Home Physical Sciences Computational Analysis of new Degree-based descriptors of oxide networks
Article Open Access

Computational Analysis of new Degree-based descriptors of oxide networks

  • Zafar Hussain , Mobeen Munir EMAIL logo , Muhammad Bilal , Alam Ameer , Shazia Rafique and Shin Min Kang EMAIL logo
Published/Copyright: March 29, 2019

Abstract

Oxide networks have diverse applications in the polymer and pharmaceutical industries. Polynomials and degree-based topological indices have tendencies to correlate properties of molecular graphs. In this article, we formulate the closed forms of Zagreb and forgotten polynomials and topological indices such as Hyper-Zagreb index, first and second multiple Zagreb indices, forgotten index, Albert index, Bell index, IRM(G) of oxide networks. We also compute the F-index of complement of oxide networks, F-coindex of G and F-coindex of complement of oxide networks. We put graphical analysis of each index with respect to the parameter involved in each case.

AMS MSC: 05C07; 05C10

1 Introduction

Today has witnessed the abrupt developments in nano-materials and drugs, which keeps in running with the development of pharmacopedia. The physical and biological testing of new reagents is always a critical issue. In addition, theoretical calculations are performed to model the characteristics of new and proposed compounds to save time and costs. The goal of these calculations is to assist the choice of which compounds to synthesise in the laboratory. One such model which achieved extreme success in recent years, is the graph associated to the underlying compound or structure where every atom is described by a vertex and chemical bond by an edge. Let G be a graph corresponding to the chemical structure with vertex(atom) set V(G) and edge(bond) set E(G). The distance between two vertices u and v is described by d(u, v), is the shortest path between two vertices, similarly the diameter of any graph is the longest distance between any two vertices. The degree of a vertex (V) is the number of vertices connected to v by edges. The number of vertices in a graph represents its order and the number of edges represents its size. Chemical graph theory, as a branch of mathematical chemistry, attempts to correlate properties of molecular structures using the tools of mathematics like matrices, polynomials, functions and operators. The concept of valence in chemistry is a similar concept to degree of a vertex in graph theory. Graph theory is the branch of mathematics in which the structure of graphs and networks is studied. Graph theory plays a vital role in mathematical chemistry, molecular topology and computational nano-materials [1, 4, 10]. It produces a graph theoretic model of the chemical substance which becomes an entity to be discussed combinatorially and mathematically. Results obtained are checked practically so that properties of the substance under discussion are foreseen.

Chemical graph theory plays substantial role in determining structures and patterns of molecular graphs and networks. With every passing day, new relations between these subjects continue to emerge on the scene. Some basic tools used so far are topological indices and connectivity polynomials in this regard. Attempts are in progress to invent a general polynomial which can provide essential information after application of compositions of several differential and integral operators. Weiner introduced the concept of pass number to measure properties such as heats of formation, chromatographic retention time, boiling point and strain energy [1]. Hosoya introduced the Hosoya index in 1971 and used distance matrix to redefine the pass number (w) of Wiener [2]. Since Wiener’s definition was useful only for acyclic molecular graphs, it did not capture the attention of chemists, nevertheless Hosoya’s paper made it popular. Hosoya’s other substantial contribution appeared in 1988 to define w by proposing Wiener polynomial, which, is now known as Hosoya polynomial [3]. Distance based polynomials and functions are invariants of the structures and preserve the metric structure.

In the context of degree-based indices, a recent good addition is the M-polynomial that plays exactly the same role in parallel to the Hosoya polynomial for distance-based indices [5]. In [6, 7, 8, 9, 11, 12], several authors used the M-polynomial and related topological indices of different structures involving nanostar dendrimers, polyhex nanotubes, hex-derived networks, and some benzenoid systems. In fact the M-polynomial and other related polynomials like Zagreb and Forgotten polynomials are studied relatively more than other polynomials. Topological index preserves the topological symmetries of the structure and are frequently used in quantitative structure-activity relationships (QSARs). Here these indices are used to predict toxicity and determine regularity decisions, risk assessment, drug discovery and lead optimization [2, 4, 13, 14]. Researchers are actively working to discover new polynomials and topological indices and their actual correlations of these indices and properties of the chemical structures and nano-materials.

In the present work, we present new topological characterizations of oxide networks in the form of degree-based indices and polynomials. Moreoverwe also compute co-indices of these networks. We also determine the closed forms of some indices which determine the irregularity of oxide networks. For basic preliminaries and introductory literature review we refer [34, 35] and references therein.

2 Main Results

In this part we establish our new results about oxide networks, (OXn), n > 1. This network can be obtained by removing all silicon nodes from silicone network of dimension n, [15, 16]. Figure 1 is a schematic illustration of an oxide network of dimension 5.

Figure 1 Figure of (OX5)
Figure 1

Figure of (OX5)

We reserve the symbol (OXn), n > 1 for oxide network of dimension n. From figures (1-2) it is obvious that the order and size of (OXn) is respectively, 9n2+3n and 18n2. Another noticeable observation is the fact that (OXn), n > 1 has only vertices of degree 2 and 4. In this paper we compute first Zagreb polynomial, second Zagreb polynomial, Forgotten polynomial and some topological indices such as Hyper-Zagreb index, first and second multiple Zagreb indices, Forgotten index, Albert index, Bell index, IRM(G) and M1(L(G)). We also compute first and second Zagreb coindices, F-index of complement of (OXn), F-coindex of (OXn) and F-coindex of complement of oxide networks. We also give graphical analysis of each index and co-index with respect to the parameters involved in each class.

Figure 2 Graphs of Zagreb and Forgotten indices
Figure 2

Graphs of Zagreb and Forgotten indices

The following result gives the general form of Zagreb Polynomials and Forgotten polynomial of the oxide networks.

Theorem 2.1

Let (OXn), n > 1 be oxide network. Then first Zagreb polynomial,second Zagreb polynomial and Forgotten polynomial of (OXn) are

  1. M1(OXn; x) = 12nx6 + (18n2 − 12n)x8,

  2. M2(OXn; x) = 12nx8 + (18n2 − 12n)x16,

  3. F(OXn; x) = 12nx20 + (18n2 − 12n)x32.

Proof. Let (OXn), n > 1 is oxide network having order n = 9n2+3n and size m = 18n2. From figure12, we come to know that the oxide networks (OXn) has only vertices of degree 2 and 4. Let V1 and V2 represent vertices of degree 2 and 4 respectively, where |V1| = 6n and |V2| = 9n2 − 3n. The edge partitions of (OXn) are

E{2,4} = e = uvϵE(OXn)/du = 2, dv = 4 → |E{2,4}| = 12n,E{4,4} = e = uvϵE(OXn)/du = 4, dv = 4 → |E{4,4}| = 18n2 − 12n, where E{2,4} is the set of edges having end vertices of degree 2 and 4 and E{4,4} is the set of edges having end vertices of degree 4 and 4.

  1. By definition the first Zagreb polynomial,

    M1(OXn,x)=uvϵE(OXn)x[du+dv],=uvϵE1(OXn)x[du+dv]+uvϵE2(OXn)x[du+dv]=|E1(OXn)|x6+|E2(OXn)|x8=12nx6+(18n212n)x8.
  2. Now by definition the second Zagreb polynomial,

    M2(OXn,x)=uvϵE(OXn)x[du×dv],=uvϵE1(OXn)x[du×dv]+uvϵE2(OXn)x[du×dv],=|E1(OXn)|x8+|E2(OXn)|x16=12x8+(18n212n)x16,
  3. Now by definition the Forgotten polynomial,

    F(OXn;x)=uvϵE(OXn)x[du2+dv2],=uvϵE1(OXn)x[du2+dv2]+uvϵE2(OXn)x[du2+dv2],=|E1(OXn)|x20+|E2(OXn)|x32,=12nx20+(18n212n)x32.

Theorem 2.2

Let OXn , n > 1 is oxide networks. Then

a.HM(OXn)=1152n2336n,
b.PM1(OXn)=312n.254n224n,
c.PM2(OXn)=272n212n,
d.F(OXn)=576n2144n.

Proof. a. By definition of hyper-Zagreb index

HM(OXn)=uvϵE(OXn)[du+dv]2,=uvϵE1(OXn)[du+dv]2+uvϵE2(OXn)[du+dv]2,=36|E1(OXn)|+64|E2(OXn)|,=1152n2336n.

b. By the definition of first Zagreb index,

PM1(OXn)=uvϵE(OXn)[du+dv],=uvϵE1(OXn)[du+dv]×uvϵE2(OXn)[du+dv],=6|E1(OXn)|×8|E2(OXn)|,=312n×254n224n,

c. By definition of second multiple Zagreb index,

PM2(OXn)=uvϵE(OXn)[du×dv],=uvϵE1(OXn)[du×dv]×uvϵE2(OXn)[du×dv],=8|E1(OXn)|×16|E2(OXn)|,=272n212n,

d. By definition of Forgotten index,

F(OXn)=uvϵE(OXn)[du2+dv2],=uvϵE1(OXn)[du2+dv2]+uvϵE2(OXn)[du2+dv2],=20|E1(OXn)|+32|E2(OXn)|,=576n2144n.

= 20|E1(OXn)| + 32|E2(OXn)|,

= 576n2 − 144n.

Theorem 2.3

Let (OXn), n > 1 is oxide network, then

  1. a. Albertson index, A(OXn24n,

  2. b. Bell index,B(OXn))=24n(3n1)(3n+1),

  3. c. IRM(OXn) = 48n,

  4. d.M1(L(OXn)) = 24n(27n − 10).

Proof. a. Albertson index

A(OXn)=xyϵE(OXn)|d(x)d(y)|,=xyϵE1(OXn)|d(x)d(y)|+xyϵE2(OXn)|d(x)d(y)|,=|E1(OXn)||24|+|E2(OXn)||44|,=(12n)(2)+(18n212n)(0),=24n,

b. Bell Index

B(OXn)=xϵV(OXn)(d(x)2mn)2,=xϵV1(OXn)(d(x)2mn)2+xϵV2(OXn)(d(x)2mn)2,=|V1(OXn)|(22(18n2)9n2+3n)2+|V2(OXn)|(42(18n2)9n2+3n)2,=6n(22(18n2)9n2+3n)2+(9n23n)(42(18n2)9n2+3n)2,=24n(3n1)3n+1,

c. IRM(G)

IRM(OXn)=xyϵE(OX1)[d(x)d(y)]2,=xyϵE1(OX1)[d(x)d(y)]2+xyϵE2(OX1)[d(x)d(y)]2,=|E1(OXn)|[24]2+|E2(OXn)|[44]2,=(12n)(2)2+(18n212n)(0)2,=48n,

d. M1(L(G))

M1(L(G))=xyϵE(G)[d(x)+d(y)2]2,M1(L(OXn))=xyϵE1(OXn)(x)+d(y)2]2+xyϵE2(OXn)[d(x)+d(y)2]2,=|E1(OXn)|[2+42]2+|E2(OXn)|[4+42]2,=(12n)(4)2+(18n212n)(6)2,=24n(27n10).

Theorem 2.4

Let oxide network (OXn), n > 1 then,

  1. a. M1(G) = 12n(27n3 − 3n2 − 3n + 2),

  2. b. M2(G) = 26n(18n3 − 10n + 3).

Proof. Let oxide network (OXn), n > 1 having order n = 9n2+3n and size m = 18n2, the first Zegreb index M1(OXn) of (OXn) is 144n2 − 24n and the second Zagreb index M2(OXn) of oxide network is 288n2 − 96n then,

a.M1¯(G),M1¯(G)=2m(n1)M1(G),M1¯(OXn)=2(18n2)(9n2+3n1)(144n224n),=12n(27n33n23n+2),
b.M2¯(G)M2¯(G)=2m212M1(G)M2(G),M2¯(OXn)=2(18n2)212(144n224n)(288n296n),=26n(18n310n+3).

Theorem 2.5

Let oxide network (OXn), n > 1, then,

  1. a. F(OXn) = 3n(486n7+1782n6+81n5−2286n4+1485n3+459n2 − 438n + 71),

  2. b. F(OXn) = 24n(54n3 + 9n2 − 33n + 7),

  3. c. F(OXn) = 12n(54n5 + 162n4 −243n3−54n2+87n −12),

Proof. Let oxide network (OXn), n > 1 having order n = 9n2+3n and size m = 18n2, the first zegreb index M1(OXn) of (OXn) is 144n2 − 24n and the Forgoten index F(OXn) of oxide network is 576n2 − 144n, then

a. F(OXn)

F(G) = n(n − 1)3 − 6m(n − 1)2 + 3(n − 1)M1(G) − F(G),

F(OXn) = (9n2 + 3n)(9n2 + 3n − 1)3 − 6(18n2)(9n2 + 3n − 1)2 + 3(9n2 + 3n − 1)(144n2 − 24n) − (576n2 − 144n),

F(OXn) = 3n(486n7 + 1782n6 + 81n5 −2286n4 + 1485n3 + 459n2 − 438n + 71), b. F(OXn)

F(G) = (n − 1)M1(G) − F(G),

F(OXn) = (9n2 + 3n − 1)(144n2 − 24n) − (576n2 − 144n),

F(OXn) = 24n(54n3 + 9n2 − 33n + 7), c. F(OXn)

F(G) = 2m(n − 1)2 − 2(n − 1)M1(G) + F(G),

F(OXn) = 2(18n2)(9n2 + 3n−1)2 −2(9n2 + 3n −1)(144n2 − 24n) + (576n2 − 144n),

F(OXn) = 12n(54n5+162n4−243n3−54n2+87n−12).

3 Computational Analysis and Description

In this part we give computational analysis of computed indices of oxide networks. Figure 2 gives dependence of M1,M2 and F on the involved parameter n. Clearly, Forgotten index increases sharply as compared to M1, and M2. However these three indices increase with increase in n. It is now an established fact that total π-electron energy is related with Forgotten index [4, 10], so it can be concluded that this energy will rise with the rise in n. Figure 3 suggests that Bell, Alberton and IRM are linearly related with n. However Bell index is the slowest in these indices. All these three indices actually measure the tendency of structure to be irregular. These graphs show that the oxide network becomes more irregular and complex as n increases. Figure 4 suggests that first Zagreb index of the line graph of oxide networks is linearly related with n. The graph in Figure 5 shows the dependence of HM( OXn) on n. It is clear that this index is more sensitive than the above described indices for large range of n. It is evident from Figure 6 that PM1(OXn) remains negligible for n ≤ 4. After n > 5 it rises without bounds. It is evident from Figure 7 that PM2(OXn) remains negligible for n ≤ 3. After n > 4 it rises without bounds. The shape of the graph of F (OXn) is a parabola, showing that it increases rapidly with an increase in n, Figure 8.

Figure 3 Graphs of Albertson, Bell, and IRM indices
Figure 3

Graphs of Albertson, Bell, and IRM indices

Figure 4 Graph of first Zagreb index of line graph
Figure 4

Graph of first Zagreb index of line graph

Figure 5 Graph of HM(OXn)
Figure 5

Graph of HM(OXn)

Figure 6 Graph of PM1(OXn)
Figure 6

Graph of PM1(OXn)

Figure 7 Graph of PM2(OXn)
Figure 7

Graph of PM2(OXn)

Figure 8 Graph of F(OXn)
Figure 8

Graph of F(OXn)

4 Conclusions

M-polynomial and other related polynomials such as Zagreb and Forgotten polynomials have recently been studied in a high frequency. In [34], the authors computed degree-based indices of alpha boron nanotubes and compared the behaviour of these indices on two types of boron nanotubes. In [35],Hussain et al. formulated degree-based indices and co-indices of honey-comb networks. The present article provides computation of several indices and co-indices of oxide networks. In particular, we computed Forgotten and Zagreb polynomials of general oxide networks. We also provided index analysis of oxide networks and dependence of these indices in the form of graphs using Mapple. These indices are actually correlated with chemical properties of oxide networks and will be useful for people practically working in chemical industry.

References

[1] Wiener, H. J, Structural determination of paraffin boiling points Journal of the American Chemical Society, vol. 69, no. 1, pp. 17-20, 1947.10.1021/ja01193a005Search in Google Scholar

[2] Hosoya, H., Topological Index. A Newly Proposed Quantity Characterizing the Topological Nature of Structural Isomers of Saturated Hydrocarbons Bulletin of the Chemical Society of Japan, 44, 9, 1971, 2332-2339.10.1246/bcsj.44.2332Search in Google Scholar

[3] Hosoya, H., On some counting polynomials in Chemistry Disc. Appli. Math, 19, 1988, pp. 239-257.10.1016/0166-218X(88)90017-0Search in Google Scholar

[4] Gutman, I.; Trinajstic, N, Graph theory, and molecular orbitals total f-electron energy of alternant hydrocarbons Chem. Phys. Lett. 1972, 17, 535-538.10.1016/0009-2614(72)85099-1Search in Google Scholar

[5] Klavzar, S.; Deutsch, E. M-Polynomial, and Degree-Based Topological Indices Iranian J. Math. Chem, 2015, 6(2),93-102.Search in Google Scholar

[6] Munir, M., Nazeer, W., Rafique, S., And Kang, S. M., M-polynomial and degree-based topological indices of Nano star dendrimers Symmetry 2016, 8, 97. doi:10.3390/sym8090097.10.3390/sym8090097Search in Google Scholar

[7] Munir, M., Nazeer, W., Rafique, S., Nizami, A. R., And Kang, S. M., M-polynomial and degree-based topological indices of Titania Nanotubes Symmetry 2016, 8, 117; doi:10.3390/sym8110117.10.3390/sym8110117Search in Google Scholar

[8] Munir, M., Nazeer, W., Rafique, S., And Kang, S. M., M-Polynomial and Degree-Based Topological Indices of Polyhex Nanotubes Symmetry. 8(12), 149; 10.3390/sym8120149 (2016).10.3390/sym8120149Search in Google Scholar

[9] Kwun, Y. C., Munir, M., Nazeer, W., Rafique, S., and Kang, S. M., M-Polynomials and topological indices of V-Phenylenic Nanotubes and Nanotori Scitific Reports | 7: 8756 | Doi:10.1038/s41598-017-08309-y.10.1038/s41598-017-08309-ySearch in Google Scholar PubMed PubMed Central

[10] Rucker, G. , Rucker, C.,, On topological indices, boiling points, and cycloalkanes J. Chem. Inf. Comput. Sci. (1999) 39, 788.10.1021/ci9900175Search in Google Scholar

[11] Kang, S. M, Nazeer, W.; Manzoor, Z.; Nizami A. R., Aslam, A., and Munir, M., M-polynomials and topological indices of hex-derived networks, Open Physics. 2018, 16 394-403.10.1515/phys-2018-0054Search in Google Scholar

[12] Ashaq, A., Nazeer, W., Munir, M., Kang, S. M., M-Polynomials And Topological Indices Of Zigzag And Rhombic Benzenoid Systems, Open Chemistry 2018, 16 73-78.10.1515/chem-2018-0010Search in Google Scholar

[13] Gutman, I..Molecular graphs with minimal and maximal Randic indices. Croatica Chem. Acta (2002)75, 357-369.Search in Google Scholar

[14] Gutman, I.. Degree-based topological indices. Croat. Chem. Acta (2013)86, 351-361.10.5562/cca2294Search in Google Scholar

[15] Akhter, S., Imran, M., Gao, W., Farahani, R., On topological indices of honeycomb networks and graphene networks Hac. Jour. Math. Stat. 2018, 47 19-35.10.15672/HJMS.2017.464Search in Google Scholar

[16] Rajan, B., William, A., Grigorious, C., Stephen, S., On Certain Topological Indices of Silicate, Honeycomb and Hexagonal Networks J. Comp. Math. Sci. 2012, 3 530-535.Search in Google Scholar

[17] Tabar. F., Gutman, I., Nasiri, R. , Extremely irregular trees Bull. Cl. Sci. Math. Nat.Sci.Math. 145 (2013), 1-8.Search in Google Scholar

[18] Furtula, B., Gutman, I.,, A forgotten topological index J. Math. Chem. 53 (2015), 1184-1190.10.1007/s10910-015-0480-zSearch in Google Scholar

[19] Shirdel, G. H, Pour, H. R, Sayadi, A. M., The hyper-Zagreb index of graph operations Iran. J. Math. Chem. 4(2) 2013, 213-220.Search in Google Scholar

[20] Ghorbani, A., Azimi, N.,, Note on multiple Zagreb indices Iran. J. Math. Chem. 3 (2), (2012) 137-143.Search in Google Scholar

[21] Albertson, M., The irregularity of a graph Ars. Combin. 46, (1997), 219-225.Search in Google Scholar

[22] Bell, F., A note on the irregularity of graphs Linear Algebra Appl. 161, (1992), 45-54.10.1016/0024-3795(92)90004-TSearch in Google Scholar

[23] Milicevic, A., Nikolic, S., Trinajstic, N., On reformulated Zagreb indices Mol. Diversity. 8, (2004), 393-399.10.1023/B:MODI.0000047504.14261.2aSearch in Google Scholar

[24] Doslic, T.,Vertex-weighted Wiener polynomials for composite graphs Ars. Math. Contemp. 1, (2008), 66-80.10.26493/1855-3974.15.895Search in Google Scholar

[25] Gutman, I., Furtula, B., Vukicevic, Z., Popivoda, G.,, (2015) ON AN Old / New Degree-Based Topological Index Bull. Acad. Serbe Sci. Arts (Cl. Sci. Math. Natur.). 2015, 19-31.Search in Google Scholar

[26] Hao, J., Theorems about Zagreb Indices and Modified Zagreb Indices. Match Commun. Math. Comput. Chem. 2011, 65, 659-670.Search in Google Scholar

[27] Bruckler, F. M., Doslic, T., Graovac, A., Gutman, I. (2011) On a class of distance-based molecular structure descriptors Chem. Phys. Lett. 503, 336-338.10.1016/j.cplett.2011.01.033Search in Google Scholar

[28] Deng, H., Yang, J., Xia, F., A general modeling of some vertex-degree based topological indices in benzenoid systems and phenylenes Comp. Math. Appl. (2011) 61, 3017-3023.10.1016/j.camwa.2011.03.089Search in Google Scholar

[29] Huang, Y., Liu, B., Gan, L.,, Augmented Zagreb Index of Connected Graphs Match Commun. Math. Comput. Chem. 67 (2012) 483-494Search in Google Scholar

[30] Kier, L. B., Hall, L. H.,, Molecular Connectivity in Structure-Activity Analysis (Wiley, New York, 1986).Search in Google Scholar

[31] Gutman, I., Furtula, B., Vukicevic, Z., Popivoda, G., On Zagreb indices and coindices Match Commun. Math. Comput. Chem, 74(1), 5-1,(2015).Search in Google Scholar

[32] Bieri, G., Dill, J. D., Heilbronner, E., Schmelzer, A., Application of the Equivalent Bond Orbital Model to the C2s-Ionization Energies of Saturated Hydrocarbons Helv. Chim. Acta 1977, 60, 2234-2247.10.1002/hlca.19770600715Search in Google Scholar

[33] Heilbronner, E., A Simple Equivalent Bond Orbital Model for the Rationalization of the C2s-Photoelectron Spectra of the Higher n-Alkanes, in Particular of Polyethylene Helv. Chim. Acta 1977, 60, 2248-2257.10.1002/chin.197803049Search in Google Scholar

[34] Kwun, Y.C., Munir, M., Nazeer, W., Rafique, S., Kang, S.M, Computational Analysis of topological indices of two Boron Nanotubes 8, 1, 2018.10.1038/s41598-018-33081-ySearch in Google Scholar PubMed PubMed Central

[35] Hussain, Z., Munir, M., Rafique, S. Kang, S. M., Topological Characterizations and Index-Analysis of New Degree-Based Descriptors of Honeycomb Networks Symmetry 2018, 10, 478.10.3390/sym10100478Search in Google Scholar

Received: 2018-04-14
Accepted: 2018-11-17
Published Online: 2019-03-29

© 2019 Z. Hussain et al., published by De Gruyter

This work is licensed under the Creative Commons Attribution 4.0 Public License.

Articles in the same Issue

  1. Regular Articles
  2. Research on correlation of compositions with oestrogenic activity of Cistanche based on LC/Q-TOF-MS/MS technology
  3. Efficacy of Pyrus elaeagnifolia subsp. elaeagnifolia in acetic acid–induced colitis model
  4. Anti-inflammatory and antinociceptive features of Bryonia alba L.: As a possible alternative in treating rheumatism
  5. High efficiency liposome fusion induced by reducing undesired membrane peptides interaction
  6. Prediction of the Blood-Brain Barrier Permeability Using RP-18 Thin Layer Chromatography
  7. Phytic Acid Extracted from Rice Bran as a Growth Promoter for Euglena gracilis
  8. Development of a validated spectrofluorimetric method for assay of sotalol hydrochloride in tablets and human plasma: application for stability-indicating studies
  9. Topological Indices of Hyaluronic Acid-Paclitaxel Conjugates’ Molecular Structure in Cancer Treatment
  10. Thermodynamic properties of the bubble growth process in a pool boiling of water-ethanol mixture two-component system
  11. Critical Roles of the PI3K-Akt-mTOR Signaling Pathway in Apoptosis and Autophagy of Astrocytes Induced by Methamphetamine
  12. Characteristics of Stable Hydrogen and Oxygen Isotopes of Soil Moisture under Different Land Use in Dry Hot Valley of Yuanmou
  13. Specific, highly sensitive and simple spectrofluorimetric method for quantification of daclatasvir in HCV human plasma patients and in tablets dosage form
  14. Chromium-modified cobalt molybdenum nitrides as catalysts for ammonia synthesis
  15. Langerhans cell-like dendritic cells treated with ginsenoside Rh2 regulate the differentiation of Th1 and Th2 cells in vivo
  16. Identification of Powdery Mildew Blumeria graminis f. sp. tritici Resistance Genes in Selected Wheat Varieties and Development of Multiplex PCR
  17. Computational Analysis of new Degree-based descriptors of oxide networks
  18. The Use Of Chemical Composition And Additives To Classify Petrol And Diesel Using Gas Chromatography–Mass Spectrometry And Chemometric Analysis: A Uk Study
  19. Minimal Energy Tree with 4 Branched Vertices
  20. Jatropha seed oil derived poly(esteramide-urethane)/ fumed silica nanocomposite coatings for corrosion protection
  21. Calculating topological indices of certain OTIS interconnection networks
  22. Energy storage analysis of R125 in UIO-66 and MOF-5 nanoparticles: A molecular simulation study
  23. Velvet Antler compounds targeting major cell signaling pathways in osteosarcoma - a new insight into mediating the process of invasion and metastasis in OS
  24. Effects of Azadirachta Indica Leaf Extract, Capping Agents, on the Synthesis of Pure And Cu Doped ZnO-Nanoparticles: A Green Approach and Microbial Activity
  25. Aqueous Micro-hydration of Na+(H2O)n=1-7 Clusters: DFT Study
  26. A proposed image-based detection of methamidophos pesticide using peroxyoxalate chemiluminescence system
  27. Phytochemical screening and estrogenic activity of total glycosides of Cistanche deserticola
  28. Biological evaluation of a series of benzothiazole derivatives as mosquitocidal agents
  29. Chemical pretreatments of Trapa bispinosa's peel (TBP) biosorbent to enhance adsorption capacity for Pb(ll)
  30. Dynamic Changes in MMP1 and TIMP1 in the Antifibrotic Process of Dahuang Zhechong Pill in Rats with Liver Fibrosis
  31. The Optimization and Production of Ginkgolide B Lipid Microemulsion
  32. Photodynamic Therapy Enhanced the Antitumor Effects of Berberine on HeLa Cells
  33. Chiral and Achiral Enantiomeric Separation of (±)-Alprenolol
  34. Correlation of Water Fluoride with Body Fluids, Dental Fluorosis and FT4, FT3 –TSH Disruption among Children in an Endemic Fluorosis area in Pakistan
  35. A one-step incubation ELISA kit for rapid determination of dibutyl phthalate in water, beverage and liquor
  36. Free Radical Scavenging Activity of Essential Oil of Eugenia caryophylata from Amboina Island and Derivatives of Eugenol
  37. Effects of Blue and Red Light On Growth And Nitrate Metabolism In Pakchoi
  38. miRNA-199a-5p functions as a tumor suppressor in prolactinomas
  39. Solar photodegradation of carbamazepine from aqueous solutions using a compound parabolic concentrator equipped with a sun tracking system
  40. Influence of sub-inhibitory concentration of selected plant essential oils on the physical and biochemical properties of Pseudomonas orientalis
  41. Preparation and spectroscopic studies of Fe(II), Ru(II), Pd(II) and Zn(II) complexes of Schiff base containing terephthalaldehyde and their transfer hydrogenation and Suzuki-Miyaura coupling reaction
  42. Complex formation in a liquid-liquid extraction-chromogenic system for vanadium(IV)
  43. Synthesis, characterization (IR, 1H, 13C & 31P NMR), fungicidal, herbicidal and molecular docking evaluation of steroid phosphorus compounds
  44. Analysis and Biological Evaluation of Arisaema Amuremse Maxim Essential Oil
  45. A preliminary assessment of potential ecological risk and soil contamination by heavy metals around a cement factory, western Saudi Arabia
  46. Anti- inflammatory effect of Prunus tomentosa Thunb total flavones in LPS-induced RAW264.7 cells
  47. Collaborative Influence of Elevated CO2 Concentration and High Temperature on Potato Biomass Accumulation and Characteristics
  48. Methods of extraction, physicochemical properties of alginates and their applications in biomedical field – a review
  49. Characteristics of liposomes derived from egg yolk
  50. Preparation of ternary ZnO/Ag/cellulose and its enhanced photocatalytic degradation property on phenol and benzene in VOCs
  51. Influence of Human Serum Albumin Glycation on the Binding Affinities for Natural Flavonoids
  52. Synthesis and antioxidant activity of 2-methylthio-pyrido[3,2-e][1,2,4] triazolo[1,5-a]pyrimidines
  53. Comparative study on the antioxidant activities of ten common flower teas from China
  54. Molecular Properties of Symmetrical Networks Using Topological Polynomials
  55. Synthesis of Co3O4 Nano Aggregates by Co-precipitation Method and its Catalytic and Fuel Additive Applications
  56. Phytochemical analysis, Antioxidant and Antiprotoscolices potential of ethanol extracts of selected plants species against Echinococcus granulosus: In-vitro study
  57. Silver nanoparticles enhanced fluorescence for sensitive determination of fluoroquinolones in water solutions
  58. Simultaneous Quantification of the New Psychoactive Substances 3-FMC, 3-FPM, 4-CEC, and 4-BMC in Human Blood using GC-MS
  59. Biodiesel Production by Lipids From Indonesian strain of Microalgae Chlorella vulgaris
  60. Miscibility studies of polystyrene/polyvinyl chloride blend in presence of organoclay
  61. Antibacterial Activities of Transition Metal complexes of Mesocyclic Amidine 1,4-diazacycloheptane (DACH)
  62. Novel 1,8-Naphthyridine Derivatives: Design, Synthesis and in vitro screening of their cytotoxic activity against MCF7 cell line
  63. Investigation of Stress Corrosion Cracking Behaviour of Mg-Al-Zn Alloys in Different pH Environments by SSRT Method
  64. Various Combinations of Flame Retardants for Poly (vinyl chloride)
  65. Phenolic compounds and biological activities of rye (Secale cereale L.) grains
  66. Oxidative degradation of gentamicin present in water by an electro-Fenton process and biodegradability improvement
  67. Optimizing Suitable Conditions for the Removal of Ammonium Nitrogen by a Microbe Isolated from Chicken Manure
  68. Anti-inflammatory, antipyretic, analgesic, and antioxidant activities of Haloxylon salicornicum aqueous fraction
  69. The anti-corrosion behaviour of Satureja montana L. extract on iron in NaCl solution
  70. Interleukin-4, hemopexin, and lipoprotein-associated phospholipase A2 are significantly increased in patients with unstable carotid plaque
  71. A comparative study of the crystal structures of 2-(4-(2-(4-(3-chlorophenyl)pipera -zinyl)ethyl) benzyl)isoindoline-1,3-dione by synchrotron radiation X-ray powder diffraction and single-crystal X-ray diffraction
  72. Conceptual DFT as a Novel Chemoinformatics Tool for Studying the Chemical Reactivity Properties of the Amatoxin Family of Fungal Peptides
  73. Occurrence of Aflatoxin M1 in Milk-based Mithae samples from Pakistan
  74. Kinetics of Iron Removal From Ti-Extraction Blast Furnace Slag by Chlorination Calcination
  75. Increasing the activity of DNAzyme based on the telomeric sequence: 2’-OMe-RNA and LNA modifications
  76. Exploring the optoelectronic properties of a chromene-appended pyrimidone derivative for photovoltaic applications
  77. Effect of He Qi San on DNA Methylation in Type 2 Diabetes Mellitus Patients with Phlegm-blood Stasis Syndrome
  78. Cyclodextrin potentiometric sensors based on selective recognition sites for procainamide: Comparative and theoretical study
  79. Greener synthesis of dimethyl carbonate from carbon dioxide and methanol using a tunable ionic liquid catalyst
  80. Nonisothermal Cold Crystallization Kinetics of Poly(lactic acid)/Bacterial Poly(hydroxyoctanoate) (PHO)/Talc
  81. Enhanced adsorption of sulfonamide antibiotics in water by modified biochar derived from bagasse
  82. Study on the Mechanism of Shugan Xiaozhi Fang on Cells with Non-alcoholic Fatty Liver Disease
  83. Comparative Effects of Salt and Alkali Stress on Antioxidant System in Cotton (Gossypium Hirsutum L.) Leaves
  84. Optimization of chromatographic systems for analysis of selected psychotropic drugs and their metabolites in serum and saliva by HPLC in order to monitor therapeutic drugs
  85. Electrocatalytic Properties of Ni-Doped BaFe12O19 for Oxygen Evolution in Alkaline Solution
  86. Study on the removal of high contents of ammonium from piggery wastewater by clinoptilolite and the corresponding mechanisms
  87. Phytochemistry and toxicological assessment of Bryonia dioica roots used in north-African alternative medicine
  88. The essential oil composition of selected Hemerocallis cultivars and their biological activity
  89. Mechanical Properties of Carbon Fiber Reinforced Nanocrystalline Nickel Composite Electroforming Deposit
  90. Anti-c-myc efficacy block EGFL7 induced prolactinoma tumorigenesis
  91. Topical Issue on Applications of Mathematics in Chemistry
  92. Zagreb Connection Number Index of Nanotubes and Regular Hexagonal Lattice
  93. The Sanskruti index of trees and unicyclic graphs
  94. Valency-based molecular descriptors of Bakelite network BNmn
  95. Computing Topological Indices for Para-Line Graphs of Anthracene
  96. Zagreb Polynomials and redefined Zagreb indices of Dendrimers and Polyomino Chains
  97. Topological Descriptor of 2-Dimensional Silicon Carbons and Their Applications
  98. Topological invariants for the line graphs of some classes of graphs
  99. Words for maximal Subgroups of Fi24
  100. Generators of Maximal Subgroups of Harada-Norton and some Linear Groups
  101. Special Issue on POKOCHA 2018
  102. Influence of Production Parameters on the Content of Polyphenolic Compounds in Extruded Porridge Enriched with Chokeberry Fruit (Aronia melanocarpa (Michx.) Elliott)
  103. Effects of Supercritical Carbon Dioxide Extraction (SC-CO2) on the content of tiliroside in the extracts from Tilia L. flowers
  104. Impact of xanthan gum addition on phenolic acids composition and selected properties of new gluten-free maize-field bean pasta
  105. Impact of storage temperature and time on Moldavian dragonhead oil – spectroscopic and chemometric analysis
  106. The effect of selected substances on the stability of standard solutions in voltammetric analysis of ascorbic acid in fruit juices
  107. Determination of the content of Pb, Cd, Cu, Zn in dairy products from various regions of Poland
  108. Special Issue on IC3PE 2018 Conference
  109. The Photocatalytic Activity of Zns-TiO2 on a Carbon Fiber Prepared by Chemical Bath Deposition
  110. N-octyl chitosan derivatives as amphiphilic carrier agents for herbicide formulations
  111. Kinetics and Mechanistic Study of Hydrolysis of Adenosine Monophosphate Disodium Salt (AMPNa2) in Acidic and Alkaline Media
  112. Antimalarial Activity of Andrographis Paniculata Ness‘s N-hexane Extract and Its Major Compounds
  113. Special Issue on ABB2018 Conference
  114. Special Issue on ICCESEN 2017
  115. Theoretical Diagnostics of Second and Third-order Hyperpolarizabilities of Several Acid Derivatives
  116. Determination of Gamma Rays Efficiency Against Rhizoctonia solani in Potatoes
  117. Studies On Compatibilization Of Recycled Polyethylene/Thermoplastic Starch Blends By Using Different Compatibilizer
  118. Liquid−Liquid Extraction of Linalool from Methyl Eugenol with 1-Ethyl-3-methylimidazolium Hydrogen Sulfate [EMIM][HSO4] Ionic Liquid
  119. Synthesis of Graphene Oxide Through Ultrasonic Assisted Electrochemical Exfoliation
  120. Special Issue on ISCMP 2018
  121. Synthesis and antiproliferative evaluation of some 1,4-naphthoquinone derivatives against human cervical cancer cells
  122. The influence of the grafted aryl groups on the solvation properties of the graphyne and graphdiyne - a MD study
  123. Electrochemical modification of platinum and glassy carbon surfaces with pyridine layers and their use as complexing agents for copper (II) ions
  124. Effect of Electrospinning Process on Total Antioxidant Activity of Electrospun Nanofibers Containing Grape Seed Extract
  125. Effect Of Thermal Treatment Of Trepel At Temperature Range 800-1200˚C
  126. Topical Issue on Agriculture
  127. The effect of Cladophora glomerata exudates on the amino acid composition of Cladophora fracta and Rhizoclonium sp.
  128. Influence of the Static Magnetic Field and Algal Extract on the Germination of Soybean Seeds
  129. The use of UV-induced fluorescence for the assessment of homogeneity of granular mixtures
  130. The use of microorganisms as bio-fertilizers in the cultivation of white lupine
  131. Lyophilized apples on flax oil and ethyl esters of flax oil - stability and antioxidant evaluation
  132. Production of phosphorus biofertilizer based on the renewable materials in large laboratory scale
  133. Human health risk assessment of potential toxic elements in paddy soil and rice (Oryza sativa) from Ugbawka fields, Enugu, Nigeria
  134. Recovery of phosphates(V) from wastewaters of different chemical composition
  135. Special Issue on the 4th Green Chemistry 2018
  136. Dead zone for hydrogenation of propylene reaction carried out on commercial catalyst pellets
  137. Improved thermally stable oligoetherols from 6-aminouracil, ethylene carbonate and boric acid
  138. The role of a chemical loop in removal of hazardous contaminants from coke oven wastewater during its treatment
  139. Combating paraben pollution in surface waters with a variety of photocatalyzed systems: Looking for the most efficient technology
  140. Special Issue on Chemistry Today for Tomorrow 2019
  141. Applying Discriminant and Cluster Analyses to Separate Allergenic from Non-allergenic Proteins
  142. Chemometric Expertise Of Clinical Monitoring Data Of Prolactinoma Patients
  143. Chemomertic Risk Assessment of Soil Pollution
  144. New composite sorbent for speciation analysis of soluble chromium in textiles
  145. Photocatalytic activity of NiFe2O4 and Zn0.5Ni0.5Fe2O4 modified by Eu(III) and Tb(III) for decomposition of Malachite Green
  146. Photophysical and antibacterial activity of light-activated quaternary eosin Y
  147. Spectral properties and biological activity of La(III) and Nd(III) Monensinates
  148. Special Issue on Monitoring, Risk Assessment and Sustainable Management for the Exposure to Environmental Toxins
  149. Soil organic carbon mineralization in relation to microbial dynamics in subtropical red soils dominated by differently sized aggregates
  150. A potential reusable fluorescent aptasensor based on magnetic nanoparticles for ochratoxin A analysis
  151. Special Issue on 13th JCC 2018
  152. Fluorescence study of 5-nitroisatin Schiff base immobilized on SBA-15 for sensing Fe3+
  153. Thermal and Morphology Properties of Cellulose Nanofiber from TEMPO-oxidized Lower part of Empty Fruit Bunches (LEFB)
  154. Encapsulation of Vitamin C in Sesame Liposomes: Computational and Experimental Studies
  155. A comparative study of the utilization of synthetic foaming agent and aluminum powder as pore-forming agents in lightweight geopolymer synthesis
  156. Synthesis of high surface area mesoporous silica SBA-15 by adjusting hydrothermal treatment time and the amount of polyvinyl alcohol
  157. Review of large-pore mesostructured cellular foam (MCF) silica and its applications
  158. Ion Exchange of Benzoate in Ni-Al-Benzoate Layered Double Hydroxide by Amoxicillin
  159. Synthesis And Characterization Of CoMo/Mordenite Catalyst For Hydrotreatment Of Lignin Compound Models
  160. Production of Biodiesel from Nyamplung (Calophyllum inophyllum L.) using Microwave with CaO Catalyst from Eggshell Waste: Optimization of Transesterification Process Parameters
  161. The Study of the Optical Properties of C60 Fullerene in Different Organic Solvents
  162. Composite Material Consisting of HKUST-1 and Indonesian Activated Natural Zeolite and its Application in CO2 Capture
  163. Topical Issue on Environmental Chemistry
  164. Ionic liquids modified cobalt/ZSM-5 as a highly efficient catalyst for enhancing the selectivity towards KA oil in the aerobic oxidation of cyclohexane
  165. Application of Thermal Resistant Gemini Surfactants in Highly Thixotropic Water-in-oil Drilling Fluid System
  166. Screening Study on Rheological Behavior and Phase Transition Point of Polymer-containing Fluids produced under the Oil Freezing Point Temperature
  167. The Chemical Softening Effect and Mechanism of Low Rank Coal Soaked in Alkaline Solution
  168. The Influence Of NO/O2 On The NOx Storage Properties Over A Pt-Ba-Ce/γ-Al2O3 Catalyst
  169. Special Issue on the International conference CosCI 2018
  170. Design of SiO2/TiO2 that Synergistically Increases The Hydrophobicity of Methyltrimethoxysilane Coated Glass
  171. Antidiabetes and Antioxidant agents from Clausena excavata root as medicinal plant of Myanmar
  172. Development of a Gold Immunochromatographic Assay Method Using Candida Biofilm Antigen as a Bioreceptor for Candidiasis in Rats
  173. Special Issue on Applied Biochemistry and Biotechnology 2019
  174. Adsorption of copper ions on Magnolia officinalis residues after solid-phase fermentation with Phanerochaete chrysosporium
  175. Erratum
  176. Erratum to: Sand Dune Characterization For Preparing Metallurgical Grade Silicon
Downloaded on 20.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/chem-2019-0023/html
Scroll to top button