Home M-Polynomials And Topological Indices Of Zigzag And Rhombic Benzenoid Systems
Article Open Access

M-Polynomials And Topological Indices Of Zigzag And Rhombic Benzenoid Systems

  • Ashaq Ali , Waqas Nazeer , Mobeen Munir and Shin Min Kang EMAIL logo
Published/Copyright: February 24, 2018

Abstract

M-polynomial of different molecular structures helps to calculate many topological indices. This polynomial is a new idea and its beauty is the wealth of information it contains about the closed forms of degree-based topological indices of molecular graph G of the structure. It is a well-known fact that topological indices play significant role in determining properties of the chemical compound [1, 2, 3, 4]. In this article, we computed the closed form of M-polynomial of zigzag and rhombic benzenoid systemsbecause of their extensive usages in industry. Moreover we give graphs of M-polynomials and their relations with the parameters of structures.

1 Introduction

In mathematical chemistry, mathematical tools such as polynomials and numbers predict properties of compounds without using; quantum mechanics. These tools, in combination, capture information hidden in the symmetry of molecular graphs. Most commonly known invariants of such kinds are known as degree-based topological indices. These are the numerical values that correlate the structure with various physical properties, chemical reactivity and biological activities [5, 6, 7, 12]. It is an established fact that many properties such as heat of formation, boiling point, strain energy, rigidity and fracture toughness of a molecule are strongly connected to its graphical structure and this fact plays a synergic role in chemical graph theory. A graph G with vertex set V(G) and edge set E(G) is connected, if there exists a connection between any pair of vertices in G. The distance between two vertices u and v is denoted as d (u, v) and is the length of the shortest path between u and v in graph G. The number of vertices of G, adjacent to a given vertex v, is the “degree” of this vertex, and will be denoted by dv. For details on basics of graph theory, any standard text such as [13] can be of great help.

Several algebraic polynomials have useful applications in chemistry such as Hosoya Polynomial (also called Wiener polynomial) [8]. M-polynomial [14], introduced in 2015 helps in determining many degree-based topological indices. Benzenoid hydrocarbons play a vital role in our environment, and in the food and chemical industries. Benzenoid molecular graphs are systems with deleted hydrogens. It is a connected geometric figure obtained by arranging congruent regular hexagons in a plane, so that two hexagons are either disjoint or have a common edge. This figure divides the plane into one infinite (external) region and a number of finite (internal) regions. All internal regions must be regular hexagons. Benzenoid systems are of considerable importance in theoretical chemistry because they are the natural graph representation of benzenoid hydrocarbons. A vertex of a hexagonal system belongs to, at most, three hexagons. A vertex shared by three hexagons is called an internal vertex. Under this definition in [15] the figure under discussion is not a benzenoid system as one internal central region is a regular 14 sided polygon. These systems are planar consisting of regular hexagons as shown in Figure 1.

Figure 1 Example of benzenoid system left and a non – benzenoid system right.
Figure 1

Example of benzenoid system left and a non – benzenoid system right.

Definition 1

Let G be a simple connected graph. The M-polynomial of G is defined as:

M(G,x,y)=δijmij(G)xiyj.

Where δ = Mind{dv | v ∈ V (G)}, Δ = Max{dv ∈ V (G)}, and mij(G) is the edge vuE(G) such that {dv, du} = {i, j}.

This polynomial has been one of the key areas of interest in computational aspects of materials. From this M-polynomial, we can calculate many topological indices. The topological index of a molecule structure can be considered as a non-empirical numerical quantity which quantifies the molecular structure and its branching pattern in many ways. M-polynomial of different molecular structures have been computed in [9, 10, 12, 16, 17,]. Essentially, the topological index can be regarded as a score function which maps each molecular structure to a real number and is used as a descriptor of the molecule under testing [1, 18, 19, 20]. Topologioal indices provide a good prediction of various physico-chemical properties of chemical compounds including boiling point, heat of evaporation, heat of formation, chromatographic retention times, surface tension, vapor pressure etc. Since the 1970s, two degree based graph invariants have been extensively studied. These are the first Zagreb index M1 and the second Zagreb index M2, introduced by Gutman and Trinajstic’ [2] and defined as:

M1(G)=vV(G)(dv)2 and M2(G)=uvE(G)dudv.

Results obtained in the theory of Zagreb indices are summarized in the review [21].

Second modified Zagreb index is defined as:

mM2(G)=uvE(G)1dudv.

In 1998, working independently, Bollobas and Erdos [22] and Amic et al. [3] proposed general Randic index. It has been extensively studied by both mathematicians and theoretical chemists

(See, for example, [23]). The Randic’ index is defined as:

Rα(G)=uvE(G)(dudv)α,

where α is an arbitrary real number.

Where

Dx=x(f(x,y)x,Dy=y(f(x,y)y,Sx=0xf(t,y)tdf,Sy==0yf(x,t)tdf,J(f(x,y))=f(x,x),Qα(f(x,y))=xαf(x,y).

Symmetric division index is defined as:

SDD(G)=uvE(G)min(du,dv)max(du,dv)+max(du,dv)min(du,dv).

Another variant of Randic’ index is the harmonic index defined as:

H(G)=vuE(G)2du+dv.

The Inverse sum index is defined as:

I(G)=vuE(G)dudvdu+dv.

The augmented Zagreb index is defined as:

A(G)=vuE(G)dudvdu+dv23,

and it is useful for computing heat of formation of alkanes [24, 25].

For detailed study about degree-based topological indices, we refer [26, 27, 28, 29, 30, 31, 32] and the references therein.

These topological indices can be recovered from M-polynomial [14], see following Table 1.

Table 1

Derivation of some degree-based topological indices from M-polynomial.

Topological IndexDerivation from M(G;x,y)
Seesnd Modified Zagreb(SxSy)(M(G; x,y))|x=y=1
General Randić(DxαDyα)(M(G;x,y))|x=y=1
General Randić(SxαSyα)(M(G;x,y))|x=y=1
Symmutrlc Division Index(DxSy+ SxDy)(M(G; x,y))|x=y=1
Harmonic Index2 Sx J Dx Dy (M (G ; x, y)) x=1
Inverse sum IndexSx J Dx Dy (M(G; x, y))x=1
Augmented Zagreb IndexSx3Q2JDx3Dy3(M(G;x,y))x=1

In this article, we compute the closed form of the M-polynomial for two famous benzenoid systems Zigzag benzenoid system and Rhombic benzenoid system. We also computed some degree-based topological indices.

2 Methodology

At first we obtain general pattern of vertex and edge partitions of 2D molecular graph connected to the Zigzag benzenoid system and Rhombic benzenoid system based on the degree of end vertices of edges. From this edge partition, using definition, we obtain M-polynomials of these systems. The 3D graph of M-polynomials are sketched by using maple 2015. Then using mathematical operators and table 1, we reach at the different degree-based indices.

Ethical approval: The conducted research is not related to either human or animals use.

3 Results and Discussions

In this part we give our main computational results in two sections.

3.1 Computational aspects of Zigzag benzenoid system

Let n be number of rows in graph of zigzag benzenoid system Zn with two hexagons in each row. Since first row contain two hexagons with twelve edges and one edge is common so we obtain total eleven edges in the first row and combining first and second row we obtain 24 total edges with three edges in common so we obtain 21 different edges. Continuing in the same way we obtain 10n + 1 edges and 8n + 2 vertices. We partition edges on the basis of degrees of endpoints of edges of the graph. All vertices are either of degree two or three. One can observe that at each row we have two edges of type {2,2}, one upside and one downside the chain except the endpoints where we have two more edges with end vertex having degree two.

Thus |E{2,2}|=|{e=uvE(Zn)|du=2,dv=2}=2n+4. Next we can see that four edges of type (2,3) are present in each row of the chain so |E{2,3}|=|{e=uvE(Zn)|du==2dv=3}=4n. Remaining are edges of type (3,3) given as . |E{3,3}|=|{e=uvE(Zn)|du=3,dv=3}|=(10n+1)(2n+4)4n=4n3.

Theorem 1

Consider the zigzag benzenoid system Zn, then its M-polynomial is

M(Zn;x,y)=2(n+2)x2y2+4nx2y3+(4n3)x3y3.

Proof

Let Zn be the zigzag benzenoid system, then from the above decision |V (Zn)| = 8n + 2 and |E (Zn)| = 10n + 1. Also from the above decision, we can divide the edge set into the following three partitions:

E1(Zn)={e=uvE(Zn):du=dv=2},E2(Zn)={e=uvE(Zn):du=2,dv=3},E3(Zn)={e=uvE(Zn):du=dv=3}.

In addition,

|E1(Zn)|=2(n+2),|E2(Zn)|=4n,|E3(Zn)|=4n3.

Now by definition of M-polynomial, we have

M(Zn;x,y)=ijmijxiyj=22m22x2y2+23m23x2y3+33m33x3y3=uvE1(Zn)m22x2y2+uvE2(Zn)m23x2y3+uvE3(Zn)m33x3y3=|E1(Zn)|x2y2+|E2(Zn)|x2y3+|E3(Zn)|x3y3=2(n+2)x2y2+4nx2y3+(4n3)x3y3.

Now we compute some degree-based topological indices of zigzag benzenoid from this M-polynomial.

Figure 2 Graph of zigzag benzenoid system Zn.
Figure 2

Graph of zigzag benzenoid system Zn.

Proposition 2

Consider the zigzag benzenoid system Zn, then

  1. mM2(Zn)=2918n+23.

  2. Rα(Zn)=4n9α+2n4α+4n6α − 3 × 9α+4 × 4α.

  3. Rα(Zn)=2n+44α+4n6α+4n39α.

  4. SSD(Zn)=623n+2.

  5. H(Zn)=313n+1.

  6. I(Zn)=645n12.

  7. A(Zn)=145716n45964.

Figure 3 The plot for the M-polynomial of Z1.
Figure 3

The plot for the M-polynomial of Z1.

Proof

Let M(Zn; x, y) = f (x, y) = 2(n + 2)x2y2 + 4nx2y3 + (4n - 3)x3y3. Then

Dxf(x,y)=4(n+2)x2y2+8nx2y3+3(4n3)x3y3,Dyf(x,y)=4(n+2)x2y2+12nx2y3+3(4n3)x3y3,DyDxf(x,y)=8(n+2)x2y2+24nx2y3+9(4n3)x3y3,Sy(f(x,y))=(n+2)x2y2+43nx2y3+13(4n3)x3y3,SxSy(f(x,y))=12(n+2)x2y2+23nx2y3+19(4n3)x3y3,Dyα(f(x,y))=2α+1(n+2)x2y2+3α4nx2y3+3α(4n3)x3y3,DxαDyα(f(x,y))=22α+1(n+2)x2y2+2α+23αnx2y3+32α(4n3)x3y3,Syα(f(x,y))=12α1(n+2)x2y2+43αnx2y3+13α(4n3)x3y3,SxαSyα(f(x,y))=122α1(n+2)x2y2+12α23αnx2y3+132α(4n3)x3y3,SyDx(f(x,y))=2(n+2)x2y2+8xnx2y3+(4n3)x3y3,SxDy(f(x,y))=2(n+2)x2y2+6nx2y3+(4n3)x3y3,.Jf(x,y)=2(n+2)x4+4nx5+(4n3)x6,SxJf(x,y)=12(n+2)x4+45nx5+16(4n3)x6,JDxDyf(x,y)=8(n+2)x4+24nx5+9(4n3)x6,SxJDxDyf(x,y)=2(n+2)x4+245nx5+32(4n3)x6,Dy3f(x(y)=16(n+2)x2y2+108nx2y3+27(4n3)x3y3,Dx3Dy3f(x,y)=108(n+2)x2y2+864nx2y3+729(4n3)x3y3,JDx3Dy3f(x,y)=108(n+2)x4+864nx5+729(4n3)x6,Q2JDx3Dy3f(x,y)=108(n+2)x2+864nx3+729(4n3)x4,Sx3Q2JDx3Dy3f(x,y)=272(n+2)x2+32nx3+72964(4n3)x4.

  1. mM2(Zn)=SxSy(f(x,y))|x=y=1=2918n+23.

  2. Rα(zn)=DxαDyα(f(x,y))|x=y=1=4n9α+2n4α+4n6α3×9α+4×4α.

  3. Rα(zn)=SxαSyα(f(x,y))|x=y=1=2n+44α+4n6α+6n39α.

  4. SSD(Zn)=(SyDx+SxDy)(f(x,y))|x=y=1=623n+2.

  5. H(Zn)=2SxJ(f(x,y))|x=1=313n+1.

  6. I(Zn)=SxJDxDy(f(x,y))x=1=645n12.

  7. A(Zn)=Sx3Q2JDx3Dy3(f(x,y))|x=1=145716n45964.

3.2 Computational aspects of the Rhombic benzenoid system

Take another benzenoid system in which hexagons are arranged to form a rhombic shape Rn, in which there are n rows of n hexagons as given in Figure 4. Then it has 2n(2+ 2) vertices and 3n2 + 4n − 1 edges. On the similar lines we partition edges on the basis of degrees of endpoints. Clearly, all vertices are either of 2nd or 3rd degree. appear only on the four corners of the rhomb, so |E{2,2}|=|{e=uvE(Rn)du=2,dv=2}|=6. Edges E{2, 3} appear in pairs along the boundary except the corners where they are single. So we obtain |E{2,3}|=|{e=uvE(Zn)|du=2,dv=3}|=8(n1). Remaining are edges of type (3,3) given as |E{3,3}|=|{e=uvE(Zn)|du=3,dv=3}|=3n2+4n1 − 6 − 8(n − 1) = )n2 − 4n + 1.

Figure 4 Graph of rhombic benzenoid system having n rows of n hexagons.
Figure 4

Graph of rhombic benzenoid system having n rows of n hexagons.

So we obtain the following result.

Theorem 3

Consider the rhombic benzenoid system Rn, then its M- polynomial is:

M(Rn;x,y)=6x2y2+8(n1)x2y3+(n(3n4)+1)x3y3.

Proof

The proof is similar to theorem 1.

Now we compute some degree-based topological indices from this M-polynomial.

Proportion 4

Consider the rhombic benzenoid system Rn, then

  1. mM2(Rn)=518+43n+19n(3n4).

  2. Rα(Rn)=9αn(3n4)+8n6α+9α+6×4α8×6α.

  3. Rα(Rn)=64α+8n86α+n(3n4)+19α.

  4. SSD(Rn)=103+523n+2n(3n4).

  5. H(Rn)=215+165n+13n(3n4).

  6. I(Rn)=2110+485n+32n(3n4).

  7. A(Rn)=29564+64n+72964n(3n4).

Proof

The proof of this proposition is similar to proposition 2.

Figure 6 The plot for the M-polynomial of R1.
Figure 6

The plot for the M-polynomial of R1.

4 Conclusions and Discussion

In this article we computed M-polynomials and closed forms of degree-based topological indices of zigzag and rhombic benzenoid system. These indices play important role in determining properties of compound under investigations. We gave graphs of M-polynomials against the number of hexagons n in each structure. These graphs in fact determine the dependency of above discussed topological indices relating to n.

Acknowledgments

Authors are highly grateful to the referees for their careful reading and technical suggestions to improve the quality of the article. This research is supported by Gyeongsang National University, Jinju 52828, Korea

  1. Conflicts of Interest: The authors declare no conflict of interest.

  2. Author Contributions: All authors contribute equally in writing of this paper.

References

[1] Rücker G., Rücker C., On topological indices, boiling points, and cycloalkanes. Journal of chemical information and computer sciences. 1999, 39(5),788-802.10.1021/ci9900175Search in Google Scholar

[2] Gutman I,, Trinajstić N., Graph theory and molecular orbitals. Total φ-electron energy of alternant hydrocarbons. Chemical Physics Letters. 197, 17(4), 535-8.10.1016/0009-2614(72)85099-1Search in Google Scholar

[3] Amić D., Bešlo D., Lučlć B., Nikolić S., Trinajstić N., The vertex-connectivity index revisited. Journal of chemical information and computer sciences. 1998, 38(5), 819-822.10.1021/ci980039bSearch in Google Scholar

[4] Kier L.B., Hall L.H., Molecular connectivity in structure-activity analysis. Research Studies, 1986.Search in Google Scholar

[5] Gutman I., Molecular graphs with minimal and maximal Randić indices. Croatica chemica acta, 2002, 75(2), 357-369.Search in Google Scholar

[6] Gutman I., Degree-based topological indices. Croatica Chemica Acta, 2013, 86(4), 351-361.10.5562/cca2294Search in Google Scholar

[7] Vukičević, D., On the edge degrees of trees. Glas. Mat. Ser. III, 2009, 44(64), 259–266.10.3336/gm.44.2.01Search in Google Scholar

[8] Dobrynin A.A., Entringer R., Gutman I., Wiener index of trees: theory and applications. Acta Applicandae Mathematicae, 2001, 66(3), 211-249.10.1023/A:1010767517079Search in Google Scholar

[9] Munir M., Nazeer W., Rafique S., Kang S.M., M-polynomial and degree-based topological indices of polyhex nanotubes. Symmetry, 2016, 8(12), 149.10.3390/sym8120149Search in Google Scholar

[10] Munir M., Nazeer W., Rafique S., Kang S.M., M-polynomial and degree-based topological indices of polyhex nanotubes. Symmetry, 2016, 8(12),149.10.3390/sym8120149Search in Google Scholar

[11] Ajmal M., Kang S.M., Nazeer W., Munir M., Jung C.Y., Some Topological Invariants of the Möbius Ladders. Global Journal of Pure and Applied Mathematics, 2016, 12(6), 5317-5327.Search in Google Scholar

[12] Munir M., Nazeer W., Rafique S., Nizami A., Kang S. M., Some Computational Aspects of Triangular Boron Nanotubes, Symmetry, 2017, 9, 6, 10.3390/sym9010006.Search in Google Scholar

[13] West D.B., Introduction to Graph Theory Prentice Hall Upper Saddle River. NJ Google Scholar, 1996.Search in Google Scholar

[14] Deutsch E., Klavzar S., M-Polynomial and Degree-Based Topological Indices. Iranian Journal of Mathematical Chemistry, 2015, 6(2), 93-102.Search in Google Scholar

[15] Wu R., Deng H., The general connectivity indices of benzenoid systems and phenylenes. MATCH Commun. Math. Comput. Chem., 2010, 64, 459-470.Search in Google Scholar

[16] Javaid M., Jung C. Y., M-Polynomials and Topological Indices of Silicate and Oxide Networks, International Journal of Pure and Applied Mathematics, 2017, 115(1), 129-152, 10.12732/ljpam.v115l1.11Search in Google Scholar

[17] Kwun Y.C., Munir M., Nazeer W., Rafique S., Kang S.M., M-Polynomials and topological indices of V-Phenylenic Nanotubes and Nanotori. Scientific reports, 201, 7(1), 8756.10.1038/s41598-017-08309-ySearch in Google Scholar

[18] Klavžar S., Gutman I., A comparison of the Schultz molecular topological index with the Wiener index. Journal of chemical information and computer sciences. 1996 Sep 24;36(5):1001- 1003.10.1021/ci9603689Search in Google Scholar

[19] Deng H., Huang G., Jiang X., A unified linear-programming modeling of some topological indices. Journal of Combinatorial Optimization, 2015, 30(3), 826-837.10.1007/s10878-013-9672-2Search in Google Scholar

[20] Deng H., Yang J., Xia F., A general modeling of some vertex- degree based topological indices in benzenoid systems and phenylenes. Computers & Mathematics with Applications, 2011, 61(10), 3017-23.10.1016/j.camwa.2011.03.089Search in Google Scholar

[21] Gutman I., Das K.C., The first Zagreb index 30 years after. MATCH Commun. Math. Comput. Chem., 2004, 50, 83-92.Search in Google Scholar

[22] Bollobás B., Erdös P., Graphs of extremal weights. Ars Combinatoria, 1998, 50, 225-233.10.1016/S0012-365X(98)00320-3Search in Google Scholar

[23] Kier L.B., Hall L.H., Molecular connectivity in structure-activity analysis. Research Studies, 1986.Search in Google Scholar

[24] Huang Y., Liu B., Gan L., Augmented Zagreb index of connected graphs. Match-Communications in Mathematical and Computer Chemistry, 2012, 67(2), 483-494.Search in Google Scholar

[25] Furtula B., Graovac A., Vukičević D., Augmented Zagreb index, J. Math. Chem., 2010, 48, 370–380.10.1007/s10910-010-9677-3Search in Google Scholar

[26] Farahani M.R., Rajesh Kanna M.R., Jamil M.K., Imran M., Computing the M-Polynomial of Benzenoid Molecular Graphs. Science International (Lahore), 2016, 28, 3251-3255.Search in Google Scholar

[27] Sardar M. S., Zafar S., Farahani M.R., THE GENERALIZED ZAGREB INDEX OF CAPRA-DESIGNED PLANAR BENZENOID SERIES $Ca_k(C_6)$, Open J. Math. Sci., 2017, 1 44–51.10.30538/oms2017.0005Search in Google Scholar

[28] Mutee ur Rehman H., Sardar R., Raza A., Computing Topological Indices of Hex Board and its Line Graph, Open J. Math. Sci., 2017, 1, 62 - 71.10.30538/oms2017.0007Search in Google Scholar

[29] Sardar, M. S., Pan X.X., Gao W., Farahani M. R., Computing Sanskruti Index of Titania Nanotubes, Open J. Math. Sci., 2017, 126 - 13110.30538/oms2017.0012Search in Google Scholar

[30] Farahani M.R., Gao W., Baig A.Q., Khalid W., Molecular description of copper (II) oxide. Macedonian Journal of Chemistry and Chemical Engineering, 2017, 36(1), 93-99.10.20450/mjcce.2017.1138Search in Google Scholar

[31] Gao W., Wang Y., Wang W., Shi L., The first multiplication atombond connectivity index of molecular structures in drugs. Saudi Pharmaceutical Journal, 2017, 25(4), 548-555.10.1016/j.jsps.2017.04.021Search in Google Scholar PubMed PubMed Central

[32] Gao W., Farahani M.R., Wang S., Husin M.N., On the edge- version atom-bond connectivity and geometric arithmetic indices of certain graph operations. Applied Mathematics and Computation, 2017, 308, 11-17.10.1016/j.amc.2017.02.046Search in Google Scholar

Received: 2017-08-22
Accepted: 2017-12-04
Published Online: 2018-02-24

© 2018 Ashaq Ali et al., published by De Gruyter

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

Articles in the same Issue

  1. Regular Articles
  2. The effect of CuO modification for a TiO2 nanotube confined CeO2 catalyst on the catalytic combustion of butane
  3. The preparation and antibacterial activity of cellulose/ZnO composite: a review
  4. Linde Type A and nano magnetite/NaA zeolites: cytotoxicity and doxorubicin loading efficiency
  5. Performance and thermal decomposition analysis of foaming agent NPL-10 for use in heavy oil recovery by steam injection
  6. Spectroscopic (FT-IR, FT-Raman, UV, 1H and 13C NMR) insights, electronic profiling and DFT computations on ({(E)-[3-(1H-imidazol-1-yl)-1-phenylpropylidene] amino}oxy)(4-nitrophenyl)methanone, an imidazole-bearing anti-Candida agent
  7. A Simplistic Preliminary Assessment of Ginstling-Brounstein Model for Solid Spherical Particles in the Context of a Diffusion-Controlled Synthesis
  8. M-Polynomials And Topological Indices Of Zigzag And Rhombic Benzenoid Systems
  9. Photochemical Transformation of some 3-benzyloxy-2-(benzo[b]thiophen-2-yl)-4Hchromen-4-ones: A Remote Substituent Effect
  10. Dynamic Changes of Secondary Metabolites and Antioxidant Activity of Ligustrum lucidum During Fruit Growth
  11. Studies on the flammability of polypropylene/ammonium polyphosphate and montmorillonite by using the cone calorimeter test
  12. DSC, FT-IR, NIR, NIR-PCA and NIR-ANOVA for determination of chemical stability of diuretic drugs: impact of excipients
  13. Antioxidant and Hepatoprotective Effects of Methanolic Extracts of Zilla spinosa and Hammada elegans Against Carbon Tetrachlorideinduced Hepatotoxicity in Rats
  14. Prunus cerasifera Ehrh. fabricated ZnO nano falcates and its photocatalytic and dose dependent in vitro bio-activity
  15. Organic biocides hosted in layered double hydroxides: enhancing antimicrobial activity
  16. Experimental study on the regulation of the cholinergic pathway in renal macrophages by microRNA-132 to alleviate inflammatory response
  17. Synthesis, characterization, in-vitro antimicrobial properties, molecular docking and DFT studies of 3-{(E)-[(4,6-dimethylpyrimidin-2-yl)imino]methyl} naphthalen-2-ol and Heteroleptic Mn(II), Co(II), Ni(II) and Zn(II) complexes
  18. M-Polynomials and Topological Indices of Dominating David Derived Networks
  19. Human Health Risk Assessment of Trace Metals in Surface Water Due to Leachate from the Municipal Dumpsite by Pollution Index: A Case Study from Ndawuse River, Abuja, Nigeria
  20. Analysis of Bowel Diseases from Blood Serum by Autofluorescence and Atomic Force Microscopy Techniques
  21. Hydrographic parameters and distribution of dissolved Cu, Ni, Zn and nutrients near Jeddah desalination plant
  22. Relationships between diatoms and environmental variables in industrial water biotopes of Trzuskawica S.A. (Poland)
  23. Optimum Conversion of Major Ginsenoside Rb1 to Minor Ginsenoside Rg3(S) by Pulsed Electric Field-Assisted Acid Hydrolysis Treatment
  24. Antioxidant, Anti-microbial Properties and Chemical Composition of Cumin Essential Oils Extracted by Three Methods
  25. Regulatory mechanism of ulinastatin on autophagy of macrophages and renal tubular epithelial cells
  26. Investigation of the sustained-release mechanism of hydroxypropyl methyl cellulose skeleton type Acipimox tablets
  27. Bio-accumulation of Polycyclic Aromatic Hydrocarbons in the Grey Mangrove (Avicennia marina) along Arabian Gulf, Saudi Coast
  28. Dynamic Change of Secondary Metabolites and spectrum-effect relationship of Malus halliana Koehne flowers during blooming
  29. Lipids constituents from Gardenia aqualla Stapf & Hutch
  30. Effect of using microwaves for catalysts preparation on the catalytic acetalization of glycerol with furfural to obtain fuel additives
  31. Effect of Humic Acid on the Degradation of Methylene Blue by Peroxymonosulfate
  32. Serum containing drugs of Gua Lou Xie Bai decoction (GLXB-D) can inhibit TGF-β1-Induced Epithelial to Mesenchymal Transition (EMT) in A549 Cells
  33. Antiulcer Activity of Different Extracts of Anvillea garcinii and Isolation of Two New Secondary Metabolites
  34. Analysis of Metabolites in Cabernet Sauvignon and Shiraz Dry Red Wines from Shanxi by 1H NMR Spectroscopy Combined with Pattern Recognition Analysis
  35. Can water temperature impact litter decomposition under pollution of copper and zinc mixture
  36. Released from ZrO2/SiO2 coating resveratrol inhibits senescence and oxidative stress of human adipose-derived stem cells (ASC)
  37. Validated thin-layer chromatographic method for alternative and simultaneous determination of two anti-gout agents in their fixed dose combinations
  38. Fast removal of pollutants from vehicle emissions during cold-start stage
  39. Review Article
  40. Catalytic activities of heterogeneous catalysts obtained by copolymerization of metal-containing 2-(acetoacetoxy)ethyl methacrylate
  41. Antibiotic Residue in the Aquatic Environment: Status in Africa
  42. Regular Articles
  43. Mercury fractionation in gypsum using temperature desorption and mass spectrometric detection
  44. Phytosynthetic Ag doped ZnO nanoparticles: Semiconducting green remediators
  45. Epithelial–Mesenchymal Transition Induced by SMAD4 Activation in Invasive Growth Hormone-Secreting Adenomas
  46. Physicochemical properties of stabilized sewage sludge admixtures by modified steel slag
  47. In Vitro Cytotoxic and Antiproliferative Activity of Cydonia oblonga flower petals, leaf and fruit pellet ethanolic extracts. Docking simulation of the active flavonoids on anti-apoptotic protein Bcl-2
  48. Synthesis and Characterization of Pd exchanged MMT Clay for Mizoroki-Heck Reaction
  49. A new selective, and sensitive method for the determination of lixivaptan, a vasopressin 2 (V2)-receptor antagonist, in mouse plasma and its application in a pharmacokinetic study
  50. Anti-EGFL7 antibodies inhibit rat prolactinoma MMQ cells proliferation and PRL secretion
  51. Density functional theory calculations, vibration spectral analysis and molecular docking of the antimicrobial agent 6-(1,3-benzodioxol-5-ylmethyl)-5-ethyl-2-{[2-(morpholin-4-yl)ethyl] sulfanyl}pyrimidin-4(3H)-one
  52. Effect of Nano Zeolite on the Transformation of Cadmium Speciation and Its Uptake by Tobacco in Cadmium-contaminated Soil
  53. Effects and Mechanisms of Jinniu Capsule on Methamphetamine-Induced Conditioned Place Preference in Rats
  54. Calculating the Degree-based Topological Indices of Dendrimers
  55. Efficient optimization and mineralization of UV absorbers: A comparative investigation with Fenton and UV/H2O2
  56. Metabolites of Tryptophane and Phenylalanine as Markers of Small Bowel Ischemia-Reperfusion Injury
  57. Adsorption and determination of polycyclic aromatic hydrocarbons in water through the aggregation of graphene oxide
  58. The role of NR2C2 in the prolactinomas
  59. Chromium removal from industrial wastewater using Phyllostachys pubescens biomass loaded Cu-S nanospheres
  60. Hydrotalcite Anchored Ruthenium Catalyst for CO2 Hydrogenation Reaction
  61. Preparation of Calcium Fluoride using Phosphogypsum by Orthogonal Experiment
  62. The mechanism of antibacterial activity of corylifolinin against three clinical bacteria from Psoralen corylifolia L
  63. 2-formyl-3,6-bis(hydroxymethyl)phenyl benzoate in Electrochemical Dry Cell
  64. Electro-photocatalytic degradation of amoxicillin using calcium titanate
  65. Effect of Malus halliana Koehne Polysaccharides on Functional Constipation
  66. Structural Properties and Nonlinear Optical Responses of Halogenated Compounds: A DFT Investigation on Molecular Modelling
  67. DMFDMA catalyzed synthesis of 2-((Dimethylamino)methylene)-3,4-dihydro-9-arylacridin-1(2H)-ones and their derivatives: in-vitro antifungal, antibacterial and antioxidant evaluations
  68. Production of Methanol as a Fuel Energy from CO2 Present in Polluted Seawater - A Photocatalytic Outlook
  69. Study of different extraction methods on finger print and fatty acid of raw beef fat using fourier transform infrared and gas chromatography-mass spectrometry
  70. Determination of trace fluoroquinolones in water solutions and in medicinal preparations by conventional and synchronous fluorescence spectrometry
  71. Extraction and determination of flavonoids in Carthamus tinctorius
  72. Therapeutic Application of Zinc and Vanadium Complexes against Diabetes Mellitus a Coronary Disease: A review
  73. Study of calcined eggshell as potential catalyst for biodiesel formation using used cooking oil
  74. Manganese oxalates - structure-based Insights
  75. Topological Indices of H-Naphtalenic Nanosheet
  76. Long-Term Dissolution of Glass Fibers in Water Described by Dissolving Cylinder Zero-Order Kinetic Model: Mass Loss and Radius Reduction
  77. Topological study of the para-line graphs of certain pentacene via topological indices
  78. A brief insight into the prediction of water vapor transmissibility in highly impermeable hybrid nanocomposites based on bromobutyl/epichlorohydrin rubber blends
  79. Comparative sulfite assay by voltammetry using Pt electrodes, photometry and titrimetry: Application to cider, vinegar and sugar analysis
  80. MicroRNA delivery mediated by PEGylated polyethylenimine for prostate cancer therapy
  81. Reversible Fluorescent Turn-on Sensors for Fe3+ based on a Receptor Composed of Tri-oxygen Atoms of Amide Groups in Water
  82. Sonocatalytic degradation of methyl orange in aqueous solution using Fe-doped TiO2 nanoparticles under mechanical agitation
  83. Hydrotalcite Anchored Ruthenium Catalyst for CO2 Hydrogenation Reaction
  84. Production and Analysis of Recycled Ammonium Perrhenate from CMSX-4 superalloys
  85. Topical Issue on Agriculture
  86. New phosphorus biofertilizers from renewable raw materials in the aspect of cadmium and lead contents in soil and plants
  87. Survey of content of cadmium, calcium, chromium, copper, iron, lead, magnesium, manganese, mercury, sodium and zinc in chamomile and green tea leaves by electrothermal or flame atomizer atomic absorption spectrometry
  88. Biogas digestate – benefits and risks for soil fertility and crop quality – an evaluation of grain maize response
  89. A numerical analysis of heat transfer in a cross-current heat exchanger with controlled and newly designed air flows
  90. Freshwater green macroalgae as a biosorbent of Cr(III) ions
  91. The main influencing factors of soil mechanical characteristics of the gravity erosion environment in the dry-hot valley of Jinsha river
  92. Free amino acids in Viola tricolor in relation to different habitat conditions
  93. The influence of filler amount on selected properties of new experimental resin dental composite
  94. Effect of poultry wastewater irrigation on nitrogen, phosphorus and carbon contents in farmland soil
  95. Response of spring wheat to NPK and S fertilization. The content and uptake of macronutrients and the value of ionic ratios
  96. The Effect of Macroalgal Extracts and Near Infrared Radiation on Germination of Soybean Seedlings: Preliminary Research Results
  97. Content of Zn, Cd and Pb in purple moor-grass in soils heavily contaminated with heavy metals around a zinc and lead ore tailing landfill
  98. Topical Issue on Research for Natural Bioactive Products
  99. Synthesis of (±)-3,4-dimethoxybenzyl-4-methyloctanoate as a novel internal standard for capsinoid determination by HPLC-ESI-MS/MS(QTOF)
  100. Repellent activity of monoterpenoid esters with neurotransmitter amino acids against yellow fever mosquito, Aedes aegypti
  101. Effect of Flammulina velutipes (golden needle mushroom, eno-kitake) polysaccharides on constipation
  102. Bioassay-directed fractionation of a blood coagulation factor Xa inhibitor, betulinic acid from Lycopus lucidus
  103. Antifungal and repellent activities of the essential oils from three aromatic herbs from western Himalaya
  104. Chemical composition and microbiological evaluation of essential oil from Hyssopus officinalis L. with white and pink flowers
  105. Bioassay-guided isolation and identification of Aedes aegypti larvicidal and biting deterrent compounds from Veratrum lobelianum
  106. α-Terpineol, a natural monoterpene: A review of its biological properties
  107. Utility of essential oils for development of host-based lures for Xyleborus glabratus (Coleoptera: Curculionidae: Scolytinae), vector of laurel wilt
  108. Phenolic composition and antioxidant potential of different organs of Kazakh Crataegus almaatensis Pojark: A comparison with the European Crataegus oxyacantha L. flowers
  109. Isolation of eudesmane type sesquiterpene ketone from Prangos heyniae H.Duman & M.F.Watson essential oil and mosquitocidal activity of the essential oils
  110. Comparative analysis of the polyphenols profiles and the antioxidant and cytotoxicity properties of various blue honeysuckle varieties
  111. Special Issue on ICCESEN 2017
  112. Modelling world energy security data from multinomial distribution by generalized linear model under different cumulative link functions
  113. Pine Cone and Boron Compounds Effect as Reinforcement on Mechanical and Flammability Properties of Polyester Composites
  114. Artificial Neural Network Modelling for Prediction of SNR Effected by Probe Properties on Ultrasonic Inspection of Austenitic Stainless Steel Weldments
  115. Calculation and 3D analyses of ERR in the band crack front contained in a rectangular plate made of multilayered material
  116. Improvement of fuel properties of biodiesel with bioadditive ethyl levulinate
  117. Properties of AlSi9Cu3 metal matrix micro and nano composites produced via stir casting
  118. Investigation of Antibacterial Properties of Ag Doped TiO2 Nanofibers Prepared by Electrospinning Process
  119. Modeling of Total Phenolic contents in Various Tea samples by Experimental Design Methods
  120. Nickel doping effect on the structural and optical properties of indium sulfide thin films by SILAR
  121. The effect mechanism of Ginnalin A as a homeopathic agent on various cancer cell lines
  122. Excitation functions of proton induced reactions of some radioisotopes used in medicine
  123. Oxide ionic conductivity and microstructures of Pr and Sm co-doped CeO2-based systems
  124. Rapid Synthesis of Metallic Reinforced in Situ Intermetallic Composites in Ti-Al-Nb System via Resistive Sintering
  125. Oxidation Behavior of NiCr/YSZ Thermal Barrier Coatings (TBCs)
  126. Clustering Analysis of Normal Strength Concretes Produced with Different Aggregate Types
  127. Magnetic Nano-Sized Solid Acid Catalyst Bearing Sulfonic Acid Groups for Biodiesel Synthesis
  128. The biological activities of Arabis alpina L. subsp. brevifolia (DC.) Cullen against food pathogens
  129. Humidity properties of Schiff base polymers
  130. Free Vibration Analysis of Fiber Metal Laminated Straight Beam
  131. Comparative study of in vitro antioxidant, acetylcholinesterase and butyrylcholinesterase activity of alfalfa (Medicago sativa L.) collected during different growth stages
  132. Isothermal Oxidation Behavior of Gadolinium Zirconate (Gd2Zr2O7) Thermal Barrier Coatings (TBCs) produced by Electron Beam Physical Vapor Deposition (EB-PVD) technique
  133. Optimization of Adsorption Parameters for Ultra-Fine Calcite Using a Box-Behnken Experimental Design
  134. The Microstructural Investigation of Vermiculite-Infiltrated Electron Beam Physical Vapor Deposition Thermal Barrier Coatings
  135. Modelling Porosity Permeability of Ceramic Tiles using Fuzzy Taguchi Method
  136. Experimental and theoretical study of a novel naphthoquinone Schiff base
  137. Physicochemical properties of heat treated sille stone for ceramic industry
  138. Sand Dune Characterization for Preparing Metallurgical Grade Silicon
  139. Catalytic Applications of Large Pore Sulfonic Acid-Functionalized SBA-15 Mesoporous Silica for Esterification
  140. One-photon Absorption Characterizations, Dipole Polarizabilities and Second Hyperpolarizabilities of Chlorophyll a and Crocin
  141. The Optical and Crystallite Characterization of Bilayer TiO2 Films Coated on Different ITO layers
  142. Topical Issue on Bond Activation
  143. Metal-mediated reactions towards the synthesis of a novel deaminolysed bisurea, dicarbamolyamine
  144. The structure of ortho-(trifluoromethyl)phenol in comparison to its homologues – A combined experimental and theoretical study
  145. Heterogeneous catalysis with encapsulated haem and other synthetic porphyrins: Harnessing the power of porphyrins for oxidation reactions
  146. Recent Advances on Mechanistic Studies on C–H Activation Catalyzed by Base Metals
  147. Reactions of the organoplatinum complex [Pt(cod) (neoSi)Cl] (neoSi = trimethylsilylmethyl) with the non-coordinating anions SbF6– and BPh4
  148. Erratum
  149. Investigation on Two Compounds of O, O’-dithiophosphate Derivatives as Corrosion Inhibitors for Q235 Steel in Hydrochloric Acid Solution
Downloaded on 6.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/chem-2018-0010/html
Scroll to top button