Home Development of a new homecare sleep monitor using body sounds and motion tracking
Article Open Access

Development of a new homecare sleep monitor using body sounds and motion tracking

  • Christoph Kalkbrenner EMAIL logo , Manuel Eichenlaub and Rainer Brucher
Published/Copyright: September 12, 2015

Abstract

This paper presents the development of a sleep monitor to provide a comfortable way of detecting sleep-related breathing disorders like the obstructive sleep apnea syndrome (OSAS). OSAS is traditionally diagnosed using polysomnography, which requires a whole night stay at the sleep laboratory of a hospital with multiple electrodes and sensors attached to the patient’s body. However, body sound and motion tracking also provide extensive information about sleep course. A unique recording device offering a good body sound extraction, noise suppression and a small size is developed. Using this device a reliable detection of breathing and heart beat is possible. In addition sleeping positions and the activity of the patient will be evaluated using an inertial measurement unit (IMU). The device is easy to set up and offers the possibility to use it independently at home.

Initial experiments have shown that volunteers were able to set up the device on their own. Furthermore several overnight recordings revealed the capability to monitor breathing, heart rate, sleeping position as well as movements of the patient.

1 Introduction

The most common sleep-related breathing disorder is the obstructive sleep apnea syndrome (OSAS). OSAS is characterized by repetitive pauses in breathing. The pharynx narrows and the path of the air flow is obstructed which can lead to an obstructive apnea [1]. During an apnea the breathing amplitude decreases by 80% in respect to the baseline over a period of more than 10 seconds. Normally an initial drop in heart rate and a decrease of O2 saturation occurs a few seconds afterwards. An alarm signal to the central nervous system, the so-called arousal, terminates the apnea phase. During this period the patients heart rate increases and vigorous breathing starts. About 2-4% of the adult population suffer from OSAS with clinical symptoms. The consequences of this disease include heart disease, elevated blood pressure and extreme daytime sleepiness. Despite this high prevalence, most patients are either un-diagnosed or untreated [1].

The diagnostic standard is the polysomnography, which involves a detailed and elaborate diagnosis in a clinical sleep laboratory. Here a reliable statement is only possible with great technical effort and complexity. The sensors in sleep laboratory are connected by tubes or cables with different devices. This method is still expensive and may affect sleep which could result in a measurement bias. Therefore the early diagnosis of sleep-related respiratory disorders and the comfortable monitoring of sleep course would open up a wide market of application already starting in homecare area.

2 Development of the sleep monitor

2.1 Body sound

A considerable amount of literature has been published on sleep monitoring based on human body sound. These studies pay particular attention to recording breathing sounds near the trachea. This assumption is based on the fact that the lower neck is one of the best positions for recording breathing sounds [2]. Therefore we set up our microphone at the suprasternal notch to get the best results in recording breathing sounds. A seminal study by [3] showed that it is possible to detect sleep apnea by placing a stethoscope like microphone at the suprasternal notch over the night. A more recent study by [4] approved these results.

One of the greatest challenges is to provide a reliable and comfortable method to record body sounds. Therefore a unique recording device offering optimized body sound extraction and noise suppression, a small size and a changeable membrane for hygienic reasons is developed. Because of its compact geometry and low cost a electret microphone is used to record body sound. To fix the device at the suprasternal notch it is adhered with a plaster (see Figure 1). In order to ensure a good body sound signal, the membrane needs to maintain contact with the skin for the entire night. Therefore the used plaster must not loosen itself even if the user is moving during the night. In this work 3M Medipore fixation fleece-plasters are used. These plasters offer a high skin compability as well as a strong adhesion to the human skin.

Figure 1 Sensor attached to volunteers suprasternal notch.
Figure 1

Sensor attached to volunteers suprasternal notch.

The analog preprocessing of the microphone signal is essential for subsequent digital analysis. The frequency response of the circuit for analog preprocessing of the microphone signal is shown in Figure 2. The majority of breathing sounds feature frequencies from 100 Hz up to 1.5 kHz [2]. Therefore these frequencies get amplified by about 26 dB. Most heart- and snoring sounds feature frequencies below 100 Hz. Because those sounds are inherently very loud a smaller amplification suffices. Frequencies below 10 Hz or above 1.5 kHz feature mostly noise and sounds created by artifacts. The audio data is sampled at 5 kHz in 10 bit samples.

Figure 2 Frequency response of the analog preprocessing unit.
Figure 2

Frequency response of the analog preprocessing unit.

2.2 Motion tracking

An inertial measurement unit (IMU) MPU-6000 (by InvenSense) delivers position and motion data as three gyroscope values and three accelerometer values sampled at 200 Hz. As described in previous work [5] we are able to determine the sleeping position as well as the movements of the patient using the IMU data. Here stable results are provided by using the Madgwick-Filter [6]. In the majority of cases movements create audio artifacts. In general movements during sleep provide valuable information about sleep quality. Since movements are often the cause of artifacts in the audio signal, they can be used to detect and suppress those disturbances. Therefore the IMU data is essential for subsequent audio analysis.

2.3 Device setup

As shown in Figure 3, the proposed device consists of two parts. The first is carried by the patient during sleep and consists of the body sound microphone, IMU and the remaining electronics (battery, Bluetooth gateway, etc.). These are stored within a case which is carried by the patient using an abdominal belt. A single cable connects the electronics with the body sound microphone. To avoid further wiring the proposed system can be charged by inductive charging using the Qi-standard.

The second part is the masterstation, which consists of a laptop containing a user optimized software. Data is send wireless to the laptop via Bluetooth. Received data is processed, visualized and stored using the developed software. To be able to exchange and compare the recorded data, all data is stored using the European Data Format (EDF), a standard format for exchange of digitized poly-graphic recordings [7]. The subsequent automated signal analysis for the extraction of diagnostic features is currently under development.

Figure 3 Abstract representation of the entire sleep monitoring system. The dashed module is the subject of current developing efforts.
Figure 3

Abstract representation of the entire sleep monitoring system. The dashed module is the subject of current developing efforts.

To set up the system the patient puts on the abdominal belt and stores the electronics within. Then the patient adheres the microphone to his suprasternal notch using the provided plaster. Afterwards the microphone cable gets connected to the electronics and the recording can be started via the software.

3 Results

The proposed system was tested on seven volunteers (age: 24-61 years, 2 female, 5 male). Each volunteer carried out a whole overnight recording at home. Participants were given instructions regarding the system setup and were asked to take the device home to use it independently.

3.1 Ergonomics and ease of use

In addition to the overnight recording each volunteer answered four questions (see Table 1) about his/her experience using the device. Answers were given qualitatively as one of four options: poor, fair, good, or excellent, each of which was quantified to a numerical value 1–4 respectively.

Table 1

Ease-of-use and comfort questionnaire

AspectNumerical value ± (SD)Equivalent rating
Device handling3.0 ± 0.00good
Software ease of use4.0 ± 0.00excellent
Overall comfort3.3 ± 0.49good
Sleep quality3.4 ± 0.53good

3.2 Body sound

All volunteers were able to setup the device and to deliver a complete and evaluable overnight recording. Figure 4 shows time and frequency representation of a recorded audio sample. Here, breathing and heart sounds are within the expected frequency ranges. This observation is very similar in all seven overnight recordings. Therefore it is a simple task to extract the breathing as well as heart sounds out of the raw signal.

An example of extracted breath sounds can be seen in the top graph of Figure 5. It shows the same audio signal as shown in Figure 4 after filtering with a band-pass filter ranging from 100 Hz up to 1.5 kHz. The previously nearly unrecognizable breathing sounds in time domain are now clearly visible. Inspiration, expiration and a silence interval in between can be recognized.

Figure 4 Tracheal sound signal acquired with the proposed system. The graphs show a 30 second segment of the recorded audio data during a overnight recording in time (top) and frequency (bottom) domain.
Figure 4

Tracheal sound signal acquired with the proposed system. The graphs show a 30 second segment of the recorded audio data during a overnight recording in time (top) and frequency (bottom) domain.

In correspondence, the bottom graph of Figure 5 shows the heart signal extracted by applying a band-pass filter ranging from 15 Hz up to 80 Hz. Additionally the characteristic cardiac sound pattern consisting of two isolated peaks per heart beat can be seen. By detecting these specific peaks the heart rate can be calculated, which provides valuable diagnostic information.

Figure 5 Tracheal breath sound (top) and heart sound (bottom) acquired with the proposed system after respective bandpass filtering.
Figure 5

Tracheal breath sound (top) and heart sound (bottom) acquired with the proposed system after respective bandpass filtering.

The overnight recordings included two volunteers suffering from sleep apnea. Figure 6 shows the time and frequency representation of a 50 second segment of the recorded audio signal during a apnea phase. A typical apnea cycle can be observed in both time and frequency domain. The breathing sounds decrease slowly in amplitude until the breathing is nearly ceased. After about 10 seconds the apnea phase is terminated with heavy and short-winded breathing.

This example demonstrates, that it is already possible to extract diagnostic information by visual examination of the filtered signals.

Figure 6 Time (top) and frequency (bottom) representation of body sound signal acquired with the proposed system. The graphs show a 50 second segment of the recorded audio data which includes an apnea phase.
Figure 6

Time (top) and frequency (bottom) representation of body sound signal acquired with the proposed system. The graphs show a 50 second segment of the recorded audio data which includes an apnea phase.

4 Discussion and conclusion

The first step in the development of a reliable and comfortable system for sleep monitoring is presented in this paper. Our system is capable of capturing heartbeats, breathing, snoring, sleeping positions and movements of the volunteer. However, a future study should examine large, randomly selected samples of volunteers including patients suffering from OSAS. To validate the proposed system a comparison with a golden standard system is needed. For this purpose, a comparison with standard polysomnography methods inside the sleep laboratory of the University Medical Center Ulm with a large number of patients is planned in the near future. The next step to improve our system is the development of a pattern recognition algorithm to automatically evaluate overnight recordings and deliver essential medical informations like the Apnea–hypopnea index.

Acknowledgment

The authors would like to thank Beurer GmbH for their assistance and support.

Funding: This study is part of the the project entitled ”SomnoSound” in cooperation with Beurer GmbH supported by the Arbeitsgemeinschaft industrieller Forschungsvereinigungen AiF (KF2186205AK3)

Author's Statement

  1. Conflict of interest: Authors state no conflict of interest. Material and Methods: Informed consent: Informed consent has been obtained from all individuals included in this study. Ethical approval: The research related to human use has been complied with all the relevant national regulations, institutional policies and in accordance the tenets of the Helsinki Declaration, and has been approved by the authors’ institutional review board or equivalent committee.

References

[1] B. Stuck, Praxis der Schlafmedizin: Schlafstörungen bei Erwachsenen und Kindern; Diagnostik, Differentialdiagnostik und Therapie; mit 36 Tabellen. Berlin [u.a.]: Springer, 2. aufl ed., 2013.10.1007/978-3-642-34881-5Search in Google Scholar

[2] H. Pasterkamp, S. S. Kraman, and G. R. Wodicka, “Respiratory sounds. advances beyond the stethoscope,” Am. J. Respir. Crit. Care Med., vol. 156, pp. 974–87, Sep 1997.10.1164/ajrccm.156.3.9701115Search in Google Scholar PubMed

[3] H. Nakano, M. Hayashi, E. Ohshima, N. Nishikata, and T. Shinohara, “Validation of a new system of tracheal sound analysis for the diagnosis of sleep apnea-hypopnea syndrome.,” Sleep, vol. 27, pp. 951–7, Aug 2004.10.1093/sleep/27.5.951Search in Google Scholar PubMed

[4] A. Yadollahi, E. Giannouli, and Z. Moussavi, “Sleep apnea monitoring and diagnosis based on pulse oximetry and tracheal sound signals.,” Med Biol Eng Comput, vol. 48, pp. 1087–97, Nov 2010.10.1007/s11517-010-0674-2Search in Google Scholar PubMed

[5] C. Kalkbrenner, P. Stark, G. Kouemou, M.-E. Algorri, and R. Brucher, “Sleep monitoring using body sounds and motion tracking,” in Engineering in Medicine and Biology Society (EMBC), 2014 36th Annual International Conference of the IEEE, pp. 6941–6944, Aug 2014.10.1109/EMBC.2014.6945224Search in Google Scholar PubMed

[6] S. Madgwick, A. J. L. Harrison, and R. Vaidyanathan, “Estimation of imu and marg orientation using a gradient descent algorithm,” in Rehabilitation Robotics (ICORR), 2011 IEEE International Conference on, pp. 1–7, 2011.10.1109/ICORR.2011.5975346Search in Google Scholar PubMed

[7] B. Kemp, A. Värri, A. C. Rosa, K. D. Nielsen, and J. Gade, “A simple format for exchange of digitized polygraphic recordings,” Electroencephalogr Clin Neurophysiol, vol. 82, pp. 391–3, May 1992.10.1016/0013-4694(92)90009-7Search in Google Scholar PubMed

Published Online: 2015-9-12
Published in Print: 2015-9-1

© 2015 by Walter de Gruyter GmbH, Berlin/Boston

This article is distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Articles in the same Issue

  1. Research Article
  2. Development and characterization of superparamagnetic coatings
  3. Research Article
  4. The development of an experimental setup to measure acousto-electric interaction signal
  5. Research Article
  6. Stability analysis of ferrofluids
  7. Research Article
  8. Investigation of endothelial growth using a sensors-integrated microfluidic system to simulate physiological barriers
  9. Research Article
  10. Energy harvesting for active implants: powering a ruminal pH-monitoring system
  11. Research Article
  12. New type of fluxgate magnetometer for the heart’s magnetic fields detection
  13. Research Article
  14. Field mapping of ballistic pressure pulse sources
  15. Research Article
  16. Development of a new homecare sleep monitor using body sounds and motion tracking
  17. Research Article
  18. Noise properties of textile, capacitive EEG electrodes
  19. Research Article
  20. Detecting phase singularities and rotor center trajectories based on the Hilbert transform of intraatrial electrograms in an atrial voxel model
  21. Research Article
  22. Spike sorting: the overlapping spikes challenge
  23. Research Article
  24. Separating the effect of respiration from the heart rate variability for cases of constant harmonic breathing
  25. Research Article
  26. Locating regions of arrhythmogenic substrate by analyzing the duration of triggered atrial activities
  27. Research Article
  28. Combining different ECG derived respiration tracking methods to create an optimal reconstruction of the breathing pattern
  29. Research Article
  30. Atrial and ventricular signal averaging electrocardiography in pacemaker and cardiac resynchronization therapy
  31. Research Article
  32. Estimation of a respiratory signal from a single-lead ECG using the 4th order central moments
  33. Research Article
  34. Compressed sensing of multi-lead ECG signals by compressive multiplexing
  35. Research Article
  36. Heart rate monitoring in ultra-high-field MRI using frequency information obtained from video signals of the human skin compared to electrocardiography and pulse oximetry
  37. Research Article
  38. Synchronization in wireless biomedical-sensor networks with Bluetooth Low Energy
  39. Research Article
  40. Automated classification of stages of anaesthesia by populations of evolutionary optimized fuzzy rules
  41. Research Article
  42. Effects of sampling rate on automated fatigue recognition in surface EMG signals
  43. Research Article
  44. Closed-loop transcranial alternating current stimulation of slow oscillations
  45. Research Article
  46. Cardiac index in atrio- and interventricular delay optimized cardiac resynchronization therapy and cardiac contractility modulation
  47. Research Article
  48. The role of expert evaluation for microsleep detection
  49. Research Article
  50. The impact of baseline wander removal techniques on the ST segment in simulated ischemic 12-lead ECGs
  51. Research Article
  52. Metal artifact reduction by projection replacements and non-local prior image integration
  53. Research Article
  54. A novel coaxial nozzle for in-process adjustment of electrospun scaffolds’ fiber diameter
  55. Research Article
  56. Processing of membranes for oxygenation using the Bellhouse-effect
  57. Research Article
  58. Inkjet printing of viable human dental follicle stem cells
  59. Research Article
  60. The use of an icebindingprotein out of the snowflea Hypogastrura harveyi as a cryoprotectant in the cryopreservation of mesenchymal stem cells
  61. Research Article
  62. New NIR spectroscopy based method to determine ischemia in vivo in liver – a first study on rats
  63. Research Article
  64. QRS and QT ventricular conduction times and permanent pacemaker therapy after transcatheter aortic valve implantation
  65. Research Article
  66. Adopting oculopressure tonometry as a transient in vivo rabbit glaucoma model
  67. Research Article
  68. Next-generation vision testing: the quick CSF
  69. Research Article
  70. Improving tactile sensation in laparoscopic surgery by overcoming size restrictions
  71. Research Article
  72. Design and control of a 3-DOF hydraulic driven surgical instrument
  73. Research Article
  74. Evaluation of endourological tools to improve the diagnosis and therapy of ureteral tumors – from model development to clinical application
  75. Research Article
  76. Frequency based assessment of surgical activities
  77. Research Article
  78. “Hands free for intervention”, a new approach for transoral endoscopic surgery
  79. Research Article
  80. Pseudo-haptic feedback in medical teleoperation
  81. Research Article
  82. Feasibility of interactive gesture control of a robotic microscope
  83. Research Article
  84. Towards structuring contextual information for workflow-driven surgical assistance functionalities
  85. Research Article
  86. Towards a framework for standardized semantic workflow modeling and management in the surgical domain
  87. Research Article
  88. Closed-loop approach for situation awareness of medical devices and operating room infrastructure
  89. Research Article
  90. Kinect based physiotherapy system for home use
  91. Research Article
  92. Evaluating the microsoft kinect skeleton joint tracking as a tool for home-based physiotherapy
  93. Research Article
  94. Integrating multimodal information for intraoperative assistance in neurosurgery
  95. Research Article
  96. Respiratory motion tracking using Microsoft’s Kinect v2 camera
  97. Research Article
  98. Using smart glasses for ultrasound diagnostics
  99. Research Article
  100. Measurement of needle susceptibility artifacts in magnetic resonance images
  101. Research Article
  102. Dimensionality reduction of medical image descriptors for multimodal image registration
  103. Research Article
  104. Experimental evaluation of different weighting schemes in magnetic particle imaging reconstruction
  105. Research Article
  106. Evaluation of CT capability for the detection of thin bone structures
  107. Research Article
  108. Towards contactless optical coherence elastography with acoustic tissue excitation
  109. Research Article
  110. Development and implementation of algorithms for automatic and robust measurement of the 2D:4D digit ratio using image data
  111. Research Article
  112. Automated high-throughput analysis of B cell spreading on immobilized antibodies with whole slide imaging
  113. Research Article
  114. Tissue segmentation from head MRI: a ground truth validation for feature-enhanced tracking
  115. Research Article
  116. Video tracking of swimming rodents on a reflective water surface
  117. Research Article
  118. MR imaging of model drug distribution in simulated vitreous
  119. Research Article
  120. Studying the extracellular contribution to the double wave vector diffusion-weighted signal
  121. Research Article
  122. Artifacts in field free line magnetic particle imaging in the presence of inhomogeneous and nonlinear magnetic fields
  123. Research Article
  124. Introducing a frequency-tunable magnetic particle spectrometer
  125. Research Article
  126. Imaging of aortic valve dynamics in 4D OCT
  127. Research Article
  128. Intravascular optical coherence tomography (OCT) as an additional tool for the assessment of stent structures
  129. Research Article
  130. Simple concept for a wide-field lensless digital holographic microscope using a laser diode
  131. Research Article
  132. Intraoperative identification of somato-sensory brain areas using optical imaging and standard RGB camera equipment – a feasibility study
  133. Research Article
  134. Respiratory surface motion measurement by Microsoft Kinect
  135. Research Article
  136. Improving image quality in EIT imaging by measurement of thorax excursion
  137. Research Article
  138. A clustering based dual model framework for EIT imaging: first experimental results
  139. Research Article
  140. Three-dimensional anisotropic regularization for limited angle tomography
  141. Research Article
  142. GPU-based real-time generation of large ultrasound volumes from freehand 3D sweeps
  143. Research Article
  144. Experimental computer tomograph
  145. Research Article
  146. US-tracked steered FUS in a respiratory ex vivo ovine liver phantom
  147. Research Article
  148. Contribution of brownian rotation and particle assembly polarisation to the particle response in magnetic particle spectrometry
  149. Research Article
  150. Preliminary investigations of magnetic modulated nanoparticles for microwave breast cancer detection
  151. Research Article
  152. Construction of a device for magnetic separation of superparamagnetic iron oxide nanoparticles
  153. Research Article
  154. An IHE-conform telecooperation platform supporting the treatment of dementia patients
  155. Research Article
  156. Automated respiratory therapy system based on the ARDSNet protocol with systemic perfusion control
  157. Research Article
  158. Identification of surgical instruments using UHF-RFID technology
  159. Research Article
  160. A generic concept for the development of model-guided clinical decision support systems
  161. Research Article
  162. Evaluation of local alterations in femoral bone mineral density measured via quantitative CT
  163. Research Article
  164. Creating 3D gelatin phantoms for experimental evaluation in biomedicine
  165. Research Article
  166. Influence of short-term fixation with mixed formalin or ethanol solution on the mechanical properties of human cortical bone
  167. Research Article
  168. Analysis of the release kinetics of surface-bound proteins via laser-induced fluorescence
  169. Research Article
  170. Tomographic particle image velocimetry of a water-jet for low volume harvesting of fat tissue for regenerative medicine
  171. Research Article
  172. Wireless medical sensors – context, robustness and safety
  173. Research Article
  174. Sequences for real-time magnetic particle imaging
  175. Research Article
  176. Speckle-based off-axis holographic detection for non-contact photoacoustic tomography
  177. Research Article
  178. A machine learning approach for planning valve-sparing aortic root reconstruction
  179. Research Article
  180. An in-ear pulse wave velocity measurement system using heart sounds as time reference
  181. Research Article
  182. Measuring different oxygenation levels in a blood perfusion model simulating the human head using NIRS
  183. Research Article
  184. Multisegmental fusion of the lumbar spine a curse or a blessing?
  185. Research Article
  186. Numerical analysis of the biomechanical complications accompanying the total hip replacement with NANOS-Prosthetic: bone remodelling and prosthesis migration
  187. Research Article
  188. A muscle model for hybrid muscle activation
  189. Research Article
  190. Mathematical, numerical and in-vitro investigation of cooling performance of an intra-carotid catheter for selective brain hypothermia
  191. Research Article
  192. An ideally parameterized unscented Kalman filter for the inverse problem of electrocardiography
  193. Research Article
  194. Interactive visualization of cardiac anatomy and atrial excitation for medical diagnosis and research
  195. Research Article
  196. Virtualizing clinical cases of atrial flutter in a fast marching simulation including conduction velocity and ablation scars
  197. Research Article
  198. Mesh structure-independent modeling of patient-specific atrial fiber orientation
  199. Research Article
  200. Accelerating mono-domain cardiac electrophysiology simulations using OpenCL
  201. Research Article
  202. Understanding the cellular mode of action of vernakalant using a computational model: answers and new questions
  203. Research Article
  204. A java based simulator with user interface to simulate ventilated patients
  205. Research Article
  206. Evaluation of an algorithm to choose between competing models of respiratory mechanics
  207. Research Article
  208. Numerical simulation of low-pulsation gerotor pumps for use in the pharmaceutical industry and in biomedicine
  209. Research Article
  210. Numerical and experimental flow analysis in centifluidic systems for rapid allergy screening tests
  211. Research Article
  212. Biomechanical parameter determination of scaffold-free cartilage constructs (SFCCs) with the hyperelastic material models Yeoh, Ogden and Demiray
  213. Research Article
  214. FPGA controlled artificial vascular system
  215. Research Article
  216. Simulation based investigation of source-detector configurations for non-invasive fetal pulse oximetry
  217. Research Article
  218. Test setup for characterizing the efficacy of embolic protection devices
  219. Research Article
  220. Impact of electrode geometry on force generation during functional electrical stimulation
  221. Research Article
  222. 3D-based visual physical activity assessment of children
  223. Research Article
  224. Realtime assessment of foot orientation by Accelerometers and Gyroscopes
  225. Research Article
  226. Image based reconstruction for cystoscopy
  227. Research Article
  228. Image guided surgery innovation with graduate students - a new lecture format
  229. Research Article
  230. Multichannel FES parameterization for controlling foot motion in paretic gait
  231. Research Article
  232. Smartphone supported upper limb prosthesis
  233. Research Article
  234. Use of quantitative tremor evaluation to enhance target selection during deep brain stimulation surgery for essential tremor
  235. Research Article
  236. Evaluation of adhesion promoters for Parylene C on gold metallization
  237. Research Article
  238. The influence of metallic ions from CoCr28Mo6 on the osteogenic differentiation and cytokine release of human osteoblasts
  239. Research Article
  240. Increasing the visibility of thin NITINOL vascular implants
  241. Research Article
  242. Possible reasons for early artificial bone failure in biomechanical tests of ankle arthrodesis systems
  243. Research Article
  244. Development of a bending test procedure for the characterization of flexible ECoG electrode arrays
  245. Research Article
  246. Tubular manipulators: a new concept for intracochlear positioning of an auditory prosthesis
  247. Research Article
  248. Investigation of the dynamic diameter deformation of vascular stents during fatigue testing with radial loading
  249. Research Article
  250. Electrospun vascular grafts with anti-kinking properties
  251. Research Article
  252. Integration of temperature sensors in polyimide-based thin-film electrode arrays
  253. Research Article
  254. Use cases and usability challenges for head-mounted displays in healthcare
  255. Research Article
  256. Device- and service profiles for integrated or systems based on open standards
  257. Research Article
  258. Risk management for medical devices in research projects
  259. Research Article
  260. Simulation of varying femoral attachment sites of medial patellofemoral ligament using a musculoskeletal multi-body model
  261. Research Article
  262. Does enhancing consciousness for strategic planning processes support the effectiveness of problem-based learning concepts in biomedical education?
  263. Research Article
  264. SPIO processing in macrophages for MPI: The breast cancer MPI-SNLB-concept
  265. Research Article
  266. Numerical simulations of airflow in the human pharynx of OSAHS patients
Downloaded on 9.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/cdbme-2015-0008/html?lang=en
Scroll to top button