article
  14. Field mapping of ballistic pressure pulse sources
  15. Research Article
  16. Development of a new homecare sleep monitor using body sounds and motion tracking
  17. Research Article
  18. Noise properties of textile, capacitive EEG electrodes
  19. Research Article
  20. Detecting phase singularities and rotor center trajectories based on the Hilbert transform of intraatrial electrograms in an atrial voxel model
  21. Research Article
  22. Spike sorting: the overlapping spikes challenge
  23. Research Article
  24. Separating the effect of respiration from the heart rate variability for cases of constant harmonic breathing
  25. Research Article
  26. Locating regions of arrhythmogenic substrate by analyzing the duration of triggered atrial activities
  27. Research Article
  28. Combining different ECG derived respiration tracking methods to create an optimal reconstruction of the breathing pattern
  29. Research Article
  30. Atrial and ventricular signal averaging electrocardiography in pacemaker and cardiac resynchronization therapy
  31. Research Article
  32. Estimation of a respiratory signal from a single-lead ECG using the 4th order central moments
  33. Research Article
  34. Compressed sensing of multi-lead ECG signals by compressive multiplexing
  35. Research Article
  36. Heart rate monitoring in ultra-high-field MRI using frequency information obtained from video signals of the human skin compared to electrocardiography and pulse oximetry
  37. Research Article
  38. Synchronization in wireless biomedical-sensor networks with Bluetooth Low Energy
  39. Research Article
  40. Automated classification of stages of anaesthesia by populations of evolutionary optimized fuzzy rules
  41. Research Article
  42. Effects of sampling rate on automated fatigue recognition in surface EMG signals
  43. Research Article
  44. Closed-loop transcranial alternating current stimulation of slow oscillations
  45. Research Article
  46. Cardiac index in atrio- and interventricular delay optimized cardiac resynchronization therapy and cardiac contractility modulation
  47. Research Article
  48. The role of expert evaluation for microsleep detection
  49. Research Article
  50. The impact of baseline wander removal techniques on the ST segment in simulated ischemic 12-lead ECGs
  51. Research Article
  52. Metal artifact reduction by projection replacements and non-local prior image integration
  53. Research Article
  54. A novel coaxial nozzle for in-process adjustment of electrospun scaffolds’ fiber diameter
  55. Research Article
  56. Processing of membranes for oxygenation using the Bellhouse-effect
  57. Research Article
  58. Inkjet printing of viable human dental follicle stem cells
  59. Research Article
  60. The use of an icebindingprotein out of the snowflea Hypogastrura harveyi as a cryoprotectant in the cryopreservation of mesenchymal stem cells
  61. Research Article
  62. New NIR spectroscopy based method to determine ischemia in vivo in liver – a first study on rats
  63. Research Article
  64. QRS and QT ventricular conduction times and permanent pacemaker therapy after transcatheter aortic valve implantation
  65. Research Article
  66. Adopting oculopressure tonometry as a transient in vivo rabbit glaucoma model
  67. Research Article
  68. Next-generation vision testing: the quick CSF
  69. Research Article
  70. Improving tactile sensation in laparoscopic surgery by overcoming size restrictions
  71. Research Article
  72. Design and control of a 3-DOF hydraulic driven surgical instrument
  73. Research Article
  74. Evaluation of endourological tools to improve the diagnosis and therapy of ureteral tumors – from model development to clinical application
  75. Research Article
  76. Frequency based assessment of surgical activities
  77. Research Article
  78. “Hands free for intervention”, a new approach for transoral endoscopic surgery
  79. Research Article
  80. Pseudo-haptic feedback in medical teleoperation
  81. Research Article
  82. Feasibility of interactive gesture control of a robotic microscope
  83. Research Article
  84. Towards structuring contextual information for workflow-driven surgical assistance functionalities
  85. Research Article
  86. Towards a framework for standardized semantic workflow modeling and management in the surgical domain
  87. Research Article
  88. Closed-loop approach for situation awareness of medical devices and operating room infrastructure
  89. Research Article
  90. Kinect based physiotherapy system for home use
  91. Research Article
  92. Evaluating the microsoft kinect skeleton joint tracking as a tool for home-based physiotherapy
  93. Research Article
  94. Integrating multimodal information for intraoperative assistance in neurosurgery
  95. Research Article
  96. Respiratory motion tracking using Microsoft’s Kinect v2 camera
  97. Research Article
  98. Using smart glasses for ultrasound diagnostics
  99. Research Article
  100. Measurement of needle susceptibility artifacts in magnetic resonance images
  101. Research Article
  102. Dimensionality reduction of medical image descriptors for multimodal image registration
  103. Research Article
  104. Experimental evaluation of different weighting schemes in magnetic particle imaging reconstruction
  105. Research Article
  106. Evaluation of CT capability for the detection of thin bone structures
  107. Research Article
  108. Towards contactless optical coherence elastography with acoustic tissue excitation
  109. Research Article
  110. Development and implementation of algorithms for automatic and robust measurement of the 2D:4D digit ratio using image data
  111. Research Article
  112. Automated high-throughput analysis of B cell spreading on immobilized antibodies with whole slide imaging
  113. Research Article
  114. Tissue segmentation from head MRI: a ground truth validation for feature-enhanced tracking
  115. Research Article
  116. Video tracking of swimming rodents on a reflective water surface
  117. Research Article
  118. MR imaging of model drug distribution in simulated vitreous
  119. Research Article
  120. Studying the extracellular contribution to the double wave vector diffusion-weighted signal
  121. Research Article
  122. Artifacts in field free line magnetic particle imaging in the presence of inhomogeneous and nonlinear magnetic fields
  123. Research Article
  124. Introducing a frequency-tunable magnetic particle spectrometer
  125. Research Article
  126. Imaging of aortic valve dynamics in 4D OCT
  127. Research Article
  128. Intravascular optical coherence tomography (OCT) as an additional tool for the assessment of stent structures
  129. Research Article
  130. Simple concept for a wide-field lensless digital holographic microscope using a laser diode
  131. Research Article
  132. Intraoperative identification of somato-sensory brain areas using optical imaging and standard RGB camera equipment – a feasibility study
  133. Research Article
  134. Respiratory surface motion measurement by Microsoft Kinect
  135. Research Article
  136. Improving image quality in EIT imaging by measurement of thorax excursion
  137. Research Article
  138. A clustering based dual model framework for EIT imaging: first experimental results
  139. Research Article
  140. Three-dimensional anisotropic regularization for limited angle tomography
  141. Research Article
  142. GPU-based real-time generation of large ultrasound volumes from freehand 3D sweeps
  143. Research Article
  144. Experimental computer tomograph
  145. Research Article
  146. US-tracked steered FUS in a respiratory ex vivo ovine liver phantom
  147. Research Article
  148. Contribution of brownian rotation and particle assembly polarisation to the particle response in magnetic particle spectrometry
  149. Research Article
  150. Preliminary investigations of magnetic modulated nanoparticles for microwave breast cancer detection
  151. Research Article
  152. Construction of a device for magnetic separation of superparamagnetic iron oxide nanoparticles
  153. Research Article
  154. An IHE-conform telecooperation platform supporting the treatment of dementia patients
  155. Research Article
  156. Automated respiratory therapy system based on the ARDSNet protocol with systemic perfusion control
  157. Research Article
  158. Identification of surgical instruments using UHF-RFID technology
  159. Research Article
  160. A generic concept for the development of model-guided clinical decision support systems
  161. Research Article
  162. Evaluation of local alterations in femoral bone mineral density measured via quantitative CT
  163. Research Article
  164. Creating 3D gelatin phantoms for experimental evaluation in biomedicine
  165. Research Article
  166. Influence of short-term fixation with mixed formalin or ethanol solution on the mechanical properties of human cortical bone
  167. Research Article
  168. Analysis of the release kinetics of surface-bound proteins via laser-induced fluorescence
  169. Research Article
  170. Tomographic particle image velocimetry of a water-jet for low volume harvesting of fat tissue for regenerative medicine
  171. Research Article
  172. Wireless medical sensors – context, robustness and safety
  173. Research Article
  174. Sequences for real-time magnetic particle imaging
  175. Research Article
  176. Speckle-based off-axis holographic detection for non-contact photoacoustic tomography
  177. Research Article
  178. A machine learning approach for planning valve-sparing aortic root reconstruction
  179. Research Article
  180. An in-ear pulse wave velocity measurement system using heart sounds as time reference
  181. Research Article
  182. Measuring different oxygenation levels in a blood perfusion model simulating the human head using NIRS
  183. Research Article
  184. Multisegmental fusion of the lumbar spine a curse or a blessing?
  185. Research Article
  186. Numerical analysis of the biomechanical complications accompanying the total hip replacement with NANOS-Prosthetic: bone remodelling and prosthesis migration
  187. Research Article
  188. A muscle model for hybrid muscle activation
  189. Research Article
  190. Mathematical, numerical and in-vitro investigation of cooling performance of an intra-carotid catheter for selective brain hypothermia
  191. Research Article
  192. An ideally parameterized unscented Kalman filter for the inverse problem of electrocardiography
  193. Research Article
  194. Interactive visualization of cardiac anatomy and atrial excitation for medical diagnosis and research
  195. Research Article
  196. Virtualizing clinical cases of atrial flutter in a fast marching simulation including conduction velocity and ablation scars
  197. Research Article
  198. Mesh structure-independent modeling of patient-specific atrial fiber orientation
  199. Research Article
  200. Accelerating mono-domain cardiac electrophysiology simulations using OpenCL
  201. Research Article
  202. Understanding the cellular mode of action of vernakalant using a computational model: answers and new questions
  203. Research Article
  204. A java based simulator with user interface to simulate ventilated patients
  205. Research Article
  206. Evaluation of an algorithm to choose between competing models of respiratory mechanics
  207. Research Article
  208. Numerical simulation of low-pulsation gerotor pumps for use in the pharmaceutical industry and in biomedicine
  209. Research Article
  210. Numerical and experimental flow analysis in centifluidic systems for rapid allergy screening tests
  211. Research Article
  212. Biomechanical parameter determination of scaffold-free cartilage constructs (SFCCs) with the hyperelastic material models Yeoh, Ogden and Demiray
  213. Research Article
  214. FPGA controlled artificial vascular system
  215. Research Article
  216. Simulation based investigation of source-detector configurations for non-invasive fetal pulse oximetry
  217. Research Article
  218. Test setup for characterizing the efficacy of embolic protection devices
  219. Research Article
  220. Impact of electrode geometry on force generation during functional electrical stimulation
  221. Research Article
  222. 3D-based visual physical activity assessment of children
  223. Research Article
  224. Realtime assessment of foot orientation by Accelerometers and Gyroscopes
  225. Research Article
  226. Image based reconstruction for cystoscopy
  227. Research Article
  228. Image guided surgery innovation with graduate students - a new lecture format
  229. Research Article
  230. Multichannel FES parameterization for controlling foot motion in paretic gait
  231. Research Article
  232. Smartphone supported upper limb prosthesis
  233. Research Article
  234. Use of quantitative tremor evaluation to enhance target selection during deep brain stimulation surgery for essential tremor
  235. Research Article
  236. Evaluation of adhesion promoters for Parylene C on gold metallization
  237. Research Article
  238. The influence of metallic ions from CoCr28Mo6 on the osteogenic differentiation and cytokine release of human osteoblasts
  239. Research Article
  240. Increasing the visibility of thin NITINOL vascular implants
  241. Research Article
  242. Possible reasons for early artificial bone failure in biomechanical tests of ankle arthrodesis systems
  243. Research Article
  244. Development of a bending test procedure for the characterization of flexible ECoG electrode arrays
  245. Research Article
  246. Tubular manipulators: a new concept for intracochlear positioning of an auditory prosthesis
  247. Research Article
  248. Investigation of the dynamic diameter deformation of vascular stents during fatigue testing with radial loading
  249. Research Article
  250. Electrospun vascular grafts with anti-kinking properties
  251. Research Article
  252. Integration of temperature sensors in polyimide-based thin-film electrode arrays
  253. Research Article
  254. Use cases and usability challenges for head-mounted displays in healthcare
  255. Research Article
  256. Device- and service profiles for integrated or systems based on open standards
  257. Research Article
  258. Risk management for medical devices in research projects
  259. Research Article
  260. Simulation of varying femoral attachment sites of medial patellofemoral ligament using a musculoskeletal multi-body model
  261. Research Article
  262. Does enhancing consciousness for strategic planning processes support the effectiveness of problem-based learning concepts in biomedical education?
  263. Research Article
  264. SPIO processing in macrophages for MPI: The breast cancer MPI-SNLB-concept
  265. Research Article
  266. Numerical simulations of airflow in the human pharynx of OSAHS patients
Downloaded on 7.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/cdbme-2015-0067/html
Scroll to top button