Home Structural Properties and Nonlinear Optical Responses of Halogenated Compounds: A DFT Investigation on Molecular Modelling
Article Open Access

Structural Properties and Nonlinear Optical Responses of Halogenated Compounds: A DFT Investigation on Molecular Modelling

  • Muhammad Ramzan Saeed Ashraf Janjua EMAIL logo
Published/Copyright: October 22, 2018

Abstract

Computational chemistry is used to evaluate structures of different compounds by using principles of theoretical and quantum chemistry integrated into useful computer programs. It is used to determine energies, dipole moments and thermodynamic properties of different compounds. The present work reports the computational study of six donor-acceptor dyes. The computational method CAM-B3LYP with 6-31G(d,p) was used in this research to determine the effect of halogens on non-linear optical compounds. HOMO-LUMO energy gaps, dipole polarizabilities, first hyperpolarizabilities, and absorption spectra of six studied compounds (dye 1: 4-(2-(4-fluorophenyl)ethynyl)benzenamine; dye 2: 4-(2-(4-chlorophenyl)ethynyl)benzenamine; dye 3: 4-(2-(4-bromophenyl)ethynyl)benzenamine; dye 4: 5-(2-(4-fluorophenyl)ethynyl)benzene-1,2,3-triamine; dye 5: 5-(2-(4-chlorophenyl)ethynyl)benzene-1,2,3-triamine; dye 6: 5-(2-(4-bromophenyl)ethynyl)benzene-1,2,3-triamine) with aniline and halo phenyl segments were computed by using density functional theory (DFT) and time-dependent density functional theory (TDDFT). Results indicate that all dyes showed wavelengths of maximum absorbance in the visible region. Small HOMO-LUMO energy gaps were observed in all investigated dyes. The present calculations on these dyes (1-6) offer an understanding of the direction of charge transfer (CT) and how NLO behavior can be explained. The aniline-to-halo phenyl CT, caused by the combination of the donor amino group and the acceptor halo group, could be a reason for NLO behavior of these sorts of compounds. These compounds exhibit significant molecular second-order NLO responses, especially dyes (6) and (5), with second-order polarizability determined to be approximately 4600 a.u.

1 Introduction

Computational chemistry is the branch of chemistry that uses the results of theoretical chemistry to solve computer related problems of chemistry. It is a helpful way to investigate materials that are too difficult to purchase or are unstable. This discipline also involves analytical theory, which deals with the performing of simulations using fundamental equations that are derived from the Schrodinger equation or from classical mechanics. Computational chemistry also has to do with obtaining the equations that relate laboratory data (e.g., heat capacities, spectra, reaction cross-sections, phase diagrams, conductivity) to molecular properties (e.g., geometries, activation energies, bond energies, energy levels, intermolecular potentials). This analytical side of theory is also where the equations of statistical mechanics that correlate macroscopic properties of matter to the microscopic properties of the constituent molecules are constructed [1-7].

Donor (D)-acceptor (A) substituted organic molecules with large second-order nonlinear optical (NLO) properties have been the emphasis of many research efforts due to their possible applications in areas such as optical memory, molecular switching, optical modulation, and frequency doubling [8-11]. A key objective in the progress of materials for nonlinear optical applications is to find highly active materials with large second-order polarizabilities (β). The first hyperpolarizability and, hence, the second-order NLO response is related to an electronic intramolecular charge transfer (ICT) within the molecule. Both theoretical and experimental studies have shown that large hyperpolarizabilities generally arise from the merger of a strong electron donor and acceptor positioned at opposite ends of a suitable conjugation path [12-19]. Thus, a variety of donor-acceptor organic molecules containing different acceptor units have been reported previously [20-31]. However, the structure-property relationship indicates that the β value also increases with π-conjugating length [32-34]. On the basis of experimental and theoretical explorations, the design of molecule with good second-order NLO properties has primarily focused on the following points: (a) the planar D-π-A model [35], (b) bond length alternation (BLA) theory [36], (c) auxiliary donors and acceptors model of heterocycle [37-39], and (d) twisted π-electron systems [40-42].

The successes of these approaches encouraged the calculation of the large second-order NLO responses for the halogenated D-A dyes studied in this article. The bridge mediated donor-acceptor electron interaction is large enough to maximize the strength of the transition matrix element (associated with the oscillator strength) of the charge-transfer transition. Thus, computational approaches are of high interest in the field of nonlinear optics dealing with π-systems and halogens. Here, for the first time, the detailed DFT calculations and electronic and nonlinear optical responses of amino and halogenated D-A compounds are reported. This work may deliver useful results in developing new amino-halogenated NLO compounds.

2 Methods of calculation

When a molecule is placed in a uniform static electric field, its electronic energy can be written as a series involving coefficients identified as permanent multi-pole moments and polarizabilities (Eq. 1)

E=E0μiFi12αijFiFj16βijkFiFjFk124γijklFiFjFkFl(1)

Where Fi, Fj, etc. denote the field at the origin.

The Gaussian 09 program package [28] was used to perform all calculations. All systems were optimized using density functional theory (DFT). CAM-B3LYP level of theory with 6-31G(d,p) basis set was adopted for geometry optimization, calculation of non-linear optical properties and UV/Vis spectra. This computational approach has been used successfully to study the non-linear optical properties of investigated dyes (1-6). Absorption spectra of dyes were simulated by using time dependent density functional theory (TDDFT) calculations at CAM-B3LYP level of theory. DFT functional and basis sets are reliable, as these were used in our previous published data, where experimental parameters were reproduced by using the same basis sets [16-18]. Ten lowest singlet–singlet excitation energies were computed. Symmetry constraints are not considered in all calculations. The following formulas are used to calculate average polarizability.

α=αxx+αyy+αzz3(2)

The output file of the Gaussian 09 program contains the following ten hyperpolarizability (βtot) components: βxxx, βxxy, βxyy, βyyy, βxxz, βxyz, βyyz, βxzz, βyzz and βzzz. The relationship between hyperpolarizability and these components is given in following formula:

βtot=[(βxxxyyxzzx)2+(βyyy+βyxx+βzzy)2+(βzzzzxxzyy)2]1/2(3)

The use of functional and basis sets for the studied organic compounds (with a halogen group as acceptor and an amino group as donor) were inspired by previously published work [16-18].

Ethical approval: The conducted research is not related to either human or animal use. Yes. Agreed

3 Results and discussion

3.1 Dye structure

The dye structures studied in the present research work are shown below

3.2 Dipole Polarizabilities

To gain an idea about the second-order polarizability (β), it is important to have some knowledge of dipole polarizability (α). The coefficients of dipole polarizabilities for dyes (1-6) were calculated using equation 2, and the results are listed in Table 1.

Table 1

Computed dipole polarizabilities (a.u) for dyes (1-6) at CAM-B3LYP level of theory with the 6-31G(d,p) basis set.

Dyeαxxαxyαyyαxzαyzαzz>
1348.26-10.00170.013.004.0062.21193.49
2390.89-25.16172.677.088.8764.74209.43
3404.44-26.27173.33-6.5218.5565.08214.28
4340.71-13.89167.09-4.9419.8150.81186.2
5383.43-13.05169.80-6.12-5.7053.33202.19
6396.92-17.09170.451.23-16.7853.68207.02

Due to C2V symmetry, αii (i=x, y, z) are not zero. The αxx component has the highest value among αii components. However, the αxy and αyz constituents are less important. Therefore, the characteristics of systems 1-6 are predominantly calculated by transitions in the x-direction, so the formula in the x-direction can be written as shown below:

Figure 1 Structures of investigated dyes (1-6).
Figure 1

Structures of investigated dyes (1-6).

α(MXgm)2Egm(4)

In the above equation (4), alpha is directly related to the transition moment and is directly proportional to 1/Energy of transition. Consequently, the system with a robust electronic absorption would acquire a bigger α value. The transition wavelengths (λgm), transition moment (MXgm) and related frontier molecular orbital (FMO) of studied systems 1-6 are given in Table 4. Average polarizability 〈α〉 decreases in the order 6 > 5 >3 > 2 > 1 > 4, as shown in Table 1.

Table 4

Excitation energies (λgm, nm; E, a.u.), oscillator strengths (ƒgm) and corresponding dominant MO Transitions of Systems 1-6.

DyeλmaxEgmƒgmMO transition
1298.054.161.257HOMO→LUMO (92%)
2304.914.071.359HOMO→LUMO (91%)
3305.114.061.405HOMO→LUMO (91%)
4305.844.051.089HOMO→LUMO (90%)
5313.123.961.177HOMO→LUMO (89%)
6313.033.961.220HOMO→LUMO (89%)

3.3 HOMO-LUMO analysis

The HOMO-LUMO band gap is an important value for understanding the reactivity index [43, 44]. In TDDFT studies, the electron transitions of dye 1 mainly localized around the π-spacer (HOMO) to (LUMO) along the x-direction. A similar phenomenon happens on dye 2 from HOMO to LUMO, dye 3 from HOMO to LUMO and alike configuration in dyes 4, 5, and 6. The frontier molecular orbitals taking part in the main electronic transitions in dyes1-6 are given in Figure 2. The transition of system 6 is valuable, as it shows the leading NLO value. With C2V symmetry restraints, the transitions are the singlet A1 along the x-direction. In these systems (1-6), the main transitions have an A1 symmetry value. Though the alterations of structures in molecules adjust the involvement of various orbitals to the transitions, major electronic transitions for the investigated compounds have symmetry that can be denoted as A1; it is vital that CT coins from the methyl aniline to the halo phenyl segment along the direction of the x-axis. These patterns point out that the halo phenyl fragment is working as an acceptor and methyl aniline is behaving as a donor. In dye 1, methyl aniline is working as a donor while halo phenyl is serving as an acceptor via pi-conjugated connections.

Figure 2 HOMO-LUMO transition plot and corresponding energy difference of dyes (1-6).
Figure 2

HOMO-LUMO transition plot and corresponding energy difference of dyes (1-6).

The CT of dye 2 starts from the methyl aniline and connects to the halogen group (-X) through a conjugation bridge consisting of an ethylene fragment. For dye 3, the amino group (-NH2), a strong donor at the end of organic ring, transfers charge density towards the halogen group. Dyes 4, 5, and 6 confirm that the halogenated phenyl fragment works as an acceptor and pi-conjugated connection as well when an amino moiety (-NH2) is added on the outside side of the aniline ring. The bonding behavior between the halo phenyl and methyl aniline showed that a strong triple bond can be formed through C→C σ-donation, C→C π-donation and π-back donation in the formation of the various compounds. This strong interaction between σ-overlap and π-overlap produces a sturdy electronic connection between halo phenyl and methyl aniline.

In systems/compounds 1 to 6, resonance of π-electrons between phenyl rings has been increased with the involvement of the CC triple bond, and the C ̶ C π-bond is not localized but instead takes part in conjugation of the two phenyl/organic rings. So π–conjugation and delocalization are increased from system 1 to system 2 through the addition of the chlorine electron acceptor. This electron withdrawing group helps to increase the amount of CT by lowering the transition energy. Thus, a substantially higher βtot value has been produced in system 2 relative to system 1. The conjugation has been lengthened in systems 4, 5, and 6, which leads to a lower transition energy and higher CT. In the HOMO-LUMO of systems 1-6, the methyl aniline can modify the HOMO and spread its π-electronic conjugation to the end of phenyl ring in the halogenated phenyl fragment, which enhances the CT from the methyl aniline to the halogenated phenyl segment of the molecule.

Table 2

Calculated HOMO-LUMO energy values and corresponding energy gaps.

DyeHOMOLUMOEnergy Gap
1-4.962-0.8774.085
2-5.036-1.0433.993
3-5.005-1.0113.994
4-4.703-0.8683.835
5-4.764-1.0343.730
6-4.74-1.0033.738

3.4 The second-order polarizabilities

The first hyperpolarizability, or second-order polarizability (βtot), relates to the second-harmonic generation (SHG). Accordingly, βtot of the methyl aniline, with its dipole moment along the x-axis, can be expressed in following equation;

βtot=13i=xyz(βxii+βixi+βiix)(5)

The second-order polarizability is denoted as the zero-frequency hyper-polarizability and is an approximation of the core molecular hyperpolarizability without consideration of resonance effects. There are seven tensors of the second-order polarizability in molecules with C2vsymmetry. The βxxx tensor has the most significant value. Therefore, the majestic part and the main charge transfer are also in the direction of x-axis. As given in Table 3, all systems under study have high values of second order polarizability tensors. This correlation suggests that all of the studied systems, other than system 1, have strong second-order NLO prospects. In system 1, the D-A-A layout, the CT can be observed from HOMO to LUMO. Here, the NH2 works with fluoro group (F) and, due to electron-donating power of NH2 and electron accepting behavior of F, the CT design is towards the F, resulting in a relatively low NLO value (see Table 3).

Table 3

Computed second-order hyperpolarizabilities and their individual components for dyes 1-6.

dyesβxxxβxxyβxyyβyyyβxxzβyyzβxzzβzzzβtot
1-3076.190.001-45.2760.00-10.0510.0056.600.0143178.69
23964.94-0.03293.4178.000-30.0112.5159.96-11.84119.64
3-27976.6-534.35929.3106.6-43.10-3.6776.86-9.412899.02
4-3380.21-171.20-171.243.8612.3730.5911.97-9.993570.49
54355.55-312.33126.8873.6036.7213.30-27.8411.974527.82
6-4293.19-204.78-117.370.7830.14-44.67156.1212.234576.57

The direction of CT is along x-axis in systems 1-6, and the values of βtot of these systems show that NLO behavior is decreasing in the order 6 > 5 > 2 > 4 > 1 > 3. The βxxx value of system 2 is more than that of system 1 due to presence of a nitro group, which suggests a D-D-A arrangement. The βzzz value of system 4 is higher than that of system 3, leading to a D-D-A-A arrangement. Systen 3 shows minimal βxxx and βtot values due to poor CT.

The addition of a chlorine electron acceptor at the end of phenyl/ organic ring in system 2 enhances the donating power. Systen 5 has a reasonably high NLO value because of the strong power of the NH2. There are three NH2 moieties surrounding the phenyl ring and a chloro (-Cl) moiety competing on the opposite end. Thus, the βtot value is increased from 3570.49 a.u in system 4 to 4527.82 a.u in system 5. System 6 has the highest NLO value of all six systems, as the donating power of aniline has been increased by adding three amino groups on the outside of the phenyl/ organic ring, which indicates that addition of an amino group (-NH2) on the outside of aniline and an electron acceptor (in this case, bromine) at the end of the phenyl ring concurrently is an important way to induce high nonlinearity. System 6 is an excellent example, as compared to systems 4 and 5, as it exhibits the highest NLO value among all tested systems because it has a D-D-A-A pattern. This latter result confirms our idea that aniline is working as a donor in the compounds under study.

The three amino groups (-NH2) at the outer side of the aniline ring (see dye 6) increased CT and NLO value. The NLO responses of all the systems have been altered through the increase of the pi-conjugation length and by using donors and acceptors. Principally, the NLO values have been tuned by the addition of the donors on the outside of the aniline ring. This addition of donors is useful as it boosts the degree of CT by lowering the excited energy level, which leads to a significant increase in the first hyperpolarizability. This effect is observable in system 6, which has a βtot value of 4576.57 a.u. To better understand the basis of the second-order NLO phenomenon of the studied compounds, a determination of the structure-property relationship is also important. How does the structure lead to changes in the determined βtot values? From the complex sum-over-states (SOS) formulation, the two-state model that expresses low-lying charge transfer transition has been studied. In this case, the following relation can be used to note CT.

βCT=ΔμgmfgmEgm3(6)

For any non-centro-symmetric system, the small value of the transition energy (<1 a.u.) is the critical element for the large NLO response. Therefore, for the studied compounds, a low excitation energy is likely the critical element leading to large β values. As can be seen in Table 4, the λgm values are related to the structural arrangement within the studied compounds. The λgm values increase in the order system 1 < 2 < 3 ˂ 4 < 6 ˂5. The λgm value of system 1 is only 298.05 nm, while it is larger for systems 4 (305.84 nm) and 6 (313.03 nm), and a bit larger still for system 5 (313.12 nm). The red shift of the absorption band relates the addition/alteration of a donor and acceptor. Interstingly, the excitation energy will have a tendency to to make a prevailing impact on the βtotvalues of the studied compounds. A low energy value is a vital element in the value; as has been noted in systems 1-6, a low transition energy is a crucial factor to the determination of the NLO response, as shown in Table 4.

3.5 Absorption analysis

The absorption spectra, including λmax, and molecular orbitals involved in transitions state were calculated for all six dyes by CAM-B3LYP/6-31G(d,p) in gas phase and in methanol solution. The calculated absorption spectra (λmax) of dyes were found in the range of 270-350 nm. UV-Vis absorption spectra of dyes are shown in Figure 3. The spectra of dyes are red-shifted in the gas phase: the λmax shifted from 298 in methanol to 313 nm in the gas phase. The overall spectral red-shift was in the following order: dye-6 > dye-5> dye-4> dye-3 > dye-2> dye-1. This order is reverse of the order of the HOMO-LUMO energy gap. Dyes that have low energy gaps require less energy for electronic transitions. Low energy transitions result in red shifted absorption wavelengths. These dye are also environment friendly because they absorb in the UV region, which should mitigate a primary cause of global warming [45,46].

Figure 3 Simulated absorption Spectra of dyes (1-6) calculated in gas phase at DFT/CAM-B3LYP/6-31G(d, p) level of theory
Figure 3

Simulated absorption Spectra of dyes (1-6) calculated in gas phase at DFT/CAM-B3LYP/6-31G(d, p) level of theory

The UV-Visible spectra of the dyes is given in Table 4. The experimental spectra for such types of dyes possess peaks at the range of 240 nm to 300 nm wavelength [47]. The experimental spectra of such types of dyes, then, are in close agreement with simulated spectra, ranging from 298 nm to 313 nm.

4 Conclusions

The compounds with the lesser transition energy values have longer wavelengths, exhibited by the high ratio of beta. The studied systems that have amino donors and halogen acceptors have considerably large values of second-order polarizabilities. Detailed studies of HOMO-LUMO orbitals show that the CT from aniline donor to halo acceptor group plays a practical role in the NLO response. As per the two-state model, a small excitation energy value is a primary contributor to large values of beta.

Following points can be summarized after this theoretical study:

  1. Structure-property interactions are critical, and this study provides several strategies to increase NLO responses.

  2. The addition of an electron acceptor group (-X) at the termination of phenyl/ organic ring leads to a greater value , as it creates a D – A – A arrangement.

  3. The most important way to increase optical nonlinearity was seen in system 6, where a D-D-A-A arrangement coupled with the donating power of aniline substantially increased the NLO response. The involvement of an amino donor on the outside of aniline and a halogen electron acceptor on the terminal part of the organic ring led to a significantly larger value of beta.

  4. System 6 is an excellent example of a D-D-A-A structural layout as it shows the maximal NLO response among all the studied systems.

  5. Dyes with donor-acceptor configurations can become an excellent kind of material in the second-order NLO field. The present calculations on these dyes give us an understanding of the direction of CT and reason for NLO properties. The charge transfer from aniline to halogenated phenyl could be a vital factor explaining the NLO properties of such compounds.


E-mail:

  1. Conflict of Interest: This manuscript has not been published previously and is not under consideration for publication in another journal at the time of submission. There is no conflict of interest as well.

Acknowledgments

M.R.S.A. Janjua would like to acknowledge the support provided by the Deanship of Scientific Research (DSR) at King Fahd University of Petroleum & Minerals (KFUPM) for funding this work through project No. SR161009.

References

[1] McQuarrie D.A., Quantum chemistry, University Science Books, 2008.Search in Google Scholar

[2] Levine I.N., Quantum chemistry, 5th ed, Prentice-Hall Inc., New Jersey, 1991.Search in Google Scholar

[3] Mechanics M.Q., Atkins P.W., Friedman R.S., (Eds.), Oxford University Press: Oxford, UK, 1997.Search in Google Scholar

[4] Hammond B.L., Lester Jr W.A., Reynolds P.J., Monte Carlo methods in ab initio quantum chemistry, World Scientific, 1994.10.1142/1170Search in Google Scholar

[5] Ziegler T., Approximate density functional theory as a practical tool in molecular energetics and dynamics, Chem. Rev., 1991, 91, 651-667.10.1021/cr00005a001Search in Google Scholar

[6] Parr R., Yang W., Density-Functional Theory of Atoms and Molecules, Oxford Univ. Press, New York, 1989.Search in Google Scholar

[7] Profeta Jr. S., In: Kroschwitz J.I. (Ed.), Kirk-Othmer Encyclopedia of Chemical Technology, Supplement 315, John Wiley & Sons, New York, 1998.Search in Google Scholar

[8] Chemla D., Zyss J., In: Nonlinear Optical Properties of Organic Materials and Crystals, Nonlinear Optical Properties of Organic Materials and Crystals , Elsevier, 1987.Search in Google Scholar

[9] Marder S.R., Sohn J.E., Stucky G.D., Materials for nonlinear optics chemical perspectives, American Chemical Society, Washington DC, 1991.10.1021/bk-1991-0455Search in Google Scholar

[10] Burland D., Optical nonlinearities in chemistry: introduction, Chem. Rev., 1994, 94, 1-2.10.1021/cr00025a600Search in Google Scholar

[11] Nalwa H., Miyata S., Fleitz P.A., Nonlinear optics of organic molecules and polymers, Opt. Eng., 1997, 36, 2622-2622.10.1201/9780138745493Search in Google Scholar

[12] Janjua M.R.S.A., Su Z.-M., Guan W., Liu C.-G., Yan L.-K., Song P., et al., Tuning second-order non-linear (NLO) optical response of organoimido-substituted hexamolybdates through halogens: quantum design of novel organic-inorganic hybrid NLO materials, Aust. J. Chem., 2010, 63, 836-844.10.1071/CH10094Search in Google Scholar

[13] Janjua M.R.S.A., Quantum mechanical design of efficient second-order nonlinear optical materials based on heteroaromatic imido-substituted hexamolybdates: First theoretical framework of POM-based heterocyclic aromatic rings, Inorg. Chem., 2012, 51, 11306-11314.10.1021/ic3002652Search in Google Scholar PubMed

[14] Janjua M.R.S.A., Jamil S., Ahmad T., Yang Z., Mahmood A., Pan S., Quantum chemical perspective of efficient NLO materials based on dipolar trans-tetraammineruthenium (II) complexes with pyridinium and thiocyanate ligands: First theoretical framework, Comp. Theor. Chem., 2014, 1033, 6-13.10.1016/j.comptc.2014.01.031Search in Google Scholar

[15] Janjua M.R.S.A., Guan W., Yan L., Su Z.-M., Ali M., Bukhari I.H., Prediction of robustly large molecular second-order nonlinear optical properties of terpyridine-substituted hexamolybdates: Structural modelling towards a rational entry to NLO materials, J. Mol. Graphics Modell., 2010, 28, 735-745.10.1016/j.jmgm.2010.01.011Search in Google Scholar PubMed

[16] Janjua M.R.S.A., Nonlinear optical response of a series of small molecules: quantum modification of π-spacer and acceptor, J. Iran. Chem. Soc., 2017, 14, 2041-2054.10.1007/s13738-017-1141-xSearch in Google Scholar

[17] Janjua M.R.S.A., Yamani Z.H., Jamil S., Mahmood A., Ahmad I., Haroon M., et al., First principle study of electronic and non-linear optical (NLO) properties of triphenylamine dyes: interactive design computation of new NLO compounds, Aust. J. Chem., 2016, 69, 467-472.10.1071/CH15402Search in Google Scholar

[18] Janjua M.R.S.A., Mahmood A., Nazar M.F., Yang Z., Pan S., Electronic absorption spectra and nonlinear optical properties of ruthenium acetylide complexes: a DFT study toward the designing of new high NLO response compounds, Acta Chim. Slov., 2014, 61, .Search in Google Scholar

[19] Janjua M.R.S.A., Amin M., Ali M., Bashir B., Khan M.U., Iqbal M.A., et al., A DFT Study on The Two‐Dimensional Second‐Order Nonlinear Optical (NLO) Response of Terpyridine‐Substituted Hexamolybdates: Physical Insight on 2D Inorganic–Organic Hybrid Functional Materials, Eur. J. Inorg. Chem., 2012, 4, 705711.10.1002/ejic.201101092Search in Google Scholar

[20] Keshari V., Karna S.P., Prasad P.N., Ab initio time-dependent coupled perturbed Hartree-Fock studies of optical nonlinearities of organic molecules: alkyl derivatives of 4-amino-. beta.-nitrostyrene, J. Phys. Chem., 1993, 97,35253529.10.1021/j100116a015Search in Google Scholar

[21] Müller T.J., Robert J.P., Schmälzlin E., Bräuchle C., Meerholz K., A Straightforward Modular Approach to NLO-Active β-Amino Vinyl Nitrothiophenes, Org. Lett., 2000, 2, 2419-2422.10.1021/ol006048zSearch in Google Scholar

[22] Chou S.-S.P., Hsu G.-T., Lin H.-C., Synthesis and second-order nonlinearities of sulfonyl-substituted pyrrole imino dyes, Tetrahedron Lett., 1999, 40, 2157-2160.10.1016/S0040-4039(99)00137-9Search in Google Scholar

[23] Katz H., Singer K., Sohn J., Dirk C., King L., Gordon H., Greatly enhanced second-order nonlinear optical susceptibilities in donor-acceptor organic molecules, J. Am. Chem. Soc., 1987, 109, 6561-6563.10.1021/ja00255a079Search in Google Scholar

[24] Cho B.R., Son K.N., Lee S.J., Im Kang T., Han M.S., Jeon S.J., et al., First order hyperpolarizabilities of 2-[2-(p-diethylaminophenyl) vinyl]-furan derivatives, Tetrahedron Lett., 1998, 39, 3167-3170.10.1016/S0040-4039(98)00450-XSearch in Google Scholar

[25] Belfield K.D., Chinna C., Schafer K.J., New NLO stilbene derivatives bearing phosphonate ester electron-withdrawing groups, Tetrahedron Lett., 1997, 38, 6131-6134.10.1016/S0040-4039(97)01390-7Search in Google Scholar

[26] Sun S.-S., Zhang C., Dalton L.R., Garner S.M., Chen A., Steier W.H., 1,3-Bis (dicyanomethylidene) indane-based second-order NLO materials, Chem. Mater., 1996, 8, 2539-2541.10.1021/cm960353qSearch in Google Scholar

[27] Ahlheim M., Barzoukas M., Bedworth P.V., Blanchard-Desce M., Fort A., Hu Z.-Y., et al., Chromophores with strong heterocyclic acceptors: a poled polymer with a large electro-optic coefficient, Science, 1996, 271, 335-336.10.1126/science.271.5247.335Search in Google Scholar

[28] Coradin T., Nakatani K., Ledoux I., Zyss J., Clément R., Second harmonic generation of dye aggregates in bentonite clay, J. Mater. Chem., 1997, 7, 853-854.10.1039/a702078cSearch in Google Scholar

[29] Kang S., Jeon Y., Kim K., Houbrechts S., Hendrickx E., The diazonium group: an electron acceptor for large molecular hyperpolarizabilities, J. Chem. Soc. Chem. Commun., 1995, 0, 635-636.10.1039/c39950000635Search in Google Scholar

[30] Li F.-Y., Zheng J., Jin L.-P., Zhao X.-S., Liu T.-T., Guo J.-Q., Photoelectric conversion and second-order optical nonlinearity of Langmuir–Blodgett films of a novel dipolar two-dimensional material, J. Mater. Chem., 2000, 10, 1287-1290.10.1039/a908531iSearch in Google Scholar

[31] Barlow S., Bunting H.E., Ringham C., Green J.C., Bublitz G.U., Boxer S.G., et al., Studies of the electronic structure of metallocene-based second-order nonlinear optical dyes, J. Am. Chem. Soc., 1999, 121, 3715-3723.10.1021/ja9830896Search in Google Scholar

[32] Berkovic G., Shen Y., Shadt M., The effect of conjugation length and electron donor groups on the second order nonlinear Polarizability of Cyano substituted aromatic molecules, Mol. Cryst. Liq. Cryst., 1987, 150, 607-616.10.1080/00268948708074818Search in Google Scholar

[33] Janjua M.R.S.A., First-Principle Study on the Effect of Pi-Spacers on Small Molecule Acceptors: Quantum Design of Organic Solar Cells and NLO Compounds, J. Clust. Sci., 2017, 28, 1-13.10.1007/s10876-017-1233-xSearch in Google Scholar

[34] Janjua M.R.S.A., Khan M.U., Bashir B., Iqbal M.A., Song Y., Naqvi S.A.R., et al., Effect of π-conjugation spacer (C C) on the first hyperpolarizabilities of polymeric chain containing polyoxometalate cluster as a side-chain pendant: A DFT study, Comp. Theor. Chem., 2012, 994, 34-40.10.1016/j.comptc.2012.06.011Search in Google Scholar

[35] Zyss J., Ledoux I., Nonlinear optics in multipolar media: theory and experiments, Chem. Rev., 1994, 94, 77-105.10.1021/cr00025a003Search in Google Scholar

[36] Meyers F., Marder S., Pierce B., Bredas J., Electric field modulated nonlinear optical properties of donor-acceptor polyenes: sum-over-states investigation of the relationship between molecular polarizabilities (.alpha., beta., and gamma.) and bond length alternation, J. Am. Chem. Soc., 1994, 116, 10703-10714.10.1021/ja00102a040Search in Google Scholar

[37] Breitung E.M., Shu C.-F., McMahon R.J., Thiazole and thiophene analogues of donor− acceptor stilbenes: molecular hyperpolarizabilities and structure− property relationships, J. Am. Chem. Soc., 2000, 122, 1154-1160.10.1021/ja9930364Search in Google Scholar

[38] Varanasi P.R., Jen A.K.-Y., Chandrasekhar J., Namboothiri I., Rathna A., The important role of Heteroaromatics in the Design of Efficient Second-Order Nonlinear Optical Molecules: theoretical investigation on Push− Pull heteroaromatic stilbenes, J. Am. Chem. Soc., 1996, 118, 12443-12448.10.1021/ja960136qSearch in Google Scholar

[39] Albert I.D., Marks T.J., Ratner M.A., Large Molecular Hyperpolarizabilities. Quantitative Analysis of Aromaticity and Auxiliary Donor−Acceptor Effects, J. Am. Chem. Soc., 1997, 119, 6575-6582.10.1021/ja962968uSearch in Google Scholar

[40] Kang H., Facchetti A., Jiang H., Cariati E., Righetto S., Ugo R., et al., Ultralarge hyperpolarizability twisted π-electron system electro-optic chromophores: synthesis, solid-state and solution-phase structural characteristics, electronic structures, linear and nonlinear optical properties, and computational studies, J. Am. Chem. Soc., 2007, 129, 3267-3286.10.1021/ja0674690Search in Google Scholar PubMed

[41] Yang J.-S., Liau K.-L., Li C.-Y., Chen M.-Y., Meta conjugation effect on the torsional motion of aminostilbenes in the photoinduced intramolecular charge-transfer state, J. Am. Chem. Soc., 2007, 129, 13183-13192.10.1021/ja0741022Search in Google Scholar PubMed

[42] Kang H., Facchetti A., Zhu P., Jiang H., Yang Y., Cariati E., et al., Exceptional Molecular Hyperpolarizabilities in Twisted π‐ Electron System Chromophores, Angew. Chem. Int. Ed., 2005, 44, 7922-7925.10.1002/anie.200501581Search in Google Scholar PubMed

[43] Khalid M., Ali M., Aslam M., Sumrra S.H., Khan M.U., Raza N., et al., Frontier molecular, Natural bond orbital, UV-Vis spectral stduy, Solvent influence on geometric parameters, Vibrational frequencies and solvation energies of 8-Hydroxyquinoline, Int. J. Pharm. Sci. Res., 2017, 8, 457-469.Search in Google Scholar

[44] Aihara J.-i., Reduced HOMO−LUMO gap as an index of kinetic stability for polycyclic aromatic hydrocarbons, J. Phys. Chem. A, 1999, 103, 7487-7495.10.1021/jp990092iSearch in Google Scholar

[45] Tomkinson J., Bacci M., Picollo M., Colognesi D., The vibrational spectroscopy of indigo: A reassessment, Vib. Spectrosc., 2009, 50, 268-276.10.1016/j.vibspec.2009.01.005Search in Google Scholar

[46] Bechtold T., Mussak R., Natural colorants–quinoid, naphthoquinoid and anthraquinoid dyes, In: Bechtold T., Mussak R., (Eds.), Handbook of Natural Colorants, Chichester, Wiley, 2009.10.1002/9780470744970Search in Google Scholar

[47] Girault-Vexlearschi G., Influence de la ramification des chaines hydrocarbonees sur la basicite des amines. IV. Spectres d’absorption des alcoylarylamines, Bull. Soc. Chim. Fr., 1956, 23, 606-613.Search in Google Scholar

Received: 2018-03-05
Revised: 2018-06-11
Accepted: 2018-06-20
Published Online: 2018-10-22

© 2018 Muhammad Ramzan Saeed Ashraf Janjua, published by De Gruyter

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

Articles in the same Issue

  1. Regular Articles
  2. The effect of CuO modification for a TiO2 nanotube confined CeO2 catalyst on the catalytic combustion of butane
  3. The preparation and antibacterial activity of cellulose/ZnO composite: a review
  4. Linde Type A and nano magnetite/NaA zeolites: cytotoxicity and doxorubicin loading efficiency
  5. Performance and thermal decomposition analysis of foaming agent NPL-10 for use in heavy oil recovery by steam injection
  6. Spectroscopic (FT-IR, FT-Raman, UV, 1H and 13C NMR) insights, electronic profiling and DFT computations on ({(E)-[3-(1H-imidazol-1-yl)-1-phenylpropylidene] amino}oxy)(4-nitrophenyl)methanone, an imidazole-bearing anti-Candida agent
  7. A Simplistic Preliminary Assessment of Ginstling-Brounstein Model for Solid Spherical Particles in the Context of a Diffusion-Controlled Synthesis
  8. M-Polynomials And Topological Indices Of Zigzag And Rhombic Benzenoid Systems
  9. Photochemical Transformation of some 3-benzyloxy-2-(benzo[b]thiophen-2-yl)-4Hchromen-4-ones: A Remote Substituent Effect
  10. Dynamic Changes of Secondary Metabolites and Antioxidant Activity of Ligustrum lucidum During Fruit Growth
  11. Studies on the flammability of polypropylene/ammonium polyphosphate and montmorillonite by using the cone calorimeter test
  12. DSC, FT-IR, NIR, NIR-PCA and NIR-ANOVA for determination of chemical stability of diuretic drugs: impact of excipients
  13. Antioxidant and Hepatoprotective Effects of Methanolic Extracts of Zilla spinosa and Hammada elegans Against Carbon Tetrachlorideinduced Hepatotoxicity in Rats
  14. Prunus cerasifera Ehrh. fabricated ZnO nano falcates and its photocatalytic and dose dependent in vitro bio-activity
  15. Organic biocides hosted in layered double hydroxides: enhancing antimicrobial activity
  16. Experimental study on the regulation of the cholinergic pathway in renal macrophages by microRNA-132 to alleviate inflammatory response
  17. Synthesis, characterization, in-vitro antimicrobial properties, molecular docking and DFT studies of 3-{(E)-[(4,6-dimethylpyrimidin-2-yl)imino]methyl} naphthalen-2-ol and Heteroleptic Mn(II), Co(II), Ni(II) and Zn(II) complexes
  18. M-Polynomials and Topological Indices of Dominating David Derived Networks
  19. Human Health Risk Assessment of Trace Metals in Surface Water Due to Leachate from the Municipal Dumpsite by Pollution Index: A Case Study from Ndawuse River, Abuja, Nigeria
  20. Analysis of Bowel Diseases from Blood Serum by Autofluorescence and Atomic Force Microscopy Techniques
  21. Hydrographic parameters and distribution of dissolved Cu, Ni, Zn and nutrients near Jeddah desalination plant
  22. Relationships between diatoms and environmental variables in industrial water biotopes of Trzuskawica S.A. (Poland)
  23. Optimum Conversion of Major Ginsenoside Rb1 to Minor Ginsenoside Rg3(S) by Pulsed Electric Field-Assisted Acid Hydrolysis Treatment
  24. Antioxidant, Anti-microbial Properties and Chemical Composition of Cumin Essential Oils Extracted by Three Methods
  25. Regulatory mechanism of ulinastatin on autophagy of macrophages and renal tubular epithelial cells
  26. Investigation of the sustained-release mechanism of hydroxypropyl methyl cellulose skeleton type Acipimox tablets
  27. Bio-accumulation of Polycyclic Aromatic Hydrocarbons in the Grey Mangrove (Avicennia marina) along Arabian Gulf, Saudi Coast
  28. Dynamic Change of Secondary Metabolites and spectrum-effect relationship of Malus halliana Koehne flowers during blooming
  29. Lipids constituents from Gardenia aqualla Stapf & Hutch
  30. Effect of using microwaves for catalysts preparation on the catalytic acetalization of glycerol with furfural to obtain fuel additives
  31. Effect of Humic Acid on the Degradation of Methylene Blue by Peroxymonosulfate
  32. Serum containing drugs of Gua Lou Xie Bai decoction (GLXB-D) can inhibit TGF-β1-Induced Epithelial to Mesenchymal Transition (EMT) in A549 Cells
  33. Antiulcer Activity of Different Extracts of Anvillea garcinii and Isolation of Two New Secondary Metabolites
  34. Analysis of Metabolites in Cabernet Sauvignon and Shiraz Dry Red Wines from Shanxi by 1H NMR Spectroscopy Combined with Pattern Recognition Analysis
  35. Can water temperature impact litter decomposition under pollution of copper and zinc mixture
  36. Released from ZrO2/SiO2 coating resveratrol inhibits senescence and oxidative stress of human adipose-derived stem cells (ASC)
  37. Validated thin-layer chromatographic method for alternative and simultaneous determination of two anti-gout agents in their fixed dose combinations
  38. Fast removal of pollutants from vehicle emissions during cold-start stage
  39. Review Article
  40. Catalytic activities of heterogeneous catalysts obtained by copolymerization of metal-containing 2-(acetoacetoxy)ethyl methacrylate
  41. Antibiotic Residue in the Aquatic Environment: Status in Africa
  42. Regular Articles
  43. Mercury fractionation in gypsum using temperature desorption and mass spectrometric detection
  44. Phytosynthetic Ag doped ZnO nanoparticles: Semiconducting green remediators
  45. Epithelial–Mesenchymal Transition Induced by SMAD4 Activation in Invasive Growth Hormone-Secreting Adenomas
  46. Physicochemical properties of stabilized sewage sludge admixtures by modified steel slag
  47. In Vitro Cytotoxic and Antiproliferative Activity of Cydonia oblonga flower petals, leaf and fruit pellet ethanolic extracts. Docking simulation of the active flavonoids on anti-apoptotic protein Bcl-2
  48. Synthesis and Characterization of Pd exchanged MMT Clay for Mizoroki-Heck Reaction
  49. A new selective, and sensitive method for the determination of lixivaptan, a vasopressin 2 (V2)-receptor antagonist, in mouse plasma and its application in a pharmacokinetic study
  50. Anti-EGFL7 antibodies inhibit rat prolactinoma MMQ cells proliferation and PRL secretion
  51. Density functional theory calculations, vibration spectral analysis and molecular docking of the antimicrobial agent 6-(1,3-benzodioxol-5-ylmethyl)-5-ethyl-2-{[2-(morpholin-4-yl)ethyl] sulfanyl}pyrimidin-4(3H)-one
  52. Effect of Nano Zeolite on the Transformation of Cadmium Speciation and Its Uptake by Tobacco in Cadmium-contaminated Soil
  53. Effects and Mechanisms of Jinniu Capsule on Methamphetamine-Induced Conditioned Place Preference in Rats
  54. Calculating the Degree-based Topological Indices of Dendrimers
  55. Efficient optimization and mineralization of UV absorbers: A comparative investigation with Fenton and UV/H2O2
  56. Metabolites of Tryptophane and Phenylalanine as Markers of Small Bowel Ischemia-Reperfusion Injury
  57. Adsorption and determination of polycyclic aromatic hydrocarbons in water through the aggregation of graphene oxide
  58. The role of NR2C2 in the prolactinomas
  59. Chromium removal from industrial wastewater using Phyllostachys pubescens biomass loaded Cu-S nanospheres
  60. Hydrotalcite Anchored Ruthenium Catalyst for CO2 Hydrogenation Reaction
  61. Preparation of Calcium Fluoride using Phosphogypsum by Orthogonal Experiment
  62. The mechanism of antibacterial activity of corylifolinin against three clinical bacteria from Psoralen corylifolia L
  63. 2-formyl-3,6-bis(hydroxymethyl)phenyl benzoate in Electrochemical Dry Cell
  64. Electro-photocatalytic degradation of amoxicillin using calcium titanate
  65. Effect of Malus halliana Koehne Polysaccharides on Functional Constipation
  66. Structural Properties and Nonlinear Optical Responses of Halogenated Compounds: A DFT Investigation on Molecular Modelling
  67. DMFDMA catalyzed synthesis of 2-((Dimethylamino)methylene)-3,4-dihydro-9-arylacridin-1(2H)-ones and their derivatives: in-vitro antifungal, antibacterial and antioxidant evaluations
  68. Production of Methanol as a Fuel Energy from CO2 Present in Polluted Seawater - A Photocatalytic Outlook
  69. Study of different extraction methods on finger print and fatty acid of raw beef fat using fourier transform infrared and gas chromatography-mass spectrometry
  70. Determination of trace fluoroquinolones in water solutions and in medicinal preparations by conventional and synchronous fluorescence spectrometry
  71. Extraction and determination of flavonoids in Carthamus tinctorius
  72. Therapeutic Application of Zinc and Vanadium Complexes against Diabetes Mellitus a Coronary Disease: A review
  73. Study of calcined eggshell as potential catalyst for biodiesel formation using used cooking oil
  74. Manganese oxalates - structure-based Insights
  75. Topological Indices of H-Naphtalenic Nanosheet
  76. Long-Term Dissolution of Glass Fibers in Water Described by Dissolving Cylinder Zero-Order Kinetic Model: Mass Loss and Radius Reduction
  77. Topological study of the para-line graphs of certain pentacene via topological indices
  78. A brief insight into the prediction of water vapor transmissibility in highly impermeable hybrid nanocomposites based on bromobutyl/epichlorohydrin rubber blends
  79. Comparative sulfite assay by voltammetry using Pt electrodes, photometry and titrimetry: Application to cider, vinegar and sugar analysis
  80. MicroRNA delivery mediated by PEGylated polyethylenimine for prostate cancer therapy
  81. Reversible Fluorescent Turn-on Sensors for Fe3+ based on a Receptor Composed of Tri-oxygen Atoms of Amide Groups in Water
  82. Sonocatalytic degradation of methyl orange in aqueous solution using Fe-doped TiO2 nanoparticles under mechanical agitation
  83. Hydrotalcite Anchored Ruthenium Catalyst for CO2 Hydrogenation Reaction
  84. Production and Analysis of Recycled Ammonium Perrhenate from CMSX-4 superalloys
  85. Topical Issue on Agriculture
  86. New phosphorus biofertilizers from renewable raw materials in the aspect of cadmium and lead contents in soil and plants
  87. Survey of content of cadmium, calcium, chromium, copper, iron, lead, magnesium, manganese, mercury, sodium and zinc in chamomile and green tea leaves by electrothermal or flame atomizer atomic absorption spectrometry
  88. Biogas digestate – benefits and risks for soil fertility and crop quality – an evaluation of grain maize response
  89. A numerical analysis of heat transfer in a cross-current heat exchanger with controlled and newly designed air flows
  90. Freshwater green macroalgae as a biosorbent of Cr(III) ions
  91. The main influencing factors of soil mechanical characteristics of the gravity erosion environment in the dry-hot valley of Jinsha river
  92. Free amino acids in Viola tricolor in relation to different habitat conditions
  93. The influence of filler amount on selected properties of new experimental resin dental composite
  94. Effect of poultry wastewater irrigation on nitrogen, phosphorus and carbon contents in farmland soil
  95. Response of spring wheat to NPK and S fertilization. The content and uptake of macronutrients and the value of ionic ratios
  96. The Effect of Macroalgal Extracts and Near Infrared Radiation on Germination of Soybean Seedlings: Preliminary Research Results
  97. Content of Zn, Cd and Pb in purple moor-grass in soils heavily contaminated with heavy metals around a zinc and lead ore tailing landfill
  98. Topical Issue on Research for Natural Bioactive Products
  99. Synthesis of (±)-3,4-dimethoxybenzyl-4-methyloctanoate as a novel internal standard for capsinoid determination by HPLC-ESI-MS/MS(QTOF)
  100. Repellent activity of monoterpenoid esters with neurotransmitter amino acids against yellow fever mosquito, Aedes aegypti
  101. Effect of Flammulina velutipes (golden needle mushroom, eno-kitake) polysaccharides on constipation
  102. Bioassay-directed fractionation of a blood coagulation factor Xa inhibitor, betulinic acid from Lycopus lucidus
  103. Antifungal and repellent activities of the essential oils from three aromatic herbs from western Himalaya
  104. Chemical composition and microbiological evaluation of essential oil from Hyssopus officinalis L. with white and pink flowers
  105. Bioassay-guided isolation and identification of Aedes aegypti larvicidal and biting deterrent compounds from Veratrum lobelianum
  106. α-Terpineol, a natural monoterpene: A review of its biological properties
  107. Utility of essential oils for development of host-based lures for Xyleborus glabratus (Coleoptera: Curculionidae: Scolytinae), vector of laurel wilt
  108. Phenolic composition and antioxidant potential of different organs of Kazakh Crataegus almaatensis Pojark: A comparison with the European Crataegus oxyacantha L. flowers
  109. Isolation of eudesmane type sesquiterpene ketone from Prangos heyniae H.Duman & M.F.Watson essential oil and mosquitocidal activity of the essential oils
  110. Comparative analysis of the polyphenols profiles and the antioxidant and cytotoxicity properties of various blue honeysuckle varieties
  111. Special Issue on ICCESEN 2017
  112. Modelling world energy security data from multinomial distribution by generalized linear model under different cumulative link functions
  113. Pine Cone and Boron Compounds Effect as Reinforcement on Mechanical and Flammability Properties of Polyester Composites
  114. Artificial Neural Network Modelling for Prediction of SNR Effected by Probe Properties on Ultrasonic Inspection of Austenitic Stainless Steel Weldments
  115. Calculation and 3D analyses of ERR in the band crack front contained in a rectangular plate made of multilayered material
  116. Improvement of fuel properties of biodiesel with bioadditive ethyl levulinate
  117. Properties of AlSi9Cu3 metal matrix micro and nano composites produced via stir casting
  118. Investigation of Antibacterial Properties of Ag Doped TiO2 Nanofibers Prepared by Electrospinning Process
  119. Modeling of Total Phenolic contents in Various Tea samples by Experimental Design Methods
  120. Nickel doping effect on the structural and optical properties of indium sulfide thin films by SILAR
  121. The effect mechanism of Ginnalin A as a homeopathic agent on various cancer cell lines
  122. Excitation functions of proton induced reactions of some radioisotopes used in medicine
  123. Oxide ionic conductivity and microstructures of Pr and Sm co-doped CeO2-based systems
  124. Rapid Synthesis of Metallic Reinforced in Situ Intermetallic Composites in Ti-Al-Nb System via Resistive Sintering
  125. Oxidation Behavior of NiCr/YSZ Thermal Barrier Coatings (TBCs)
  126. Clustering Analysis of Normal Strength Concretes Produced with Different Aggregate Types
  127. Magnetic Nano-Sized Solid Acid Catalyst Bearing Sulfonic Acid Groups for Biodiesel Synthesis
  128. The biological activities of Arabis alpina L. subsp. brevifolia (DC.) Cullen against food pathogens
  129. Humidity properties of Schiff base polymers
  130. Free Vibration Analysis of Fiber Metal Laminated Straight Beam
  131. Comparative study of in vitro antioxidant, acetylcholinesterase and butyrylcholinesterase activity of alfalfa (Medicago sativa L.) collected during different growth stages
  132. Isothermal Oxidation Behavior of Gadolinium Zirconate (Gd2Zr2O7) Thermal Barrier Coatings (TBCs) produced by Electron Beam Physical Vapor Deposition (EB-PVD) technique
  133. Optimization of Adsorption Parameters for Ultra-Fine Calcite Using a Box-Behnken Experimental Design
  134. The Microstructural Investigation of Vermiculite-Infiltrated Electron Beam Physical Vapor Deposition Thermal Barrier Coatings
  135. Modelling Porosity Permeability of Ceramic Tiles using Fuzzy Taguchi Method
  136. Experimental and theoretical study of a novel naphthoquinone Schiff base
  137. Physicochemical properties of heat treated sille stone for ceramic industry
  138. Sand Dune Characterization for Preparing Metallurgical Grade Silicon
  139. Catalytic Applications of Large Pore Sulfonic Acid-Functionalized SBA-15 Mesoporous Silica for Esterification
  140. One-photon Absorption Characterizations, Dipole Polarizabilities and Second Hyperpolarizabilities of Chlorophyll a and Crocin
  141. The Optical and Crystallite Characterization of Bilayer TiO2 Films Coated on Different ITO layers
  142. Topical Issue on Bond Activation
  143. Metal-mediated reactions towards the synthesis of a novel deaminolysed bisurea, dicarbamolyamine
  144. The structure of ortho-(trifluoromethyl)phenol in comparison to its homologues – A combined experimental and theoretical study
  145. Heterogeneous catalysis with encapsulated haem and other synthetic porphyrins: Harnessing the power of porphyrins for oxidation reactions
  146. Recent Advances on Mechanistic Studies on C–H Activation Catalyzed by Base Metals
  147. Reactions of the organoplatinum complex [Pt(cod) (neoSi)Cl] (neoSi = trimethylsilylmethyl) with the non-coordinating anions SbF6– and BPh4
  148. Erratum
  149. Investigation on Two Compounds of O, O’-dithiophosphate Derivatives as Corrosion Inhibitors for Q235 Steel in Hydrochloric Acid Solution
Downloaded on 7.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/chem-2018-0113/html
Scroll to top button