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Abstract: The addition of microalloying elements improves
the microstructure and properties of copper-based mate-
rials. In this study, WCu composites are synthesized
in situ with Fe, Ni, or Mn as microalloying elements, and
the effects of each element on the microstructural charac-
teristics of the obtained composite are investigated. Fe, Ni,
and Mn can be added in situ to WCu composites by thermite
reduction. Increasing the temperature is not conducive to
the reduction of MnO2 by Al. Ni, Fe, and Mn were well
dissolved in the copper matrix, and their contents decreases

in turn, while the Al content in the matrix increases in turn.
Mn clearly reduces the size of tungsten particles, and the
size reduction effect of the microalloying elements on tung-
sten particles follows the order Mn > Fe > Ni. The effect on
thewettability of the interface follows the order Ni >Mn > Fe.
Increasing the interfacial wetting is not conducive to the
refinement of tungsten particles.

Keywords: WCu composite, microalloying element, ther-
mite reduction

1 Introduction

Tungsten/copper (WCu) composites have the advantages
of high density, high strength, high hardness, good elec-
trical and thermal conductivity, and arc erosion resis-
tance [1–3]. They are widely used in electrical contacts
for high-voltage switches, resistance welding electrodes,
aerospace rocket nozzles, etc. [4,5]. Because of the large
differences in melting point and solubility between W
and Cu, WCu is usually fabricated by powder metallurgy
using superfine metal powders as rawmaterials [6]. How-
ever, because tungsten and copper are immiscible, the
strength and density of WCu fabricated by powder metal-
lurgy cannot meet the requirements for the rapid devel-
opment of electrical contacts for high-voltage switches,
resistance welding electrodes, and aerospace rocket noz-
zles [7–9].

Microalloying improves the mechanical properties of
copper alloys [10]. Many researchers worldwide have
investigated methods of improving the density and strength
of WCu composites by adding microalloying elements
[11–15]. Johnson and Cao [16,17] researched the effect of
Fe and Co on the properties of WCu alloys. They found that
a finite solid solutionwith Cu could be produced by adding
small amounts of Fe and Co as activated elements during
sintering, and the second phase can precipitate, producing
intermetallic compounds at grain boundaries, which can
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promote the densification of tungsten and clearly improve
the density of WCu composites. Yang et al. [18] studied the
effect of alloying with Ni and Cr on the wettability of Cu on a
W substrate. The results indicated that the wettability of
liquid copper on a W substrate is distinctly improved by
adding Cr and Ni, and interfacial metallurgic bonding is
realized by the mutual diffusion and dissolution of various
elements at the interface. Wang and Liang [19,20] investi-
gated the interface microstructure of a novel WCu/Al com-
posite fabricated by an infiltration method. They found that
five transition zones formed at the WCu/Al interface, speci-
fically, layer-like, hypereutectic, eutectic, hypoeutectic, and
needle-like zones, from the WCu side to the Al side. In sum-
mary, the addition of microalloying elements improves the
wettability of the WCu interface, which further improves
the density and strength of WCu composites. The conven-
tional powder metallurgy methods can be classified as infil-
tration processes and high-temperature sintering [21,22]. In
infiltration processes, microalloying elements are first added
to liquid copper to form a copper alloy, which is infiltrated
into the tungsten skeleton [23]. In high-temperature sin-
tering, microalloying elements are added as metal powders;
thus, the microalloying elements are often unevenly distrib-
uted because of uneven mixing [24,25].

Based on our previous studies [26–30], a novel method
of synthesizing microalloyedWCu composites by alumino-
thermic reduction has been proposed. In this study,
WO3, CuO, and Al powder and microalloying element
oxides are used as raw materials to induce the self-propa-
gating high-temperature synthesis (SHS) reaction, during
which micro- and nanosized tungsten particles, liquid
copper, and microalloying element particles are produced
by in situ synthesis. To produce low-melting-point calcium
aluminates, CaO is used as slag formers, which is com-
bined with the generated Al2O3. After the SHS reaction,
the metal and slag are phase-separated owing to differ-
ences in density; finally, a microalloyed WCu composite
ingot is obtained. Themicroalloying element added by in situ
synthesis are more uniformly distributed inWCu composites
than that added by powder metallurgy. The thermodynamic
equilibria of the Al–CuO–WO3–Fe2O3/NiO/MnO2 systems are
calculated. WCu composites microalloyed with Fe, Ni, or Mn
are synthesized in situ, and the effects of the microalloying
elements on the microstructural characteristics of the WCu
composites are investigated. This study provides a theoretical
basis for the preparation of homogeneous high-density WCu
composites.

2 Experiment

2.1 Materials

WO3 (99.90wt%, particle size: 80–100nm), Fe2O3 (99.50wt%,
particle size: ≤0.20mm), NiO (99.80wt%, particle size:
≤0.20mm), MnO2 (99.50 wt%, particle size: ≤0.20mm),
and CuO (99.50 wt%, particle size: ≤0.20mm) were used
as raw materials. CuO was obtained from Zhengzhou
Baixiang Chemical Reagent Co., Ltd., China, and WO3,
Fe2O3, MnO2, and NiO were obtained from Sinopharm
Chemical Reagent Co., Ltd., China. Aluminum powder
(99.5% pure, particle diameter: 0.1–3mm) was used as a
reductant. CaO (99.50% pure, particle diameter: ≤0.25mm)
and magnesium powder (99.5% pure, particle diameter:
≤0.2mm) were supplied by Sinopharm Chemical Reagent
Co., Ltd., China.

2.2 Experimental methods and analysis

The experiment was conducted under atmospheric pres-
sure to synthesize WCu composites containing 3.0 wt% of
each microalloying element. To prepare the rawmaterials
before synthesis, Fe2O3, NiO, MnO2, WO3, CuO, and CaO
were heated in air at 573 K for 24 h to remove water. The
raw materials were weighed in desired proportions and
placed in a ball mill. The total mass of materials in each
experiment was about 2 kg. The tank was covered with a
lid, and the reagents were mixed using a can mixer for
60min. Then, they were placed in a conical graphite
reactor enclosed by a magnesia lining with a volume of
10 L. Approximately 2–3 g of Mg powder was used as an
easy ignition agent and placed on top of the other reagents.
Mg powder was ignited to induce SHS and obtain a high-
temperature melt. Next, the melt was cast in a graphite
crucible and cooled to approximately 298 K.

2.3 Calculation and analysis methods

The adiabatic temperature (Tad) and thermodynamic equi-
librium of the Al–CuO–WO3–Fe2O3, Al–CuO–WO3–NiO,
and Al–CuO–WO3–MnO2 systems were calculated by
HSC 6.0. The chemical compositions of the microalloyed
WCu composites were analyzed by inductively coupled
plasma emission spectrometry (Optima 4300DV, Lehman,
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USA), and their oxygen content was measured using an
oxygen/nitrogen/hydrogen analyzer (Type G8, Bruker,
Germany). Samples of the composite ingots and slag
were characterized using scanning electron microscopy
(SEM) coupled with energy-dispersive X-ray spectro-
scopy (EDS; SU-8010, Hitachi, Japan).

3 Results and discussion

3.1 Thermodynamics

The adiabatic temperatures (Tad) of the Al–CuO–WO3–Fe2O3,
Al–CuO–WO3–NiO, and Al–CuO–WO3–MnO2 systems were

Figure 1: Thermodynamic equilibria of (a) Al–CuO–WO3–Fe2O3, (b) Al–CuO–WO3–NiO, and (c) Al–CuO–WO3–MnO2 systems.
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calculated as 2,912, 2,902, and 2,929K, respectively. Merzhanov
[31] suggested that these systemswould become self-sustaining
only if Tad ≥ 1,800K. It is thus deduced that these systems
could exist.

According to the principle of minimum Gibbs free
energy change, the thermodynamic equilibria of the
Al–CuO–WO3–Fe2O3/NiO/MnO2 systems were calculated,
and the results are shown in Figure 1. Fe2O3, NiO, and
MnO2 can be reduced by Al in the Al–CuO–WO3 system
to produce WCu composites microalloyed with Fe, Ni, and

Mn. Moreover, Fe and Ni can combine with W to produce
intermetallic compounds such as Fe3W2 and Ni4W. At tem-
peratures below 1,000 K, the mole percentages of Fe and
Ni increased rapidly with increasing temperature, whereas
that of Mn remained unchanged, and the Fe3W2 and Ni4W
contents decreased rapidly. At 1,000–2,912 K, the mole
percentages of Fe and Fe3W2 remained stable with increasing
temperature. At temperatures above 2,912 K, the mole per-
centage of Fe gradually increased, whereas that of Fe3W2

remained essentially constant. In addition, when the tem-

Figure 2: SEM images of WCu composites microalloyed with (a) Fe, (b) Ni, and (c) Mn, and elemental distributions of WCu composites
microalloyed with (a1–a5) Fe, (b1–b5) Ni, and (c1–c5) Mn.
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perature exceeded 2,073 K, the molar percentages of Al,
CuO, and·Al2O3 increased gradually, which is not conducive
to thermite reduction. When the temperature exceeded
1,000 K, the molar percentages of Ni and Ni4W tended to
be stable with increasing temperature. In addition, when
the temperature exceeded 2,073 K, the molar percentages
of Al, Cu2O, and CuO·Al2O3 increased gradually, which is
also not conducive to the thermite reduction reaction. At
temperatures exceeding 1,000 K, the molar percentage of
Mn decreased with increasing temperature, whereas those
of Al, MnO, and Mn·Al2O3 gradually increased. Thus, high
temperature is not conducive to Mn reduction. In conclu-
sion, it is feasible to add Fe, Ni, and Mn to WCu composites
in situ through thermite reduction.

3.2 Microalloying element characterization

Figure 2 shows the microstructure and elemental distri-
butions of the microalloyed WCu composites.

Figure 2a–c shows that the microstructure of the
microalloyed WCu composites consists mainly of a gray

matrix, grayish-white tungsten particles, and black sphe-
rical inclusions. The grain boundary of thematrix (Figure 2a)
is distinct, the matrix (Figure 2b) is smooth, and the matrix
(Figure 2c) is heavily grooved. The elemental distributions in
Figure 2a1–a5, b1–b5, and c1–c5 show that Cu and the micro-
alloying elements are evenly distributed in the matrix,
W is distributed on the grayish-white tungsten particles,
Al is distributed mainly on the matrix and black spherical
inclusions, and O is distributed mainly on the black sphe-
rical inclusions.

Figure 3 shows the EDS analysis of phases P1–P9 in
Figure 2a–c. The results for P1, P4, and P7 show that Ni,
Fe, and Mn were dissolved in the copper matrix, and their
content decreased in turn, while the content of aluminum
in the matrix increased. The thermodynamic equilibria in
Figure 1 show that at 1,800–3,000 K, the Ni and Fe con-
tents remained essentially stable, and the Al content
increased with increasing temperature, whereas the Mn
content decreased gradually. These values are in good
agreement with the experimental results. The results for
P2, P5, and P8 show that the grayish-white tungsten par-
ticles contained only W. The results for P3, P6, and P9
show that the atomic ratio of Ca, Al, and O in the black

Figure 3: EDS analysis of Point (P1–P9) in Figure 2.
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spherical inclusions was close to 1:4:7, indicating that the
inclusions were CaAl4O7.

Table 1 shows the chemical compositions of the
microalloyed WCu composites. The Ni, Fe, and Mn con-
tents in the microalloyed WCu composites are lower than
the target content of 3.0 wt%. The Ni yield is the highest
(95.33%), possibly because Ni is infinitely soluble in
copper, and Ni can combine with W to form Ni4W (as
shown in Figure 1), which promotes the forward chemical
reaction. The Fe yield is 51.00%; the main reason may be
the low solubility of Fe in copper. The yield of Mn is the
lowest, only 23.33%; the main reason is that the high

temperature during SHS is not conducive to the forward
process of the reduction reaction, in which MnO2 is
reduced by Al. This result is consistent with the results
in Figure 1. Ca and O were present in the WCu composites
mainly in inclusions consisting of Ca, Al, and O. The Al
content included solid-solution Al in the matrix and the
Al in inclusions.

3.3 Tungsten particle characteristics

Figure 4 shows the phase distributions of the microstruc-
ture in the microalloyed WCu composites.

The phase area ratio of tungsten particles in the Ni-
containing WCu composite is the largest (34.35%), fol-
lowed by those of the Fe-containing composite (24.78%)
and the Mn-containing composite (24.12%). These values
are associated mainly with the tungsten content of the
microalloyed WCu composites. The phase area ratios of

Table 1: Composition of microalloyed WCu composites

Element W Al O Ca Fe Ni Mn Cu

Fe 43.46 7.25 2.65 0.27 1.53 — — Bal.
Ni 44.64 8.36 3.92 0.36 — 2.86 — Bal.
Mn 38.49 12.21 3.72 0.23 — — 0.70 Bal.
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Figure 4: Phase distributions of microstructure in WCu composites microalloyed with (a) Fe, (b) Ni, and (c) Mn.
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inclusions in the WCu composites microalloyed with Fe,
Ni, and Mn are 0.25, 1.09, and 0.42%, respectively. These
results are consistent with the variation of the tungsten
and oxygen contents in Table 1.

Figure 5 shows the W particle distributions in the
microstructure of the microalloyed WCu composites. The
average diameters of W particles in the WCu composites
microalloyed with Fe, Ni, and Mn are 3.47, 4.88, and 1.26μm,
respectively.Mn clearly decreases the size of tungsten particles,

and the size reduction effect of the microalloying elements
on tungsten particles follows the order Mn > Fe > Ni. The
tungsten particle size of the Fe-containing WCu composite
ranges from 0 to 11.00 μm but the size is concentrated at
0–2.00 μm; the particle size of the Ni-containing WCu com-
posite ranges from 0 to 10.00 μm but the size is distributed
discretely; and the particle size of the Mn-containing WCu
composite ranges from 0 to 6.00 μm but the size is concen-
trated at 0–2.00 μm.
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Figure 5: W particle distributions in microstructure of WCu composites microalloyed with (a) Fe, (b) Ni, and (c) Mn.

Figure 6: Typical W/Cu interface in microstructures of WCu composites microalloyed with (a) Fe, (b) Ni, and (c) Mn.
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These results indicate that the tungsten particles have
a more uniform size when the microalloying element has a
greater size reduction effect on tungsten particles.

3.4 Interface behavior

Figure 6 shows that there is no obvious phase interface between
tungsten particles and the matrix with the microalloying
elements. In addition, the matrices of the WCu composites
microalloyed with Fe and Mn are relatively smooth,
whereas that of the composite microalloyed with Ni
appears fuzzy and the fuzziness may strengthen the
W/Cu interface.

Figure 7 shows line scan analyses of typical W/Cu
interfaces. A transition zone clearly appears between
tungsten particles and the copper matrix. Along the scan-
ning direction, the Cu, Al, and microalloying element
contents decrease gradually, whereas theW content increases
gradually. Here, d1 and d2 are defined as the interfacial transi-
tion zone, in which the Cu and W contents and the Al and
microalloying element contents, respectively, change at the
W/Cu interface. The thicknesses (d1) of the WCu composites
microalloyed with Fe, Ni, and Mn are 2.2, 1.2, and 1.5μm,
respectively. This result indicates that each microalloying ele-
ment reduces the surface tension of the liquid metal to a
different degree, and the effect on the wettability of the inter-
face follows the order Ni>Mn> Fe. The thicknesses (d2) of the
WCu composites microalloyed with Fe, Ni, and Mn are 0.7,
0.5, and 0.35μm, respectively. This result indicates that the
thickness of the intermetallic compound layer or solid solu-
tion layer of the microalloying element at the W/Cu interface
follows the order Fe > Ni > Mn. According to the results in
Figure 1, the intermetallic compounds Fe3W2 and Ni4W are
typically produced at the W/Cu interface of the WCu compos-
ites microalloyed with Fe and Ni, whereas a solid solution
layer is typically produced at that of the composite micro-
alloyed with Mn [32].

4 Conclusion

Fe, Ni, and Mn can be added to WCu composites in situ by
thermite reduction. Below the adiabatic temperature, the
increasing temperature has little effect on the reduction
of Fe2O3 and NiO by Al but is not conducive to the reduc-
tion of MnO2 by Al. The content of the microalloying ele-
ments in the microalloyed WCu composites was below
the target value. The yields of Ni, Fe, and Mn followed
the order Ni > Fe > Mn. The microalloying elements Ni,
Fe, and Mn were solidly dissolved in the copper matrix,
and their contents decreases in turn, while the Al content
in the matrix increased. Mn clearly reduced the size of
tungsten particles, and the size reduction effect of the
microalloying elements on tungsten particles followed

Figure 7: Line scan analysis of typical W/Cu interfaces in Figure 6
(L1: Fe, L2: Ni, and L3: Mn).

Effects of microalloying elements on the microstructure of WCu composites  767



the order Mn > Fe > Ni. The effect on the wettability of the
interface followed the order Ni > Mn > Fe. The interme-
tallic compounds Fe3W2 and Ni4W were typically pro-
duced at the W/Cu interface of the WCu composites
microalloyed with Fe and Ni, whereas a solid solution
layer was typically produced on the composite micro-
alloyed with Mn. Increasing interfacial wetting was not
conducive to the reduction of the tungsten particle size.
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