Startseite Correlation of Water Fluoride with Body Fluids, Dental Fluorosis and FT4, FT3 –TSH Disruption among Children in an Endemic Fluorosis area in Pakistan
Artikel Open Access

Correlation of Water Fluoride with Body Fluids, Dental Fluorosis and FT4, FT3 –TSH Disruption among Children in an Endemic Fluorosis area in Pakistan

  • Sadia Zulfiqar , Shafiq ur Rehman EMAIL logo , Humayun Ajaz , Shan Elahi , Waheed uz Zaman , Nayyab Batool und Farhat Yasmeen
Veröffentlicht/Copyright: 1. Juli 2019

Abstract

In the present study 134 children were studied for comparison and correlation between an endemic fluorotic village Rukh Mudke (RM), n = 74, and a non-fluorotic village Ottawa (OTW), n = 60. The children were aged between 7-18 years and selected for the estimation of fluoride in their household water, body fluids (urine-serum), dental fluorosis and thyroid hormones (Free tri-iodothyronine (FT3) free tetra iodothyronine (FT4) and thyroid stimulating hormone (TSH) respectively. Mean concentration of water fluoride in subjects of RM was 4.6 ×106 ng/L, urine fluoride 2.59 ×106 ng/L, serum fluoride 6.0 ×104 and dental fluorosis 90.5% respectively. Significant elevation (P = 0.000) in the concentration of three out of these four variables (P < 0.01) was observed (except in serum fluoride) in subjects of RM compared to those in the control group (OTW). Mean FT4, FT3 and TSH concentrations in RM subjects was 18.3 pmol/L, 5.06 pmol/L and 3.2 mlU/L respectively. No marked difference in FT4 and FT3 (P = 0.17 and P = 0.7) was found compared to the control (OTW) group, while significant elevation in TSH (P < 0.05) was found in. 22% of the children in the RM group, portrayed well defined thyroid hormonal aberrations. A negative correlation between water fluoride - FT4 (r = - 0.24); a strong positive between water, urine, serum, dental fluorosis and TSH (r = 0.94, 0.87, 0.88, 0.74 and 0.8) and moderate correlation between water fluoride - FT3 (r = 0.52) was observed. Results of this study indicate that the fluoride intoxication through drinking water is not only increasing fluoride level in body fluids and deteriorating teeth but also destroying thyroid function in a large number of children.

1 Introduction

The problem of elevated levels of fluoride in groundwater is prevalent in many regions of Pakistan. It was very first recognized in Punjab by Wilson in 1941 in the town of Raiwind [1]. Currently, fluorosis is endemic in many areas of Sindh, Balochistan and Punjab, affecting millions of people with a remarkable ratio of children [2]. However, the problem of excessive fluoride in ground water is widespread throughout the world and approximately 200 million individuals among 25 countries are under the terrible providence of fluorosis including India, China, Sri Lanka, Spain, Italy, West Indies and America [3, 4, 5, 6, 7]. For example in India alone 21 states out of 29 and 65 million people including 6 million children are affected by fluorosis [8, 9]. In Pakistan, out of 29 major cities 34% had water fluoride greater than 1.5 × 106 ng/L including Lahore, Quetta and Tehsil Mailsi with maximum values of 23.6 ×106 and 24.48 ×106 ng/L, respectively [7]. A large number of human activities increase fluoride in the environment, including chemical production plants, waste pools, production of aluminum, steel, glass, enamel, brick, tile, pottery, and cement, manufacture of fluoride containing chemicals, phosphate fertilizers and metal casting, welding, and brazing [10] In 2002, a study reported in India showed fluorosis in 10% of children, even when the concentration of fluoride in water was 1.0 ×106 ng/L [11].

Excretion of urinary fluoride is considered as the primary indicator of fluoride toxicity, not only in the fluoride susceptible workers, but also in natives of fluoride contaminated territories [12]. Disintegration of renal activity causes the decrease in the excretion of fluoride: increasing the probability of its deposition within the kidney [13]. As kidneys are the main excretory path of fluoride from the body, 50% fluoride is excreted within 24 hours of its consumption, while the remaining 93-97% get accumulated in hard tissues like teeth and bones, causing dental and skeletal fluorosis [14,15]. Excessive fluoride in teeth changes the rate of disintegration of amelogenin (enamel matrix protein): alters the function of protease by decreasing the availability of calcium ion in mineralization environment, giving rise to hypo mineralized enamel which presents itself as a sheenless and opaque look [16] with brown streaks due to fluorhydroxy apatite formation. A large number of factors influence the accumulation of fluoride in the hard tissues, like endemic pollution, nutritional status, supplementation of water supply with fluoride, usage of bottled water, carbonated drinks, age and gender etc. [17,18]. Dental fluorosis is also a developmental abnormality, which indicates disturbed thyroid hormonal secretion [1]. In fact the most sensitive organ of the body affected by fluoride is the thyroid gland [19] Desun in 1994, demonstrated potential effects of fluoride on thyroid hormonal production [20]. Yaming in 2005 described that long term ingestion of fluoride is a risk factor for the progression of thyroid abnormalities [21]. Interference of fluoride in thyroid hormone metabolism is a potential cause of degeneracy in central nervous system, deterioration in brain function and anomalous growth in children [22].

Fluoride exists in human serum in the form of ionic (F¯) and non-ionic fluoride (NF) where non-ionic makes up 80-90% of total fluoride. Numerous studies are available showing a positive dose relationship between water and serum fluoride [23,24].

Few studies from Punjab, especially from the villages of district Kasur are available depicting concentration of fluoride in water, urine and serum [25, 26, 27]. Consumption of fluoride, primarily through drinking water as (75% of daily intake) causes different types of fluorosis at different stages [28]. To prevent fluoride toxicity, it is very important to investigate the ground water of fluorosis affected territories and examine its consequences on the natives, especially children, which are most adversely affected.

One such area, (Manga Mandi and its surroundings) is examined in the present study, where fluorosis has been documented previously [2,28]. Rukh Mudke is a village; 3.69 km east of Manga Mandi where water contamination, excessive browning of teeth and common problem of joint pain (all signs of excess fluoride consumption) in children have been found. In this territory, the effect of high fluoride intake on the human body in a particular age group has tried to explore in every possible detail. Similar studies have also been performed in India and China in endemic fluorosis rural areas to understand the long term influence of fluoride intake on the human body, particularly in children [29,47].

2 Material and Method

2.1 Reagents and Chemicals

The following reagents and instruments were used during the course of fluoride quantification,

Fluoride Ion Selective (combination) Electrode; HI 4110: Hanna Instruments, Rhode Island, USA. pH/ISE/mv meter ; HI 4222: Hanna, Electrode Holder ; HI 76404: Hanna , Magnetic Stirrer ; HI 180: Hanna , Plastic Beakers ; HI 740036P : Hanna , Gamma Counter ; Cap-RIA 16 : Capintec Inc. New Jersey, USA. Vortex type Mixer; M 63210-33: Barnstead Internationals, Texas USA. Orbital Shaker OSM-747; Gallenkamp: Leicestershire UK, 500 UL semi programmed pipette; Eppendorf International: Hamburg Germany, Small test tubes (Specially designed 5 cm long, ɸ 14 mm). Fluoride standard solution 1000 ppm; HI 4010-03: Hanna, Total ionic strength adjustment buffer; (TISAB II) HI 4010-00: Hanna, Reference fill solution; HI 7075: Hanna, FT4, FT3, TSH kits by Immunotech Inc. Beckman; Prague Czech Republic. Deionized water (<18MΩ/cm) for dilutions.

2.2 Selection of subjects

For the purpose of the study, a village around Manga Mandi namely Rukh Mudke (RM) was selected as a sampling group because of evidence suggesting excessive mottled enamel and high water fluoride content in the nearby sites [26]. The area of manga Mandi (MM) is located towards the North West boundary of the district of Kasur; geographically situated at 31° 30´ N latitude and 74°06´E longitude: 43.4 km from Kasur. Natives of this village use groundwater as a primary source of drinking water and hand pumps, motor pumps and tube wells are the main sources of drinking water. Initial survey of selected villages showed a mean water fluoride concentration of 5 mg/L. For comparison, 60 healthy individuals of the same age group, living in a non-fluorosis village Ottawa (65 km from Lahore) with identical socioeconomic conditions were selected as a control group. A total of 134 male and female participants (74 from RM and 60 from OTW) with or without dental fluorosis: with groundwater consumption as drinking water and only by birth residents were randomly selected for comparison between fluorotic (RM) and non fluorotic (OTW) territories.

2.3 Sample collection

For the collection of water samples, clean, transparent plastic bottles (200 ml capacity) with caps were used. Urine samples were collected in plastic containers of 50-100 ml capacity. Collection of blood samples was done with syringes containing metal free needles and plastic capped vials of 2 ml volume. The clinical protocol was approved by the ethical committee of Institute of Chemistry, University of the Punjab. “Written and informed Consent for participation” was taken from each child or his/her guardian. Those who did not agree or were not a resident by birth were excluded from the study.

All glassware and polyethylene bottles were initially washed with deionized water, soaked in 2 molar HNO3 overnight, rinsed again with ultra-pure water and dried before use [30].

2.4 Water Sampling

Collection of water samples was done between 9 am and 3 pm in four sequential visits from sampling sites during May-August 2017. Children aging 12-18 provided samples themselves while guardians, usually their mothers, helped to collect samples from those less than 11 years old. Collection of water samples was done from a subject’s household tap, either hand pump or electric motor, getting supplies from the water and sewer authority (WASA) tube well in that area. Each water bottle was rinsed three times with sampling water and emptied downstream. Before collecting the sample, the tap or hand pump was kept open for 3 minutes to flush the pipe sufficiently to get a representative sample. In order to avoid turbulence and air bubbles, the bottles were filled slowly and gloves were provided to avoid any hand contamination (a volunteer helped in collection of each sample). At the sampling location the color, odor, taste and PH of the water samples was noted. All the water samples were transported to the laboratory on the same day and stored frozen. Each samples was analyzed for fluoride concentration within a week by Fluoride ion selective electrode (F- ISE [25, 27])

2.5 Urine collection

Participants were requested to provide “on the spot” causal urine samples in pre-washed, pre-coded polyethylene containers, containing 0.2 g EDTA as a preservative and during 9:00 am to 1:00 pm in three successive visits. Collection from younger children was done with the help of their mothers. Each urine sample was packed in a separate polyethylene bag and placed in an ice box. All samples were transported to the laboratory on the same day and analyzed by fluoride ISE [27].

2.6 Blood sampling

5 ml of blood was withdrawn intravenously with the help of a sterilized syringe by a qualified nurse in the presence of a General physician along with urine collection. Blood was transferred into a pre-washed, clean, open glass vial at room temperature for 30 minutes, then it was centrifuged at 4000 rpm for 10 minutes and the serum was separated into another vial and capped [31]. Serum vials were kept frozen at -20°C and analyzed within one week using fluoride ISE [25].

2.7 Survey of dental fluorosis

Due to the very common existence of the browning of teeth in the studied area, a dentist was arranged who analyzed the teeth of sampling participants with mouth mirror, forceps, and probe under sunlight. Dean’s fluorosis index was used to examine the level of dental fluorosis according to the scale. Revised six point scale (1942) according to the levels (0-5) was used for this purpose. The individual score depends on the two most severely affected teeth. Due to its simplicity, it is most commonly used in prevalence studies.

2.8 Fluoride analysis by Ion Selective Electrode

Determination of fluoride in water, urine and serum was done using fluoride ion selective (combination) electrode. It is a solid state electrode with a lanthanum fluoride crystal membrane and a reference electrode incorporated in it to complete its electrolytic circuit. The lanthanum fluoride crystalline pellet is practically insoluble in the test solutions being measured and produces a potential change due to changes in the sample’s ion activity. When the ionic strength of the sample is fixed, the voltage is proportional to the concentration of fluoride ions in solution and the electrode follows the Nernst equation: E= Ea + 2.3 RT/nF log A ion where E = observed potential, Ea = Reference and fixed internal voltages, R = gas constant (8.314 J/K Mol), n = Charge on ion (1-), A ion = ion activity in sample, T = Absolute Temperature in K and F = Faraday constant (9.648 x 104 C/equivalent).

Deionized water with resistivity < 18MΩ/cm was used for dilutions. Fluoride ISE was calibrated first with various fluoride standards and then samples were analyzed one by one. After each reading the electrode was washed and dried with absorbent paper before testing the next sample [32].

For determination of water fluoride, 7:3 ratios of water sample and TISAB were mixed. The concentration of fluoride standard for analysis was kept within the 0.1-10 mg/L range. Water fluoride results were expressed as less than 10% coefficient of variation of impression profile. For accuracy and validity of the applied method, water samples were spiked with standard fluoride solutions and recoveries were measured in the range 0.2-3.2 ug which appeared to be 99% (range 96.7-99.8%).

For urine fluoride analysis, 10:3 ratios of urine sample and TISAB were used with the fluoride standard kept between 0.5-5 mg/L. Urine fluoride results were expressed as less than 10% coefficient of variation of impression profile. For precision, urine samples was spiked with standard fluoride solutions and found to be in the range of 98-101.3% (mean percentage recovery 99.1%).

For the determination of fluoride in serum, 1:1 ratios of serum and TISAB were combined and the Fluoride standard solution used for calibration was prepared in the range 0.01-1 mg/L. Mean percentage Co-efficient of variance appeared to be 0.22% and 0.23% in case of intra and inter assay precision. For precise measurement and validation of the applied methodology, percentage recoveries exhibited the range of 96 - 101.4% (mean 98%).

2.9 FT4, FT3 and TSH analysis

Determination of free T4 and free T3 was carried out by competitive Radioimmunoassay (RIA) and thyroid stimulating hormone (TSH) by a sandwich type Immunoradiometric assay (IRMA) using commercial kits of Immunotech Inc. (Beckman, Czech Republic). Measurement of radioactivity, fitting of a standard curve and analysis of samples was carried out using a computerized gamma counter (Cap-RIA 16, CAPINTEC; Inc. USA). Assay reliability was determined by the use of commercially derived control sera of low, medium and high concentrations, which were included in every run. All assays were carried out in duplicate. At least 10% of coefficient of variation (CV) of impression profile was used to present the outcomes of RIA and IRMA.

2.10 Statistical analysis

The comparison of the mean water, urine, serum fluoride, dental fluorosis, FT4, FT3 and TSH between children of RM and OTW was done using student t-test (unequal variances) by Microsoft Excel at confidence interval (CI) of 95% : P –value ‘less than 0.05’ was considered statistically significant. Normality distribution of the data was checked by the Kolmogorov- Smirnov test before application of this parametric test. In order to find correlation between water fluoride with urine/serum fluoride, FT4, FT3, TSH and dental fluorosis Pearson correlation at 95% CI and P < 0.05 was applied. Group wise comparison of dental fluorosis with FT3, FT4 and TSH was done using mean, standard deviation and student t-test under same CI and P -value.

3 Results

A total of 134 children were examined during the course of this study; 74 from RM (31 male and 43 females) and 60 from the control group i.e. OTW (30 male and 30 females). The average age of the participants in RM and OTW was 11.23 ± 2.51 and 12.13 ± 3.2 respectively.

In the subjects of RM, 75.67% samples had fluoride in water greater than the WHO limit [1.5 ×106 ng/L (33)] while from OTW all water samples appeared within WHO standard range. Results (Table 1) indicate that the level of fluoride in drinking water of RM was significantly (P = 0.000) higher than in OTW.

Table 1

Level of Fluoride in Water, Urine and Serum of Children from RM and OTW.

Rural AreaNumber of samplesWater Fluoride (ng/L)Urine Fluoride (ng/L)Serum Fluoride (ng/L)
RM4.66 ×106 ± 2.83×106 (a)2.59 ×106 ± 1.33×1066.0 ×104 ± 5.0 ×104
740.64 ×106 - 11.46 ×106 (b)5.0 ×104 -5.93×1066.0 ×103 – 0.26×106
OTW0.54 ×106 ± 0.15×1061.52 ×106 ± 0.43×1065.0 ×104 ± 1.0×104
600.24×106 - 1.1×1065.2 ×105 - 2.3×1064.7 ×104 – 5.5×106
  1. (a) = Mean ± Standard Deviation

    (b) = Range

    Note; Water Fluoride: P < 0.001 (student t test using unequal variances between RM and OTW), Urine Fluoride: (P < 0.001), Serum Fluoride: (P > 0.05).

The average concentration of fluoride in the urine samples of the two villages is presented in the same Table. Concentration of urinary fluoride in the children of RM appeared to be clearly elevated compared to the control (P = 0.000 (student t test)). The value of harmless fluoride concentration in human urine quoted in literature differs depending upon the age of population, level of fluoride in drinking water and additional sources of fluoride intake [34].

Figure 1 presents the scatter plot between water and urine fluoride of RM Participants. Pearson correlation coefficient (r = 0.94) showed that a very strong relationship exists between water and urine fluoride thereby an increase in the amount of fluoride in water is the main source of fluoride elevation in urine.

Figure 1 Relationship between Water and Urine Fluoride of RM Participants. Pearson correlation coefficient r = 0.94.
Figure 1

Relationship between Water and Urine Fluoride of RM Participants. Pearson correlation coefficient r = 0.94.

No significant difference in serum fluoride level of RM and OTW groups (P = 0.05) is noticed (Table 1). Mean urine fluoride of the subjects of OTW also show higher than safe limits: indicating other potential sources of fluoride intake than water. Normal limit of fluoride in urine and serum are 1.0 ×106 ng/L and 0.15 ×106 ng/L respectively [35].

Figure 2 shows the scatter plot of water fluoride with serum fluoride of subjects from RM. Water fluoride exhibited strong positive dose relation with serum fluoride (r = 0.86). Urine fluoride also portrayed identical relation with serum fluoride (r = 0.86: Figure 3), clearly showing that the presence of excessive fluoride in water as main source of over fluoride consumption by human body.

Figure 2 Relationship between Water and Serum Fluoride of RM Participants r =0.86.
Figure 2

Relationship between Water and Serum Fluoride of RM Participants r =0.86.

Figure 3 Relationship between Urine and Serum fluoride of RM Participants r = 0.86.
Figure 3

Relationship between Urine and Serum fluoride of RM Participants r = 0.86.

The normal laboratory range of FT4, FT3 and TSH is 11.5 - 23 pmol/L, 2.5 - 5.8 pmol/L and 0.3 - 5 mIU/L correspondingly. The concentration of free T4 in the subjects of RM and OTW is summarized in Table 2. Student t-test of two groups showed no significant difference (P = 0.17) in the mean value of the two groups. Table 2 is also shows the concentration of free T3 and free T4 in subjects of RM versus OTW. There appeared no significant difference (P = 0.77) in the mean FT3 and FT4 of the two groups. When comparing the concentration of TSH in both groups its level in RM children was clearly elevated (P < 0.05) than in subjects of OTW (Table 2).

Table 2

FT4, FT3 and TSH Concentration in Serum of Children from RM and OTW.

Rural AreaNo. of samplesFT4

(pmol/L)
FT3

(pmol/L)
TSH

(mIU/L)
RM7418.3 ± 2.47 (c)5.06 ± 0.63.2 ± 2.2
9.39 -23.4 (d)3.64 - 6.90.38 - 18.3
OTW6017.55 ± 3.435.09 ± 0.532.36 ± 1.06
11.02-23.082.81- 6.00.54 - 6.12
  1. (c) = Mean ± Standard Deviation

    (d) = Range

    Note; FT4: (P > 0.05) (Student t test using unequal variances between RM and OTW Participants), FT3: (P > 0.05), TSH (P < 0.05)

The correlation of FT4, FT3 and TSH in participant’s serum with drinking water fluoride between the subjects of sample (RM) and control (OTW) groups by Pearson Correlation is shown in Table 3. There is no significant difference observed between water fluorides - FT4 whereas the significant positive dose relation was noted between water fluoride - FT3 and water fluoride -TSH in both villages.

Table 3

Correlation of Serum FT4, FT3 and TSH with Water Fluoride at RM and OTW.

ParametersRMOTW
Pearson Correlation Coefficient (r)Pearson Correlation Coefficient (r)
Water Fluoride –FT4-0.240.02
Water Fluoride – FT30.540.12
Water Fluoride – TSH0.60.8

To examine the level of dental fluorosis (D.F), all 134 subjects were analyzed. 90.5% from RM and 7% from OTW exhibited various degrees of D.F. Its various stages among the study group were white flecks, small to medium opaque paper white areas covering 25-50% of tooth surfaces, marked wears on biting surfaces, brown staining up to confluent pitting and “all tooth surfaces affected” were observed.

In RM moderate (score 4) dental fluorosis is most commonly observed (Figure 4); suggesting that the endemic fluorosis area is greatly affecting tooth development : even the minimum influence is so high that it produces level 3 dental fluorosis, as a result of fluoride toxicity. Water fluoride shows a positive relation with (r =0.74) fluorosis index (Figure 5) in subjects of RM suggesting strong impact of fluoride consumption on teeth derangements.

Figure 4 Dean’s fluorosis index for RM Participants.
Figure 4

Dean’s fluorosis index for RM Participants.

Figure 5 Relationship between Water Fluoride and Dental Fluorosis of RM Participants r = 0.74.
Figure 5

Relationship between Water Fluoride and Dental Fluorosis of RM Participants r = 0.74.

The number of children from RM: falling in various D.F categories as per Dean’s Index and their corresponding mean FT4, FT3 and TSH concentrations respectively is summarized in Table 4. Comparison of mean FT4 in different D.F scores (Student t- test using unequal variances) indicate that it differs significantly (P < 0.00) between mild - severe whereas FT3 and TSH differs in very mild - moderate (P < 0.05 for FT3 and TSH) and very mild - severe (P < 0.00 for FT3 and TSH) grades correspondingly.

Table 4

Relationship between D.F grades and mean FT4, FT3 and TSH in RM Participants.

D.F group (According to Dean’s index)No. of samplesFT4 pmol/L (M ± SD)FT3 pmol/L (M ± SD)TSH mlU/L (M ± SD)
1818.75 ± 1.865.0 ± 0.62.42 ± 0.96
21018.81 ± 2.064.8 ± 0.382.0 ± 0.37
31117.75 ± 1.65.23 ± 0.622.36 ± 0.88
42417.93 ± 2.315.25 ± 0.513.19 ± 0.71
51417.67 ± 3.335.3 ± 0.335.93 ± 3.69

In the control group (OTW) no such comparison is possible due to minor occurrence of D.F in different categories.

4 Discussion

Punjab is one of the provinces of Pakistan where fluoride is endemic among many regions especially in Kasur district and its surroundings. Presence of fluoride containing salt range, excessive use of phosphate fertilizers and large number of brick kiln units, causing tremendous increase in fluoride toxicity [36,37]. In sample (RM) and control (OTW) territories, due to poor socio-economic conditions; infrequent travelling to other residential sites and rare usage of mineral water defines the fluoride ingestion history.

Consumption of drinking water is directly proportional to atmospheric temperature. In Punjab the average summer temperature is 41°C [37] and, according to WHO [38], the maximum concentration of fluoride in drinking water under such extreme climatic conditions should not be more than 0.7×106 ng/L. An average water consumption per child from April to August is 2.5 L and 86-97% fluoride from water gets absorbed directly into the human body [39,40]. In the current study concentration of drinking water fluoride at RM is 4.66 ×106 ng/L (mean, Table 1) which is three times as much as than the recommended safe limit: setting an elevated baseline for other investigating parameters. Farooqi found water fluoride range of 2.47 ×106 - 21.1×106 ng/L in a nearby village Kalalanwala while Ahmed observed 86% water samples with fluoride concentration > WHO limit in the same village [36,41].

Level of fluoride in bio fluids (urine and serum) is considered to be the most authentic measure of fluoride toxicity [42]. Kidneys are the main excretory organs for removal of absorbed fluoride via urine [21]. Chronic kidney problems often seen in early aging society shows the gradual decline of kidney function that may lead to permanent kidney failure, or end-stage renal disease: excessive serum fluoride on the other hand directly influence the production and function of thyroid hormones. Our findings i.e. higher concentration of fluoride in urine (2.59 ×106 ng/L) and serum from RM subjects (Table 1) is indicating the same potential hazards. Identical urine fluoride level (1.78 ×106 ± 1.20 ×106 ng/L) was observed by Isaac in 100 primary school children aged 6-13 years in Kaiwara village while similar serum fluoride concentration range was also observed by Kumar in India [43,44].

In the present analysis water fluoride shows a positive dose relationship with urine fluoride (r = 0.94, Figure 1) and serum fluoride (r = 0.86, Figure 2). Urine fluoride also presented a positive correlation with serum fluoride (r =0.86, Figure 3) therefore showing the link of fluoride between these parameters. This fact also advocated the potential role of water fluoride in increasing fluoride concentration within body fluids in this particular region. Similar results were also observed by Rathee and M. Qayyum [25,27,45] .

Approximately half of the fluoride ingestion becomes a part of hard tissues within 24 hours [46]. Absorption of fluoride by skeletal tissues is more active in adolescents and decreases with age [47]. The present analysis indicates the same high absorption of fluoride by calcified tissue (i.e. teeth in the form of Fluorapatite) with increase in ground water fluoride (r = 0.74, Figure 5): responsible for their unpleasant brown look which further causes teeth deterioration in early stages of life. Identical elevation in teeth browning with increase in ground water fluoride was also noticed in South India by Viswanathan [47]. In this area (RM) this phenomena is so pronounced that it is causing 90.5% D.F with 66.4% children suffering from mild to severe degree of fluorosis (Figure 4). 94.63% and 85.37% teeth fluorosis was also found in Dadanpur and Wamiao respectively, the two endemic fluorosis villages in India and China [44,48] thereby confirming this relationship. D.F is also an indication of abnormal thyroid metabolism [49]. Also the risk factors known to influence teeth fluorosis are similar to those observed in thyroid dysfunction.

When mean serum FT4, FT3 and TSH were compared between RM and OTW no significant difference in FT4 and FT3 of the two groups was noticed, but serum TSH (which is stimulator of thyroid gland for T4 and T3 production) showed a clear elevation in the children of RM than OTW (P < 0.05). Therefore TSH is the first hormone getting disturbed by excess fluoride intake. Similar outcomes were reported by Xiang in children from an endemic fluorosis village compared to a non-fluorosis village in China [48].

The mean FT4, FT3 and TSH of subjects of two groups is compared with their corresponding mean W.F (Table 3). A positive relationship is observed between W.F - FT3 and W.F- TSH in RM thereby indicating that drinking W.F is playing direct or indirect role in elevating the level of FT3 (r = 0.52) and TSH (r = 0.8) at this endemic fluorosis site. Such elevation in FT3 and TSH level in 8-12 years old children was observed by Xiaoli in chronically fluorosis areas [50]. An increment in TSH with excess water fluoride was also observed by Susheela in Delhi India [49].

22% children at RM showed well defined thyroid hormonal aberration with 11 % depicting high TSH and normal FT4 - FT3: the first sign of thyroid malfunctioning known as “subclinical hypothyroidism”. 3% showed elevated FT3 with normal FT4 and TSH which is an indication of cellular resistance to FT3 that can lead to “hypothyroidism” because active T3 cannot get to the cell to do its job. 3% with high FT4 - normal FT3 -TSH which are the first signs of “Hyperthyroidism” leads to an elevated metabolic rate: characterized by rapid heart rate, high blood pressure, weight loss, nausea and vomiting etc. 1.35% with low FT4, high TSH and normal FT3: the main indicators of “primary hypothyroidism and iodine deficiency disorder” resulting in lethargy, depression and weight gain in later stages of development. Identical hormonal abnormalities are also noticed in children of Dehli India exposed to excess fluoride consumption [49]. So all these facts are a part of the reason that why millions of children have fragile physical and mental health status in Punjab Pakistan.

In the present work a significant correlation was observed between serum fluoride and FT4 (r = 0.3) FT3 (r = 0.35) and TSH (r = 0.8): demonstrating how these hormonal production increase or decrease with increment or decline in serum fluoride. Therefore by controlling fluoride level in body fluids, disturbance in thyroid hormones can be significantly reduced. Singh et al studied the same correlation in 8-15 years old children living in endemically fluorosis and non-fluorosis territories [29]. Also Wu found such serum thyroid correlation in rats [51].

When comparing various degrees of D.F (score 1-5) with their corresponding mean FT4, FT3 and TSH (Table 4), it was observed that FT4 differs markedly between mild-severe while FT3 and TSH between very mild-moderate and very mild – severe fluorosis Index respectively: supporting a significant relationship between these degrees of D.F and mean thyroid hormone concentrations. So this study could be helpful in predicting the magnitude of thyroid abnormalities in children merely from their dental status. Singh also reported similar differences in various scores of teeth fluorosis and their corresponding mean FT4, FT3 and TSH levels [29].

Although this was a comprehensive study there were some limitations that could not be overcome e.g.:

  1. While the two fluorotic and non-fluorotic villages were selected for the comparison, inhabitants from both villages had higher than normal fluoride levels in urine and serum, indicating other potential sources of fluoride than water.

  2. Fluoride measurement in liquid samples - water, urine and serum was performed using the same fluoride ion selective electrode; however the samples were kept till the final analysis and processed using quite different conditions.

  3. Over fluoride consumption also leads to skeletal fluorosis along with effects on stomach lining, nausea and other complication which were not included in this study.

Due to limited resources and the availability of children for sampling, these constraints could not be avoided.

5 Conclusion

It is obvious from the results that the concentration of fluoride in drinking water samples is evidently higher than control samples. Consequently the level of fluoride in body fluids (urine and serum) is elevated; resulting in disturbance of thyroid hormone production and function, as it is the most fluoride sensitive organ in human body and has effect on every cell of human anatomy. Positive correlation between these parameters advocates the massive role of fluoride toxicity towards disintegration of hard tissues. 90% teeth deterioration and 22% thyroid hormones abnormalities in apparently health teenagers raise many questions about the health of the future generation in this region. So in light of the current investigations, it is strongly recommended that a detailed study should be carried out to mark the area with excessive fluoride in ground water along with mapping of this region according to fluoride concentration in water. Also a comprehensive health survey should be accomplished to investigate the victims of endemic fluorosis so that the suitable preventive measures can be taken rapidly.

Acknowledgements

The authors thank Ghulam Muhi-u-deen (Manga Mandi) for his efforts in field surveys and sample collection and Dr.Waheed uz Zaman for technical support in estimation of fluoride and composing the manuscript in publication format. Authors are also grateful to Dr.Shan Elahi (Centre of Nuclear medicine Mayo Hospital, Lahore) for guidance and collaboration in thyroid hormone estimations. Co-operation of the children from Rukh Mudke; Manga Mandi and Ottawa: Gujranwala, Punjab Pakistan is also acknowledged.

  1. Conflict of interest: Authors declare no conflict of interest.

References

[1] Wilson R.H., Deeds F., The synergistic action of thyroid on fluorine toxicity, Endocrinology, 1940, 26, 851-856.10.1210/endo-26-5-851Suche in Google Scholar

[2] Tariq M.N., Khursheed A., Survey of fluorides and their removal, J.Pak. Soc.Public Health Engrs., 1981, 7, 73-84.Suche in Google Scholar

[3] Bhaumik R., Mondal N.K., Optimizing adsorption of fluoride from water by modified banana peel dust using response surface modelling approach, Appl.Water Sci., 2016, 6, 115-135.10.1007/s13201-014-0211-9Suche in Google Scholar

[4] Joshi S., Hlaing T., Whitford GM., Compston JE., Skeletal fluorosis due to excessive tea and toothpaste consumption, Osteoporos. Int., 2011, 22, 2557-2560.10.1007/s00198-010-1428-6Suche in Google Scholar

[5] Liu G., Chai C., Cui L., Fluoride causing abnormally elevated serum nitric oxide levels in chicks, Environ. Toxicol. Pharmacol., 2003, 13, 199-204.10.1016/S1382-6689(03)00002-4Suche in Google Scholar

[6] Moturi WK., Tole MP., Davies TC., The contribution of drinking water towards dental fluorosis: a case study of Njoro Division, Nakuru District, Kenya, Environ. Geochem. Health., 2002, 24, 123-130.10.1023/A:1014204700612Suche in Google Scholar

[7] Rasool A., Farooqi A., Xiao T., Ali W., Noor S., Abiola O., et al., A review of global outlook on fluoride contamination in groundwater with prominence on the Pakistan current situation, Environ. Geochem. Health., 2017, 404, 1265-1281.10.1007/s10653-017-0054-zSuche in Google Scholar PubMed

[8] Gupta S., Banerjee S., Saha R., Datta J.K., Mondal N., Fluoride geochemistry of groundwater in Nalhati-1 block of the Birbhum district, West Bengal, India, Fluoride, 2006, 39, 318.Suche in Google Scholar

[9] Rao N.S., Rao P.S., Dinakar A., Rao P.N., Marghade D., Fluoride occurrence in the groundwater in a coastal region of Andhra Pradesh, India, Appl. Water Sci., 2017, 7, 1467-1478.10.1007/s13201-015-0338-3Suche in Google Scholar

[10] Jha S.K., Nayak A.K., Sharma Y.K., Potential fluoride contamination in the drinking water of Marks Nagar, Unnao district, Uttar Pradesh, India, Environ. Geochem. Health, 2010, 32, 217-226.10.1007/s10653-009-9277-ySuche in Google Scholar PubMed

[11] Yadav J.P., Lata S., Assessment of fluoride toxicity and dental fluorosis in Sahlawas block of distt Jhajjar, Haryana, J. Forensic Med. Toxicol., 2002, 19, 7-12.Suche in Google Scholar

[12] Zipkin I., Likins R.C., McClure F.J., Steere A.C., Urinary fluoride levels associated with use of fluoridated waters, Public Health Rep., 1956,71, 767.10.2307/4589515Suche in Google Scholar

[13] Kono K., Yoshida Y., Watanabe M., Tanimura Y., Hirota T., Urinary fluoride excretion in fluoride exposed workers with diminished renal function, Ind. Health, 1984, 22, 33-40.10.2486/indhealth.22.33Suche in Google Scholar PubMed

[14] International Program on Chemical Safety, Fluorides, Retrieved from World Health Organization, Geneva, 2002.Suche in Google Scholar

[15] Błaszczyk I., Ratajczak-Kubiak E., Birkner E., Advantageous and harmfully effect of fluoride. Farm. Pol., 2009, 65, 623.Suche in Google Scholar

[16] Fejerskov O, Kidd E, (Eds.), Dental caries: the disease and its clinical management, 2nd ed., John Wiley & Sons, 2009.Suche in Google Scholar

[17] Ugran V., Desai NN., Chakraborti D., Masali KA., Mantur P., Kulkarni S., et al ., Groundwater fluoride contamination and its possible health implications in Indi taluk of Vijayapura District (Karnataka State), India, Environ. Geochem. Health, 2017, 39, 1017-1029.10.1007/s10653-016-9869-2Suche in Google Scholar PubMed

[18] Husdan H., Vogl R., Oreopoulos D., Gryfe C., Rapoport A., Serum ionic fluoride: normal range and relationship to age and sex. Clin. Chem., 1976, 22, 1884-1888.10.1093/clinchem/22.11.1884Suche in Google Scholar

[19] Shashi, Biochemical effects of fluoride on thyroid-gland during experimental fluorosis, Fluoride, 1988, 21, 127-130.Suche in Google Scholar

[20] Desun X., Yanling W., Ye L., Study the effect of fluoride on the 125I distribution in the thyroid in the rats, Chin. J. Ctrl. Endem. Dis., 1994, 9, 218-221.Suche in Google Scholar

[21] Ge Y., Ning H., Wang S., Wang J., DNA damage in thyroid gland cells of rats exposed to long-term intake of high fluoride and low iodine, Fluoride, 2005, 38, 318-23.Suche in Google Scholar

[22] He H., Chen Z.S., Liu X.M., The influence of fluoride on human embryo, Chin. J.Ctrl. Endem. Dis., 1989, 4, 136-7.Suche in Google Scholar

[23] Ahmed I., Rafique T., Hasan S.K., Khan N., Khan M.H., Usmani T.H., Correlation of fluoride in drinking water with urine, blood plasma, and serum fluoride levels of people consuming high and low fluoride drinking water in Pakistan, Fluoride, 2012, 45, 384-388.Suche in Google Scholar

[24] Li C.S., Ke X.D., Ionic, nonionic, and total fluoride in human serum, Fluoride, 1990, 23, 164-70.Suche in Google Scholar

[25] Qayyum M., Ahmad B., Ahmad M., Rehman R., Comparative study of fluoride concentration in human serum and drinking water in fluorinated endemic and non-endemic areas of Pakistan, J.Chem. Soc. Pak., 2013.Suche in Google Scholar

[26] Farooqi A., Masuda H., Siddiqui R., Naseem M., Sources of arsenic and fluoride in highly contaminated soils causing groundwater contamination in Punjab, Pakistan, Arch. Environ. Contam. Toxicol, 2009, 56, 693-706.10.1007/s00244-008-9239-xSuche in Google Scholar PubMed

[27] Qayyum M., Rehman R., Ahmad B., Ahmad M., Ali S., Murtaza S., Statistical Analysis of Fluoride Levels in Human Urine and Drinking Water Samples of Fluorinated Area of Punjab (Pakistan), J. Chem. Soc. Pak., 2013, 34.Suche in Google Scholar

[28] Farooq A., Zahid F., Asif S., Ali H.Q., Estimation of fluoride in drinking water in selected areas of southern Lahore, Pakistan, Sci. Int., 2016, 28, 391-395.Suche in Google Scholar

[29] Singh N., Verma K.G., Verma P., Sidhu G.K., Sachdeva S., A comparative study of fluoride ingestion levels, serum thyroid hormone & TSH level derangements, dental fluorosis status among school children from endemic and non-endemic fluorosis areas, Springerplus, 2014, 3, 7.10.1186/2193-1801-3-7Suche in Google Scholar PubMed PubMed Central

[30] Kandhro GA., Kazi T.G., Arain M.B., Evaluation of the Iodine Concentration in Serum and Urine of Hypothyroid Males Using an Inexpensive and Rapid Method, Pak. J.Anal. Environ. Chem., 2009, 10, 67-75.Suche in Google Scholar

[31] Negoita S., Swamp L., Kelley B., Carpenter D.O., Chronic diseases surveillance of St. Regis Mohawk Health Service patients, J. Public Health Manag. Pract., 2001, 7, 84-91.10.1097/00124784-200107010-00013Suche in Google Scholar PubMed

[32] Msonda K.W., Masamba W.R., Fabiano E., A study of fluoride groundwater occurrence in Nathenje, Lilongwe, Malawi, Phy. Chem. Earth, Parts A/B/C, 2007, 32, 1178-1184.10.1016/j.pce.2007.07.050Suche in Google Scholar

[33] World Health Organization, Guidelines for drinking-water quality: recommendations. Vol. 1. World Health Organization. 2004.Suche in Google Scholar

[34] Opydo-Szymaczek J., Borysewicz-Lewicka M., Urinary fluoride levels for assessment of fluoride exposure of pregnant women in Poznan, Poland, Fluoride. 2005, 38, 312-317.Suche in Google Scholar

[35] Jaganmohan P., Narayana S., Sambasiva R., Prevalence of high fluoride concentration in drinking water in Nellore district, Anadra Pradesh, India: a biochemical study to develop the relation to the rental failures, J.Med. Sci., 2010, 5, 45-48Suche in Google Scholar

[36] Bashir M.T., Bashir A.D., Rasheed M.A., Fluorides in the groundwater of Punjab. Pak. J. Med. Health Sci., 2012, 6,132-135.Suche in Google Scholar

[37] Farooqi A., Masuda H., Firdous N., Toxic fluoride and arsenic contaminated groundwater in the Lahore and Kasur districts, Punjab, Pakistan and possible contaminant sources, Environ. Pollution, 2007, 145, 839-849.10.1016/j.envpol.2006.05.007Suche in Google Scholar PubMed

[38] Murray J.J, World Health Organization, International Dental Federation & W.K. Kellogg Foundation. Appropriate use of fluorides for human health / edited by J.J. Murray. Geneva: World Health Organization, 1986, http://www.who.int/iris/handle/10665/39103Suche in Google Scholar

[39] Yadav A.K., Kaushik C.P., Haritash A.K., Singh B., Raghuvanshi S.P., Kansal A., Determination of exposure and probable ingestion of fluoride through tea, toothpaste, tobacco and pan masala, J.Hazard. Mater., 2007, 142 ,77-80.10.1016/j.jhazmat.2006.07.051Suche in Google Scholar PubMed

[40] Singh B., Gaur S., Garg V.K., Fluoride in drinking water and human urine in Southern Haryana, India, J.Hazard. Mater., 2007, 144, 147-151.10.1016/j.jhazmat.2006.10.010Suche in Google Scholar PubMed

[41] Ahmed K., The Manga-Mandi Episode, Sci.Technol. Dev., 2001, 20, 1-5.Suche in Google Scholar

[42] Kokot Z., Drzewiecki D., Fluoride levels in hair of exposed and unexposed populations in Poland, Fluoride, 2000, 33, 196-204.Suche in Google Scholar

[43] Isaac A., Silvia C.R.W.D., Somanna S.N., Mysorekar V., Narayana K., Srikantaiah P., Prevalence and manifestations of water-born fluorosis among schoolchildren in Kaiwara village of India: a preliminary study, Asian Biomed., 2010, 3, 563-566.Suche in Google Scholar

[44] Kumar S., Lata S., Yadav J., Yadav J.P., Relationship between water, urine and serum fluoride and fluorosis in school children of Jhajjar District, Haryana, India, Appl. Water Sci., 2017, 7, 3377-3384.10.1007/s13201-016-0492-2Suche in Google Scholar

[45] Rathee N., Garg P., Pundir C.S., Correlative study of fluoride content in urine, serum and urinary calculi, Ind. J.Clin. Biochem., 2004, 19, 100.10.1007/BF02894265Suche in Google Scholar PubMed PubMed Central

[46] Cohen J., The Chemical Dynamics of Bone Mineral. William F. Neuman and Margaret W. Neuman Chicago, the University of Chicago Press, J. Bone Jt. Surg.,1958, 40, 502.10.2106/00004623-195840020-00031Suche in Google Scholar

[47] Viswanathan G., Jaswanth A., Gopalakrishnan S., Aditya G., Determining the optimal fluoride concentration in drinking water for fluoride endemic regions in South India, Sci.Total Environ., 2009, 40, 5298-5307.10.1016/j.scitotenv.2009.06.028Suche in Google Scholar PubMed

[48] Xiang Q., Chen L., Liang Y., Wu M., Chen B., Fluoride and thyroid function in children in two villages in China, J.Toxicol. Environ.Health Sci., 2009, 1, 54-59.Suche in Google Scholar

[49] Susheela A.K., Bhatnagar M., Vig K., Mondal N.K., Excess fluoride ingestion and thyroid hormone derangements in children living in Delhi, India, Fluoride, 2005, 38, 98-108.Suche in Google Scholar

[50] Xiaoli L., Zhongxue F., Jili H., Qinlan W., Hongyin W., The detection of children’s T3, T4 and TSH contents in endemic fluorosis areas, Endem. Dis. Bulletin, 1999, 14, 16-17.Suche in Google Scholar

[51] Wu C., Gu X., Wu Y., Wang J., Effects of fluoride and arsenic on serum thyroid hormone in rats. J. Herbal Medic. Toxico., 2008, 2, 39-43.Suche in Google Scholar

Received: 2018-11-22
Accepted: 2019-03-13
Published Online: 2019-07-01

© 2019 Sadia Zulfiqar et al., published by De Gruyter

This work is licensed under the Creative Commons Attribution 4.0 Public License.

Artikel in diesem Heft

  1. Regular Articles
  2. Research on correlation of compositions with oestrogenic activity of Cistanche based on LC/Q-TOF-MS/MS technology
  3. Efficacy of Pyrus elaeagnifolia subsp. elaeagnifolia in acetic acid–induced colitis model
  4. Anti-inflammatory and antinociceptive features of Bryonia alba L.: As a possible alternative in treating rheumatism
  5. High efficiency liposome fusion induced by reducing undesired membrane peptides interaction
  6. Prediction of the Blood-Brain Barrier Permeability Using RP-18 Thin Layer Chromatography
  7. Phytic Acid Extracted from Rice Bran as a Growth Promoter for Euglena gracilis
  8. Development of a validated spectrofluorimetric method for assay of sotalol hydrochloride in tablets and human plasma: application for stability-indicating studies
  9. Topological Indices of Hyaluronic Acid-Paclitaxel Conjugates’ Molecular Structure in Cancer Treatment
  10. Thermodynamic properties of the bubble growth process in a pool boiling of water-ethanol mixture two-component system
  11. Critical Roles of the PI3K-Akt-mTOR Signaling Pathway in Apoptosis and Autophagy of Astrocytes Induced by Methamphetamine
  12. Characteristics of Stable Hydrogen and Oxygen Isotopes of Soil Moisture under Different Land Use in Dry Hot Valley of Yuanmou
  13. Specific, highly sensitive and simple spectrofluorimetric method for quantification of daclatasvir in HCV human plasma patients and in tablets dosage form
  14. Chromium-modified cobalt molybdenum nitrides as catalysts for ammonia synthesis
  15. Langerhans cell-like dendritic cells treated with ginsenoside Rh2 regulate the differentiation of Th1 and Th2 cells in vivo
  16. Identification of Powdery Mildew Blumeria graminis f. sp. tritici Resistance Genes in Selected Wheat Varieties and Development of Multiplex PCR
  17. Computational Analysis of new Degree-based descriptors of oxide networks
  18. The Use Of Chemical Composition And Additives To Classify Petrol And Diesel Using Gas Chromatography–Mass Spectrometry And Chemometric Analysis: A Uk Study
  19. Minimal Energy Tree with 4 Branched Vertices
  20. Jatropha seed oil derived poly(esteramide-urethane)/ fumed silica nanocomposite coatings for corrosion protection
  21. Calculating topological indices of certain OTIS interconnection networks
  22. Energy storage analysis of R125 in UIO-66 and MOF-5 nanoparticles: A molecular simulation study
  23. Velvet Antler compounds targeting major cell signaling pathways in osteosarcoma - a new insight into mediating the process of invasion and metastasis in OS
  24. Effects of Azadirachta Indica Leaf Extract, Capping Agents, on the Synthesis of Pure And Cu Doped ZnO-Nanoparticles: A Green Approach and Microbial Activity
  25. Aqueous Micro-hydration of Na+(H2O)n=1-7 Clusters: DFT Study
  26. A proposed image-based detection of methamidophos pesticide using peroxyoxalate chemiluminescence system
  27. Phytochemical screening and estrogenic activity of total glycosides of Cistanche deserticola
  28. Biological evaluation of a series of benzothiazole derivatives as mosquitocidal agents
  29. Chemical pretreatments of Trapa bispinosa's peel (TBP) biosorbent to enhance adsorption capacity for Pb(ll)
  30. Dynamic Changes in MMP1 and TIMP1 in the Antifibrotic Process of Dahuang Zhechong Pill in Rats with Liver Fibrosis
  31. The Optimization and Production of Ginkgolide B Lipid Microemulsion
  32. Photodynamic Therapy Enhanced the Antitumor Effects of Berberine on HeLa Cells
  33. Chiral and Achiral Enantiomeric Separation of (±)-Alprenolol
  34. Correlation of Water Fluoride with Body Fluids, Dental Fluorosis and FT4, FT3 –TSH Disruption among Children in an Endemic Fluorosis area in Pakistan
  35. A one-step incubation ELISA kit for rapid determination of dibutyl phthalate in water, beverage and liquor
  36. Free Radical Scavenging Activity of Essential Oil of Eugenia caryophylata from Amboina Island and Derivatives of Eugenol
  37. Effects of Blue and Red Light On Growth And Nitrate Metabolism In Pakchoi
  38. miRNA-199a-5p functions as a tumor suppressor in prolactinomas
  39. Solar photodegradation of carbamazepine from aqueous solutions using a compound parabolic concentrator equipped with a sun tracking system
  40. Influence of sub-inhibitory concentration of selected plant essential oils on the physical and biochemical properties of Pseudomonas orientalis
  41. Preparation and spectroscopic studies of Fe(II), Ru(II), Pd(II) and Zn(II) complexes of Schiff base containing terephthalaldehyde and their transfer hydrogenation and Suzuki-Miyaura coupling reaction
  42. Complex formation in a liquid-liquid extraction-chromogenic system for vanadium(IV)
  43. Synthesis, characterization (IR, 1H, 13C & 31P NMR), fungicidal, herbicidal and molecular docking evaluation of steroid phosphorus compounds
  44. Analysis and Biological Evaluation of Arisaema Amuremse Maxim Essential Oil
  45. A preliminary assessment of potential ecological risk and soil contamination by heavy metals around a cement factory, western Saudi Arabia
  46. Anti- inflammatory effect of Prunus tomentosa Thunb total flavones in LPS-induced RAW264.7 cells
  47. Collaborative Influence of Elevated CO2 Concentration and High Temperature on Potato Biomass Accumulation and Characteristics
  48. Methods of extraction, physicochemical properties of alginates and their applications in biomedical field – a review
  49. Characteristics of liposomes derived from egg yolk
  50. Preparation of ternary ZnO/Ag/cellulose and its enhanced photocatalytic degradation property on phenol and benzene in VOCs
  51. Influence of Human Serum Albumin Glycation on the Binding Affinities for Natural Flavonoids
  52. Synthesis and antioxidant activity of 2-methylthio-pyrido[3,2-e][1,2,4] triazolo[1,5-a]pyrimidines
  53. Comparative study on the antioxidant activities of ten common flower teas from China
  54. Molecular Properties of Symmetrical Networks Using Topological Polynomials
  55. Synthesis of Co3O4 Nano Aggregates by Co-precipitation Method and its Catalytic and Fuel Additive Applications
  56. Phytochemical analysis, Antioxidant and Antiprotoscolices potential of ethanol extracts of selected plants species against Echinococcus granulosus: In-vitro study
  57. Silver nanoparticles enhanced fluorescence for sensitive determination of fluoroquinolones in water solutions
  58. Simultaneous Quantification of the New Psychoactive Substances 3-FMC, 3-FPM, 4-CEC, and 4-BMC in Human Blood using GC-MS
  59. Biodiesel Production by Lipids From Indonesian strain of Microalgae Chlorella vulgaris
  60. Miscibility studies of polystyrene/polyvinyl chloride blend in presence of organoclay
  61. Antibacterial Activities of Transition Metal complexes of Mesocyclic Amidine 1,4-diazacycloheptane (DACH)
  62. Novel 1,8-Naphthyridine Derivatives: Design, Synthesis and in vitro screening of their cytotoxic activity against MCF7 cell line
  63. Investigation of Stress Corrosion Cracking Behaviour of Mg-Al-Zn Alloys in Different pH Environments by SSRT Method
  64. Various Combinations of Flame Retardants for Poly (vinyl chloride)
  65. Phenolic compounds and biological activities of rye (Secale cereale L.) grains
  66. Oxidative degradation of gentamicin present in water by an electro-Fenton process and biodegradability improvement
  67. Optimizing Suitable Conditions for the Removal of Ammonium Nitrogen by a Microbe Isolated from Chicken Manure
  68. Anti-inflammatory, antipyretic, analgesic, and antioxidant activities of Haloxylon salicornicum aqueous fraction
  69. The anti-corrosion behaviour of Satureja montana L. extract on iron in NaCl solution
  70. Interleukin-4, hemopexin, and lipoprotein-associated phospholipase A2 are significantly increased in patients with unstable carotid plaque
  71. A comparative study of the crystal structures of 2-(4-(2-(4-(3-chlorophenyl)pipera -zinyl)ethyl) benzyl)isoindoline-1,3-dione by synchrotron radiation X-ray powder diffraction and single-crystal X-ray diffraction
  72. Conceptual DFT as a Novel Chemoinformatics Tool for Studying the Chemical Reactivity Properties of the Amatoxin Family of Fungal Peptides
  73. Occurrence of Aflatoxin M1 in Milk-based Mithae samples from Pakistan
  74. Kinetics of Iron Removal From Ti-Extraction Blast Furnace Slag by Chlorination Calcination
  75. Increasing the activity of DNAzyme based on the telomeric sequence: 2’-OMe-RNA and LNA modifications
  76. Exploring the optoelectronic properties of a chromene-appended pyrimidone derivative for photovoltaic applications
  77. Effect of He Qi San on DNA Methylation in Type 2 Diabetes Mellitus Patients with Phlegm-blood Stasis Syndrome
  78. Cyclodextrin potentiometric sensors based on selective recognition sites for procainamide: Comparative and theoretical study
  79. Greener synthesis of dimethyl carbonate from carbon dioxide and methanol using a tunable ionic liquid catalyst
  80. Nonisothermal Cold Crystallization Kinetics of Poly(lactic acid)/Bacterial Poly(hydroxyoctanoate) (PHO)/Talc
  81. Enhanced adsorption of sulfonamide antibiotics in water by modified biochar derived from bagasse
  82. Study on the Mechanism of Shugan Xiaozhi Fang on Cells with Non-alcoholic Fatty Liver Disease
  83. Comparative Effects of Salt and Alkali Stress on Antioxidant System in Cotton (Gossypium Hirsutum L.) Leaves
  84. Optimization of chromatographic systems for analysis of selected psychotropic drugs and their metabolites in serum and saliva by HPLC in order to monitor therapeutic drugs
  85. Electrocatalytic Properties of Ni-Doped BaFe12O19 for Oxygen Evolution in Alkaline Solution
  86. Study on the removal of high contents of ammonium from piggery wastewater by clinoptilolite and the corresponding mechanisms
  87. Phytochemistry and toxicological assessment of Bryonia dioica roots used in north-African alternative medicine
  88. The essential oil composition of selected Hemerocallis cultivars and their biological activity
  89. Mechanical Properties of Carbon Fiber Reinforced Nanocrystalline Nickel Composite Electroforming Deposit
  90. Anti-c-myc efficacy block EGFL7 induced prolactinoma tumorigenesis
  91. Topical Issue on Applications of Mathematics in Chemistry
  92. Zagreb Connection Number Index of Nanotubes and Regular Hexagonal Lattice
  93. The Sanskruti index of trees and unicyclic graphs
  94. Valency-based molecular descriptors of Bakelite network BNmn
  95. Computing Topological Indices for Para-Line Graphs of Anthracene
  96. Zagreb Polynomials and redefined Zagreb indices of Dendrimers and Polyomino Chains
  97. Topological Descriptor of 2-Dimensional Silicon Carbons and Their Applications
  98. Topological invariants for the line graphs of some classes of graphs
  99. Words for maximal Subgroups of Fi24
  100. Generators of Maximal Subgroups of Harada-Norton and some Linear Groups
  101. Special Issue on POKOCHA 2018
  102. Influence of Production Parameters on the Content of Polyphenolic Compounds in Extruded Porridge Enriched with Chokeberry Fruit (Aronia melanocarpa (Michx.) Elliott)
  103. Effects of Supercritical Carbon Dioxide Extraction (SC-CO2) on the content of tiliroside in the extracts from Tilia L. flowers
  104. Impact of xanthan gum addition on phenolic acids composition and selected properties of new gluten-free maize-field bean pasta
  105. Impact of storage temperature and time on Moldavian dragonhead oil – spectroscopic and chemometric analysis
  106. The effect of selected substances on the stability of standard solutions in voltammetric analysis of ascorbic acid in fruit juices
  107. Determination of the content of Pb, Cd, Cu, Zn in dairy products from various regions of Poland
  108. Special Issue on IC3PE 2018 Conference
  109. The Photocatalytic Activity of Zns-TiO2 on a Carbon Fiber Prepared by Chemical Bath Deposition
  110. N-octyl chitosan derivatives as amphiphilic carrier agents for herbicide formulations
  111. Kinetics and Mechanistic Study of Hydrolysis of Adenosine Monophosphate Disodium Salt (AMPNa2) in Acidic and Alkaline Media
  112. Antimalarial Activity of Andrographis Paniculata Ness‘s N-hexane Extract and Its Major Compounds
  113. Special Issue on ABB2018 Conference
  114. Special Issue on ICCESEN 2017
  115. Theoretical Diagnostics of Second and Third-order Hyperpolarizabilities of Several Acid Derivatives
  116. Determination of Gamma Rays Efficiency Against Rhizoctonia solani in Potatoes
  117. Studies On Compatibilization Of Recycled Polyethylene/Thermoplastic Starch Blends By Using Different Compatibilizer
  118. Liquid−Liquid Extraction of Linalool from Methyl Eugenol with 1-Ethyl-3-methylimidazolium Hydrogen Sulfate [EMIM][HSO4] Ionic Liquid
  119. Synthesis of Graphene Oxide Through Ultrasonic Assisted Electrochemical Exfoliation
  120. Special Issue on ISCMP 2018
  121. Synthesis and antiproliferative evaluation of some 1,4-naphthoquinone derivatives against human cervical cancer cells
  122. The influence of the grafted aryl groups on the solvation properties of the graphyne and graphdiyne - a MD study
  123. Electrochemical modification of platinum and glassy carbon surfaces with pyridine layers and their use as complexing agents for copper (II) ions
  124. Effect of Electrospinning Process on Total Antioxidant Activity of Electrospun Nanofibers Containing Grape Seed Extract
  125. Effect Of Thermal Treatment Of Trepel At Temperature Range 800-1200˚C
  126. Topical Issue on Agriculture
  127. The effect of Cladophora glomerata exudates on the amino acid composition of Cladophora fracta and Rhizoclonium sp.
  128. Influence of the Static Magnetic Field and Algal Extract on the Germination of Soybean Seeds
  129. The use of UV-induced fluorescence for the assessment of homogeneity of granular mixtures
  130. The use of microorganisms as bio-fertilizers in the cultivation of white lupine
  131. Lyophilized apples on flax oil and ethyl esters of flax oil - stability and antioxidant evaluation
  132. Production of phosphorus biofertilizer based on the renewable materials in large laboratory scale
  133. Human health risk assessment of potential toxic elements in paddy soil and rice (Oryza sativa) from Ugbawka fields, Enugu, Nigeria
  134. Recovery of phosphates(V) from wastewaters of different chemical composition
  135. Special Issue on the 4th Green Chemistry 2018
  136. Dead zone for hydrogenation of propylene reaction carried out on commercial catalyst pellets
  137. Improved thermally stable oligoetherols from 6-aminouracil, ethylene carbonate and boric acid
  138. The role of a chemical loop in removal of hazardous contaminants from coke oven wastewater during its treatment
  139. Combating paraben pollution in surface waters with a variety of photocatalyzed systems: Looking for the most efficient technology
  140. Special Issue on Chemistry Today for Tomorrow 2019
  141. Applying Discriminant and Cluster Analyses to Separate Allergenic from Non-allergenic Proteins
  142. Chemometric Expertise Of Clinical Monitoring Data Of Prolactinoma Patients
  143. Chemomertic Risk Assessment of Soil Pollution
  144. New composite sorbent for speciation analysis of soluble chromium in textiles
  145. Photocatalytic activity of NiFe2O4 and Zn0.5Ni0.5Fe2O4 modified by Eu(III) and Tb(III) for decomposition of Malachite Green
  146. Photophysical and antibacterial activity of light-activated quaternary eosin Y
  147. Spectral properties and biological activity of La(III) and Nd(III) Monensinates
  148. Special Issue on Monitoring, Risk Assessment and Sustainable Management for the Exposure to Environmental Toxins
  149. Soil organic carbon mineralization in relation to microbial dynamics in subtropical red soils dominated by differently sized aggregates
  150. A potential reusable fluorescent aptasensor based on magnetic nanoparticles for ochratoxin A analysis
  151. Special Issue on 13th JCC 2018
  152. Fluorescence study of 5-nitroisatin Schiff base immobilized on SBA-15 for sensing Fe3+
  153. Thermal and Morphology Properties of Cellulose Nanofiber from TEMPO-oxidized Lower part of Empty Fruit Bunches (LEFB)
  154. Encapsulation of Vitamin C in Sesame Liposomes: Computational and Experimental Studies
  155. A comparative study of the utilization of synthetic foaming agent and aluminum powder as pore-forming agents in lightweight geopolymer synthesis
  156. Synthesis of high surface area mesoporous silica SBA-15 by adjusting hydrothermal treatment time and the amount of polyvinyl alcohol
  157. Review of large-pore mesostructured cellular foam (MCF) silica and its applications
  158. Ion Exchange of Benzoate in Ni-Al-Benzoate Layered Double Hydroxide by Amoxicillin
  159. Synthesis And Characterization Of CoMo/Mordenite Catalyst For Hydrotreatment Of Lignin Compound Models
  160. Production of Biodiesel from Nyamplung (Calophyllum inophyllum L.) using Microwave with CaO Catalyst from Eggshell Waste: Optimization of Transesterification Process Parameters
  161. The Study of the Optical Properties of C60 Fullerene in Different Organic Solvents
  162. Composite Material Consisting of HKUST-1 and Indonesian Activated Natural Zeolite and its Application in CO2 Capture
  163. Topical Issue on Environmental Chemistry
  164. Ionic liquids modified cobalt/ZSM-5 as a highly efficient catalyst for enhancing the selectivity towards KA oil in the aerobic oxidation of cyclohexane
  165. Application of Thermal Resistant Gemini Surfactants in Highly Thixotropic Water-in-oil Drilling Fluid System
  166. Screening Study on Rheological Behavior and Phase Transition Point of Polymer-containing Fluids produced under the Oil Freezing Point Temperature
  167. The Chemical Softening Effect and Mechanism of Low Rank Coal Soaked in Alkaline Solution
  168. The Influence Of NO/O2 On The NOx Storage Properties Over A Pt-Ba-Ce/γ-Al2O3 Catalyst
  169. Special Issue on the International conference CosCI 2018
  170. Design of SiO2/TiO2 that Synergistically Increases The Hydrophobicity of Methyltrimethoxysilane Coated Glass
  171. Antidiabetes and Antioxidant agents from Clausena excavata root as medicinal plant of Myanmar
  172. Development of a Gold Immunochromatographic Assay Method Using Candida Biofilm Antigen as a Bioreceptor for Candidiasis in Rats
  173. Special Issue on Applied Biochemistry and Biotechnology 2019
  174. Adsorption of copper ions on Magnolia officinalis residues after solid-phase fermentation with Phanerochaete chrysosporium
  175. Erratum
  176. Erratum to: Sand Dune Characterization For Preparing Metallurgical Grade Silicon
Heruntergeladen am 5.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/chem-2019-0055/html
Button zum nach oben scrollen