Home Linde Type A and nano magnetite/NaA zeolites: cytotoxicity and doxorubicin loading efficiency
Article Open Access

Linde Type A and nano magnetite/NaA zeolites: cytotoxicity and doxorubicin loading efficiency

  • B. Divband EMAIL logo , M. R. Rashidi , M. Khatamian , G. R. Kazemi Eslamian , N. Gharehaghaji and F. Dabaghi Tabriz
Published/Copyright: February 13, 2018

Abstract

Different cation-exchanged (K+, Na+ & Ca2+) nano-zeolites withi magnetite nanocomposites were synthesized and their suitability for drug loading was studied. Nanocomposites with different Fe3O4 contents were synthesized by adding magnetic Fe3O4 nanoparticles to the zeolite crystallization solution. The zeolite and its nanocomposites had high surface areas and enough adsorption capacity to load and release sufficient amounts of the chemotherapeutic doxorubicin. None or the zeolites or nanocomposites showed toxicity to SKBr3 or MCF-7 cancer cells. However, DOX@zeolite inhibits cell growth more than the non-encapsulated drug. Thus zeolites and their magnetite nanocomposites show potential as biocompatible medical devices.

Graphical Abstract

1 Introduction

Biocompatibility, mechanical stability and high drug loading capacity are necessary for drug delivery systems and for slow controlled release. Inorganic carriers have recently been used as drug release systems, but there are few reports of porous matrices as drug carriers [1,2,3,4]. Zeolites’ low toxicity, high dispersibility, good capacity and surface silanols make them good biomaterials with various applications. They have microporous structures with ordered cages and channels [5,6]. The size and dimensions of the pores, channels and cages, as well as the numbers, sites and types of structural cations affect their drug loading properties [7,8,9,10,11,12], and drug functional groups can interact with the surface silanols of the zeolites. Zeolites and their composites are used as catalyst supports [13], anticancer drug encapsulants [14,15,16], antibacterial agents [7,17,18], antihelminthics [19], and anti-inflammatory drugs [20]. Doxorubicin is a cytotoxic and cytostatic drug with a low therapeutic index, used in cancer chemotherapy [21,22,23,24]. Zeolites have been reported as slow release carriers [7,24]. For example, zeolite Y is commonly used for encapsulating dichlorvos (2,2-dichlorovinyldimethylphosphate), ibuprofen (anti-inflammatory) [25], 5-fluorouracil [26], erythromycin, carbamazepine, levofloxacin [27], and aspirin (acetylsalicylic acid) [28]. Clinoptilolite is a natural zeolite used to carry erythromycin in topical acne therapy [19], aspirin [29], and sulfamethoxazole [30]. Zeolite A is an important moleculor sieve due to its high adsorption and easy sodium exchange for cations (calcium, potassium, iron, etc). [31,32]. There have been few studies of zeolite A as a drug carrier [33,34].

Magnetic drug targeting using magnetite core-shell composites to achieve biocompatiblity and porosity for drug adsorption or encapsulation is an emerging improvement over convenaional cancer treatment methods. A magnetic field is applied to direct The composite to the tumor proximity. This can significantly reduce the necessary dose and minimize side effects [35].

Magnetite-zeolites may prove effective drug delivery composites because of the zeolite properties as well as preventing magnetite agglomeration. There has been only one report; magnetite-FAU zeolite was prepared by mechanical activation but no toxicity results were reported [34,35]. A novel magnetic zeolite as a potential MR imaging agent has been recently reported [36].

The purpose of the present work was to examine the nano-zeolites (KA, NaA, CaA) and nano-magnetite zeolite (Fe3O4/NaA) as in vitro magnetite drug delivery systems for the anticancer drug doxorubicin (DOX), on two different breast cell lines, SKBR3 and SCF7.

2 Methods

2.1 Materials

Ferrous chloride (FeCl2·4H2O), ferric chloride hexahydrate (FeCl3·6H2O), sodium aluminate, sodium hydroxide, CaCl2, and KCl were purchased from Merck and local clinoptilolite was used. SKBR3 and SCF7 human breast cancer cell lines were purchased from the National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl- tetrazolium bromide) and Cell Death Detection ELISAPLUS kit were purchased from Roche Diagnostics GmbH, Mannheim, Germany.

2.2 Synthesis of nano-zeolites

Nano-zeolite NaA was synthesized hydrothermally from annealed local clinoptilolite after crushing, drying, screening and washing. Clinoptilolite, sodium hydroxide, sodium aluminate and distilled water were mixed for 6h (aging). The resulting gel was treated by ultrasound for 6h, transferred to a Teflon-lined stainless steel autoclave, and heated at autogenous pressure in an air oven at 353 K. After a suitable time (the pH reached 7) the suspension was centrifuged several times and the product was dried. For the preparation of CaA (5A) and KA (6A) nano-zeolites, calcium and potassium hydroxide replaced the sodium hydroxide. The products were characterized and their adsorption properties examined.

For synthesis of nano-magnetic NaA, magnetic Fe3O4 was synthesized by co-precipitation from an alkaline solution of Fe2+ and Fe3+ salts and added to the carrier gel [37] after the ultrasound treatment. The next steps were same as the synthesis of nano-zeolite NaA. Nanomagnetite NaA with different Fe3O4 loadings (0, 2.1, 4 and 7.7 wt.%) was prepared by varying the amount of nano-Fe3O4 and designated as Mn4A (n=0, 2.1, 4 & 7.7).

2.3 Doxorubicin standard solutions preparation

Standard solutions of doxorubicin (5, 50, 100 mgL–1) in deionized water were prepared quickly and kept in the dark because light immediately changes doxorubicin to a toxic material.

2.4 Preparation of drug loaded nano-zeolites

20 mg of each nano-zeolite was added to 20 mL of the standard doxorubicin solutions and stirred for 24 hours at room temperature. The white zeolite changed to the red doxorubicin color as the drug entered the zeolite pores and the loading was complete. Doxorubicin disappearance was confirmed by supernatant absorbance measurement with a Shimadzu UV-240 spectrophotometer at 485 nm. After there were no further changes in the liquid phase concentration it was assumed that the loading capacity had been reached. The reddish solid was separated by filtration, air-dried for 24h and designated DOXn@ZA (n= 0, 5, 50, 100 & 500).

Desorption was examined at 37ºC, but the loaded nanocomposite was first washed and dried to remove non-adsorbed doxorubicin. The release profile was obtained by dispersing 100 mg of dried drug-loaded nano-zeolite in 50 mL of buffer (pH= 7.4, 5.5). As in the uptake experiments, the concentration of doxorubicin in the particle-free liquid was determined at fixed time intervals.

2.5 Measurements

A Siemens D500 diffractometer with Cu Kα radiation (λ=1.5418 Å and θ=4-80°) was used to characterize the powders. Functional group absorption bands were studied with a Bruker Tensor 27 FTIR as KBr pellets. Gold-coated particle morphology, size and elemental composition were analyzed with a Philips XL30 SEM. SEM was done at 5Kv while EDX analysis was at 15Kv.The BET surface area was measured by N2 adsorption–desorption isotherms at liquid nitrogen temperature a using N0VA2000 (Quantachrome, USA). TEM and EDX of the samples were performed on a Zeiss LEO 912 Omega at 120 kV. TEM specimens were made by evaporating one drop of ethanolic solution on carbon-coated copper grids and blotted dry on filter paper. Magnetic properties were investigated at room temperature using a 7400 vibrating sample magnetometer.

2.6 MTT assay

The effects of concentrations of the carrier, drug and drug-loaded carrier on cell viability were investigated using identical methods.

SKBR3 and SCF7 cell lines were grown in sterile RPMI-1640 media containing 10% fetal bovine serum, streptomycin (100 μg/mL), amphotericin B (0.25 μg/mL) and penicillin (100 U/mL) at 5% CO2 in a humidified 37°C incubator. Then 200 μL/well of supplemented medium and 12×103 cells were incubated in 96-well plates for 24 hours at 37°C and 5% CO2. The cells were divided into four groups in triplicate: blank, drug, carrier and drug-loaded carrier supplemented.

A Cell Death Detection ELISAPLUS kit was used according to the manufacturer’s protocol to induce cell apoptosis and necrosis. Briefly, supernatants and cell lysates were prepared and incubated in microtiter plates coated with an antihistone antibody then analyzed at 405 nm.

After incubation the used media were discarded and the wells washed with pH 7.4 phosphate-buffered saline. 50 μL of 2 mg/mL MTT solution and 150 μL culture medium were added to each well. The cells were incubated at 37°C and 5% CO2 for 24 hours; then the media was removed and 200 μL of dimethyl sulfoxide and 25μL Sorenson solubilizer buffer added to each well. Finally, an ELISA plate reader (BioTeck, Bad Friedrichshall, Germany) was used to read the absorbance at 405 nm. All results were analyzed relative to the untreated cells then normalized.

Ethical approval

The conducted research is not related to either human or animals use.

3 Results

3.1 Characterization of DOX@ZA

Figure 1A shows the pXRD of zeolite 4A before and after DOX loading. All characteristic peaks of zeolite 4A are shown. In Figures 1A(b-d), 4.7ppm, 42.5ppm and 80ppm DOX were loaded. XRD pattern similarity before and after drug loading indicates that the framework did not change. However, overall reduction in the peaks’ intensity indicated a slight decrease in zeolite crystallinity following drug adsorption which is more obvious at higher drug loadings. The XRD patterns of the other zeolites are similar.

Figure 1 XRD patterns of: A) a: zeolite 4A, b: DOX4.7 @ 4A, c: DOX42.5 @ 4A, d: DOX80 @ 4A; B) a: M44A, b: DOX42.5 @ M44A, c: DOX80 @M44A.
Figure 1

XRD patterns of: A) a: zeolite 4A, b: DOX4.7 @ 4A, c: DOX42.5 @ 4A, d: DOX80 @ 4A; B) a: M44A, b: DOX42.5 @ M44A, c: DOX80 @M44A.

The XRD show only characteristic 4A zeolite and Fe3O4 peaks; no other structures or changes in cell parameters were observed (Figure 1B). The XRD of the DOXn@M44A (n = 42.5ppm and 80ppm; Figures 1B (a-c)) were similar to the M44A XRD with reduced peak intensities.

TEM and SEM examined nano-zeolite morphology before and after loading. The DOX@ZA with the lowest DOX concentration (5 ppm) is shown in Figure 2a. The morphology and structure were unchanged after drug loading. As DOX is larger than the nano-zeolite pores, it is adsorbed on the outer surface. Drug and zeolite -OH and –NH2 groups hydrogen bond causing aggregation. The average particle size of the starting 4A was about 50-100 nm (Figure 2b) and 80-120 nm for M4A (Figure 3a).

Figure 2 SEM images of: a) DOX5@ 4A, b) TEM image of 4A.
Figure 2

SEM images of: a) DOX5@ 4A, b) TEM image of 4A.

Figure 3 a)SEM image of M44A, b)EDX of M44A.
Figure 3

a)SEM image of M44A, b)EDX of M44A.

3.2 Loading efficiency and release

4A zeolite (94% of DOX5@ZA) has significantly higher loading efficiency than 3A and 5A zeolites (86% and 79%) as shown in Figure4a. The higher amounts of DOX in the 4A zeolite suggest higher drug loadings in the pores due to different pore sizes. The initial red of the DOX solution became colorless after a few minutes of zeolites contact; respectively, 92%, 84% and 74% of the initial DOX was adsorbed in 30 min by 4A, 3A and 5A (Figure 4a). Adsorption of the remaining DOX was slower and saturation was complete in approximately 120 min. DOX solution UV spectral changes after contact with zeolites were not significant, indicating that their interaction is only physical

Figure 4 Drug loading efficiency of a) 3A, 4A &5A; b) A type zeolites with different amounts of DOX; c) 4A and Mn4A for different amounts of DOX.
Figure 4

Drug loading efficiency of a) 3A, 4A &5A; b) A type zeolites with different amounts of DOX; c) 4A and Mn4A for different amounts of DOX.

Figure 5 Release profiles of a) DOX50 @ ZA(3A, 4A, 5A); b) DOX50 @ 4A and DOX50 @ M44A.
Figure 5

Release profiles of a) DOX50 @ ZA(3A, 4A, 5A); b) DOX50 @ 4A and DOX50 @ M44A.

Hydrogen bonding of the DOX ‒NH2+) groups to the zeolite ‒OH (δ) groups causes drug loading.

Loadingefficiency(%)=DoxinzeolitefreeDOXDOXinzeolite×100%

At higher DOX concentrations (DOX50@ZA and DOX100@ ZA), loading efficiency was lower (Figure 4b). The mean pore size of the A zeolites is 0.87 nm which is much smaller than the DOX molecule, so adsorption occurred only on the external surface as a poremouth phenomenon [34]. The 4A BET external specific surface area of 5.27 m2/g means that although the nanocomposite has a considerable DOX storage capacity, the composite surface area (≈ 220-255 m2g–1) will not be fully occupied. Its loading may come from physical attachment rather than encapsulation.. Substrate surface electronic structure and charge transfer dynamics can strongly influence interactions with the adsorbate.

The DOX concentration in DOX5@ZA is very low; after 24 h approximately 60% of the loaded drug (4.7 ppm from 5 ppm) way released.

Initial DOX uptake by magnetite-zeolite nanocomposites (M4A) was very fast, with 94% adsorption in 30 min. Drug saturation was completed in approximately 2h. At higher DOX concentrations drug loading was lower for all the composites (Figure 4c). As shown in Figure 4, drug loading increased with increased Fe3O4 percentage but at the highest percentage (7.7%) the loading decreased. At 4 wt% Fe3O4, maximum adsorption was achieved because the iron oxide was well dispersed into the zeolite pores, caused by strong interactions between the zeolite oxygen atoms and Fe3O4. Increasing the Fe3O4 content blocked the channels, reducing adsorption.

The dried nanocomposite contains more than 75% drug. Its release was measured by desorption and diff usion into pH 7.4 buff er; released DOX % is given by:

Drugrealease(%)=DoxrealeasedatspecifiedtimeDoxloaded×100%

22% (9.24 ppm), 26% (11.06 ppm), 22% (9.02 ppm) and 21% (9.55 ppm) of the DOX on the 3A, 4A, 5A zeolites and M44A nanocomposite was released in 24 h. However, at the lower cancer cell pH (5.4), more desorption from DOX50@ ZA occurred (70-80%). The release profiles of DOX5@ZA are the same. There was no dependence of the (DOX@ZA) characteristics on the storage time.

Arruebo et.al reported magnetite/Y zeolite prepared by milling as a potential DOX delivery vehicle. They found 92% of DOX adsorbed in 25 h and 77% of the load was released in 12.6 h [34].

3.3 Cytotoxicity of the combination of nanozeolite with doxorubicin

For breast cancer, the required DOX dosage is 50 mg/m2 times the Mosteller value for the BSA (body surface area) [38]:

BSA(m2)=[Height(cm)×Weight(Kg)/3600]1/2

For a 170 cm, 65 kg female the required DOX dosage is 87.7 mg. Her total body water (TBW) is calculated by Watson’s formula [39]:

FemaleTBW=(2.097)+[0.1069+height(cm)]+[0.2466×weight(kg)]

Therefore, the DOX concentration should be 2.73 μg/mL. Based on the DOX = 5 ppm loading and release profiles, we achieve this concentration in 25 min from 4A and 20 min from M44A, respectively. DOX@ZA was selected for the rest of the study.

Zeolites should have small or no effect on cell viability to achieve a suitable delivery system. Investigation of the starting zeolites’ cytotoxicity was carried out with the SKBr3 & MCF-7 cell lines. Different DOX5@ZA concentrations (0.50, 1.00, 2.50 and 5.00 mg/mL) were suspended in the culture medium (RPMI 1640) and treated with ultrasound for 2 min before use for better homogeneity.

Figure 6 illustrates the effect of increasing carrier amounts (zeolites and composites) on cell viability determined by the MTT assay (P> 0.05). The insignificant differences between controls (no zeolite) and zeolite concentrations tested show that 3A, 4A & 5A zeolites are not cytotoxic over the 24h incubation period. All of the zeolites and composites gave similar results for a 48 h incubation. For magnetite zeolites containing 7.7% Fe3O4 cell viability decreased, but very mild toxicities appeared. M44A magnetic nanocomposites had no cytotoxicity suggesting biomedical application.

Figure 6 Effect of the different starting zeolites and magnetite form on the SKBr3 cell viability.
Figure 6

Effect of the different starting zeolites and magnetite form on the SKBr3 cell viability.

The effects of DOX5@ZA concentration and zeolite type (3A, 4A, 5A & M3.44A) on SKBr3 & MCF-7 cell viability were investigated. When the DOX5@ZA concentrations (0.5, 1.0, and 2.5 mg/mL) increased, cell growth inhibition was observed in both cancer cell lines (Figure7). Loading doxorubicin on zeolite improves tumor inhibition over doxorubicin alone.

Figure 7 effect of DOX and DOX@4A on the SKBr3 and MCF-7 cells viability.
Figure 7

effect of DOX and DOX@4A on the SKBr3 and MCF-7 cells viability.

This increased efficacy may be due to slow release. We believe that like other systems [33,40,41,42], zeolite delivery systems increase the bioavailability and promote DOX entry into the cell, explaining this increase in potency. Upon exposure to the acidic endosomes/lysosomes environment, DOX is released intracellularly, resulting in efficient apoptotic cell death [43]. Figure 7 shows the treatment-induced apoptosis (> 80%) and necrosis (< 20%), obtained from ELISA analysis for the SKBR3 line.

As shown in Figure 8, the cytotoxicity of delivery with type A zeolite (1.0 mg/mL) was more pronounced for 4A and M44A, which have greatest loading and release capacity.

Figure 8 Effect of 1.0 mg/mL of DOX and DOX@ZA (3A, 4A, 5A & M44A) on the SKBr3 cell viability.
Figure 8

Effect of 1.0 mg/mL of DOX and DOX@ZA (3A, 4A, 5A & M44A) on the SKBr3 cell viability.

Figure 9 shows the M44A magnetization curve at room temperature. The nanocomposite showed superparamagnetism and the curve’s coercivity was negligible. The saturation magnetization and susceptibility values for the nanocomposite were found to be 43.4 emu/gFe and 17.65 emu/gFe kOe, respectively.

Figure 9 Magnetization versus applied field curve of M44A nanocomposites.
Figure 9

Magnetization versus applied field curve of M44A nanocomposites.

4 Conclusion

Linde type A zeolites and their magnetite nanocomposites can be used for efficient loading and slow release applications. Parent zeolites and their nanocomposites were nontoxic to SKBr3 and MCF-7 cells. DOX@4A and DOX@M4A had higher tumor inhibition efficiency compared to other DOX@zeolites and doxorubicin alone.

Acknowledgement

This work was financially supported by the Iran National Science Foundation: INSF (Grant No. 92012004).

  1. Conflict of interest: The authors state no conflict of interest.

References

[1] Tang Q., Xu Y., Wu D., Sun Y., Wang J., Xu J., Deng F., Studies on a new carrier of trimethylsilyl-modified mesoporous material for controlled drug delivery. J. Controlled Release 2006, 114, 41–46.10.1016/j.jconrel.2006.05.006Search in Google Scholar PubMed

[2] Jämstorp E., Forsgren J., Bredenberg S., Engqvist H., Strømme M., Mechanically strong geopolymers offer new possibilities in treatment of chronic pain. J. Controlled Release, 2010, 146, 370-377.10.1016/j.jconrel.2010.05.029Search in Google Scholar PubMed

[3] Verraedt E., Pendela M., Adams E., Hoogmartens J., Martens J.A., Controlled release of chlorhexidine from amorphous microporous silica. J. Controlled Release, 2010, 142, 47-5210.1016/j.jconrel.2009.09.022Search in Google Scholar PubMed

[4] Rimoli M.G., Rabaioli M.R., Melisi D., Curcio A., Mondello S., Mirabelli R., Abignente E., Synthetic zeolites as a new tool for drug delivery. J. Biomed. Mater. Res. A., 2008, 87(1), 156-164.10.1002/jbm.a.31763Search in Google Scholar PubMed

[5] Baerlocher S., McCusker L.B., Olsen DH. Atlas of zeolite framework types. 6th ed. Amsterdam: Elsevier Science, 2007.Search in Google Scholar

[6] Cundy C.S., Cox P.A., The hydrothermal synthesis of zeolites: history and development from the earliest days to the present time. Chem. Rev., 2003, 103, 663-702.10.1021/cr020060iSearch in Google Scholar PubMed

[7] Dyer A., Morgan S., Wells P., Williams C., The use of zeolites as slow release anthelmintic carriers. J. Helminthol., 2000, 74, 137-41.10.1017/S0022149X00000184Search in Google Scholar PubMed

[8] Horcajada P., Marquez-Alvarez C., Ramila A., Perez-Pariente J., Vallet-Regi M., Controlled release of ibuprofen from dealuminated faujasites. Solid State Sci., 2006, 8, 1459-65.10.1016/j.solidstatesciences.2006.07.016Search in Google Scholar

[9] Grund S., Doussineau T., Fischer D., Mohr G.J., Mitoxantrone- loaded zeolite beta nanoparticles: preparation, physicochemical characterization and biological evaluation. J. Colloid Interface Sci., 2012, 365, 33-40.10.1016/j.jcis.2011.09.003Search in Google Scholar PubMed

[10] Datt A., Fields D., Larsen S.C., An experimental and computational study of the loading and release of aspirin from zeolite HY. J. Phys. Chem. C., 2012, 116, 21382-90.10.1021/jp3067266Search in Google Scholar

[11] Fatouros D.G., Douroumis D., Nikolakis V., Ntais S., Moschovi A.M., Trivedi V., et al., In vitro and in silico investigations of drug delivery via zeolite BEA. J. Mater. Chem., 2011, 21, 7789-94.10.1039/c1jm10204dSearch in Google Scholar

[12] Rivera A., Farias T., Ruiz-Salvador A.R., de Menorval L.C., Preliminary characterization of drug support systems based on natural clinoptilolite, Microporous and Mesoporous Materials, 2003, 61, 249–259.10.1016/S1387-1811(03)00390-1Search in Google Scholar

[13] Khatamian M., Divband B., Jodaei A., Degradation of 4-nitrophenol (4-NP) using ZnO nanoparticles supported on zeolites and modeling of experimental results by artificial neural networks. Materials Chemistry and Physics, 2012, 134, 31-37.10.1016/j.matchemphys.2012.01.091Search in Google Scholar

[14] Spanakis M., Bouropoulos N., et al., Controlled release of 5-fluorouracil from microporous zeolites, Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 197–20510.1016/j.nano.2013.06.016Search in Google Scholar

[15] Khatamian M., Divband B., Farahmand-Zahed F., Synthesis and characterization of Zinc (II)-loaded Zeolite/Graphene oxide nanocomposite as a new drug carrier, Mater. Sci. Eng. C., 2016, 66, 251–258.10.1016/j.msec.2016.04.090Search in Google Scholar

[16] Akalin E., Akyuz S., Akyuz T., Adsorption and interaction of 5-Xuorouracil with montmorillonite and saponite by FT-IR spectroscopy, Journal of Molecular Structure, 2007, 834–836, 477–481.10.1016/j.molstruc.2006.11.061Search in Google Scholar

[17] Ninan N., Thomas S., Grohens Y., Zeolites incorporated polymeric gel beads-Promising drug carriers, Materials Letters, 2014, 118, 12–1610.1016/j.matlet.2013.12.055Search in Google Scholar

[18] Fox S., Wilkinson T.S., Wheatley P.S., Xiao B., Morris R.E., Sutherland A., et al., NO-loaded Zn(2+)-exchanged zeolite materials: a potential bifunctional anti-bacterial strategy. Acta Biomater., 2010, 6, 1515–21.10.1016/j.actbio.2009.10.038Search in Google Scholar

[19] Cerri G., de Gennaro M., Bonferoni M.C., Caramella C., Zeolites in biomedical application: Zn-exchanged clinoptilolite-rich rock as active carrier for antibiotics in anti-acne topical therapy Appl. Clay Sci., 2004, 27, 141.10.1016/j.clay.2004.04.004Search in Google Scholar

[20] Climent M.J., Corma A., Iborra S., Synthesis of nonsteroidal drugs with anti-inflammatory and analgesic activities with zeolites and mesoporous molecular sieve catalysts. J. Catal., 2005, 233, 308–16.10.1016/j.jcat.2005.05.003Search in Google Scholar

[21] Yoo H.S., Park T.G., Biodegradable polymeric micelles composed of doxorubicin conjugated PLGA-PEG block copolymer. J. Controlled Release, 2001, 70, 63.10.1016/S0168-3659(00)00340-0Search in Google Scholar

[22] Fan H., Dash A.K., Effect of Cross-linking on the In Vitro Release Kinetics of Doxorubicin From Gelatin Implants. Int. J. Pharm., 2001, 213, 103.10.1016/S0378-5173(00)00651-7Search in Google Scholar

[23] Domb A., Davidson G.W., Sanders L.M., Diffusion of peptides through hydrogel membranes. J. Controlled Release, 1990, 14, 133.10.1016/0168-3659(90)90150-RSearch in Google Scholar

[24] Deng B.Y., Deng C., Qi D., Liu C., Liu J., Zhang X., Zhao D., Synthesis of core/shell colloidal magnetic zeolite microspheres for the immobilization of trypsin, Adv. Mater., 2009, 21, 1377–1382.10.1002/adma.200801766Search in Google Scholar

[25] Horcajada P., Márquez-Alvarez C., Rámila A., Pérez-Pariente J., Vallet-Regí M., Controlled release of Ibuprofen from dealuminated faujasites. Solid State Sciences, 2006, 8, 1459–1465.10.1016/j.solidstatesciences.2006.07.016Search in Google Scholar

[26] Datt A., Burns E.A., Dhuna N.A., Larsen S.C., Loading and release of 5-fluorouracil from HY zeolites with varying SiO2/Al2O3 ratios. Micropor. Mesopor. Mater., 2013, 167, 182–187.10.1016/j.micromeso.2012.09.011Search in Google Scholar

[27] Martucci A., Pasti L., Marchetti N., Cavazzini A., Dondi F., Alberti A., Adsorption of pharmaceuticals from aqueous solutions on synthetic zeolites, Micropor. Mesopor. Mater., 2012, 148, 174–183.10.1016/j.micromeso.2011.07.009Search in Google Scholar

[28] Datt A., Fields D., Larsen S.C., An Experimental and Computational Study of the Loading and Release of Aspirin from Zeolite HY, J. Phys. Chem. C., 2012, 116, 21382–2139010.1021/jp3067266Search in Google Scholar

[29] Rivera A., Rodríguez-Albelo L.M., Rodríguez-Fuentes G., Altshuler E., Interaction studies between aspirin and purified natural clinoptilolite, Stud. Surf. Sci. Catal., 2001, 135, 373.10.1016/S0167-2991(01)81881-4Search in Google Scholar

[30] Rivera A., Farías T., Clinoptilolite–surfactant composites as drug support: A new potential application. Micropor. Mesopor. Mater., 2005, 80, 337.10.1016/j.micromeso.2005.01.011Search in Google Scholar

[31] Breck D.W., Zeolite Molecular Sieves: Structure, Chemistry and Uses, John Wiley & Sons, New York, 1974, p. 771.Search in Google Scholar

[32] Barrer R.M., Hydrothermal Chemistry of Zeolites, Academic Press, London, 1982, p. 360.Search in Google Scholar

[33] Amorim R., Vilaça N., Martinho O., Reis R.M., Sardo M., Rocha J., Fonseca A.M., Baltazar F., Neves I.C., Zeolite Structures Loading with an Anticancer Compound As Drug Delivery Systems, J. Phys. Chem. C, 2012, 116, 25642–25650.10.1021/jp3093868Search in Google Scholar

[34] Arruebo M., Fernandez-Pacheco R., Irusta S., Arbiol J., Ibarra M.R., Santamar J., Sustained release of doxorubicin from zeolite–magnetite nanocomposites prepared by mechanical activation, Nanotechnology, 2006, 17, 4057–4064.10.1088/0957-4484/17/16/011Search in Google Scholar PubMed

[35] Neuberger T., Schopf B., Hofmann H., Hofmann M., Rechenberg B. von, Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system, J. Magn. Magn. Mater., 2005, 293, 483-496.10.1016/j.jmmm.2005.01.064Search in Google Scholar

[36] Atashi Z., Divband B., Keshtkar A., Khatamian M., Farahmand- Zahed F., Kiani Nazarlo A., Gharehaghaji N., Synthesis of cytocompatible Fe3O4@ZSM-5 nanocomposite as magnetic resonance imaging contrast agent, J. Magn. Magn. Mater., 2017, 438, 46–51.10.1016/j.jmmm.2017.04.062Search in Google Scholar

[37] Hong R.Y., Zhang S.Z., Han Y.P., Li H.Z., Ding J., Zheng Y., Preparation, characterization and application of bilayer surfactant-stabilized ferrofluids, Powder Technology, 2006, 170, 1–11.10.1016/j.powtec.2006.08.017Search in Google Scholar

[38] Mosteller R.D., Simplified Calculation of Body Surface Area. N. Engl. J. Med., 1987, 317(17), 1098.10.1056/NEJM198710223171717Search in Google Scholar PubMed

[39] Watson P.E., Watson I.D., Batt R.D., Total body water volumes for adult males and females estimated from simple anthropometric measurements. Am. J. Clin. Nutr., 1980, 33, 27-39.10.1093/ajcn/33.1.27Search in Google Scholar PubMed

[40] Anglin E.J., Cheng L., Freeman Q.R., Sailor M.J., Porous silicon in drug delivery devices and materials. Adv. Drug Deliver Rev., 2008, 60, 1266–1277.10.1016/j.addr.2008.03.017Search in Google Scholar PubMed PubMed Central

[41] Vivero-Escoto J.L., Slowing I.I., Trewyn B.G., Lin V.S.-Y., Mesoporous Silica Nanoparticles for Intracellular Controlled Drug Delivery, Small, 2010, 6(18), 1952–1967.10.1002/smll.200901789Search in Google Scholar PubMed

[42] Zhu Y., Ikoma T., Hanagata N., Kaskel S., Rattle-Type Fe3O4@ SiO2 Hollow Mesoporous Spheres as Carriers for Drug Delivery, Small, 2010, 6(3), 471–478.10.1002/smll.200901403Search in Google Scholar PubMed

[43] Aghaee F., Pirayesh Islamian J., Baradaran B., Mesbahi A., Mohammadzadeh M., Asghari Jafarabadi M., Enhancing the Effects of Low Dose Doxorubicin Treatment by the Radiation in T47D and SKBR3 Breast Cancer Cells. J. Breast Cancer, 2013, 16(2), 164-170.10.4048/jbc.2013.16.2.164Search in Google Scholar PubMed PubMed Central

Received: 2017-08-16
Accepted: 2017-10-09
Published Online: 2018-02-13

© 2018 B. Divband et al., published by De Gruyter

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

Articles in the same Issue

  1. Regular Articles
  2. The effect of CuO modification for a TiO2 nanotube confined CeO2 catalyst on the catalytic combustion of butane
  3. The preparation and antibacterial activity of cellulose/ZnO composite: a review
  4. Linde Type A and nano magnetite/NaA zeolites: cytotoxicity and doxorubicin loading efficiency
  5. Performance and thermal decomposition analysis of foaming agent NPL-10 for use in heavy oil recovery by steam injection
  6. Spectroscopic (FT-IR, FT-Raman, UV, 1H and 13C NMR) insights, electronic profiling and DFT computations on ({(E)-[3-(1H-imidazol-1-yl)-1-phenylpropylidene] amino}oxy)(4-nitrophenyl)methanone, an imidazole-bearing anti-Candida agent
  7. A Simplistic Preliminary Assessment of Ginstling-Brounstein Model for Solid Spherical Particles in the Context of a Diffusion-Controlled Synthesis
  8. M-Polynomials And Topological Indices Of Zigzag And Rhombic Benzenoid Systems
  9. Photochemical Transformation of some 3-benzyloxy-2-(benzo[b]thiophen-2-yl)-4Hchromen-4-ones: A Remote Substituent Effect
  10. Dynamic Changes of Secondary Metabolites and Antioxidant Activity of Ligustrum lucidum During Fruit Growth
  11. Studies on the flammability of polypropylene/ammonium polyphosphate and montmorillonite by using the cone calorimeter test
  12. DSC, FT-IR, NIR, NIR-PCA and NIR-ANOVA for determination of chemical stability of diuretic drugs: impact of excipients
  13. Antioxidant and Hepatoprotective Effects of Methanolic Extracts of Zilla spinosa and Hammada elegans Against Carbon Tetrachlorideinduced Hepatotoxicity in Rats
  14. Prunus cerasifera Ehrh. fabricated ZnO nano falcates and its photocatalytic and dose dependent in vitro bio-activity
  15. Organic biocides hosted in layered double hydroxides: enhancing antimicrobial activity
  16. Experimental study on the regulation of the cholinergic pathway in renal macrophages by microRNA-132 to alleviate inflammatory response
  17. Synthesis, characterization, in-vitro antimicrobial properties, molecular docking and DFT studies of 3-{(E)-[(4,6-dimethylpyrimidin-2-yl)imino]methyl} naphthalen-2-ol and Heteroleptic Mn(II), Co(II), Ni(II) and Zn(II) complexes
  18. M-Polynomials and Topological Indices of Dominating David Derived Networks
  19. Human Health Risk Assessment of Trace Metals in Surface Water Due to Leachate from the Municipal Dumpsite by Pollution Index: A Case Study from Ndawuse River, Abuja, Nigeria
  20. Analysis of Bowel Diseases from Blood Serum by Autofluorescence and Atomic Force Microscopy Techniques
  21. Hydrographic parameters and distribution of dissolved Cu, Ni, Zn and nutrients near Jeddah desalination plant
  22. Relationships between diatoms and environmental variables in industrial water biotopes of Trzuskawica S.A. (Poland)
  23. Optimum Conversion of Major Ginsenoside Rb1 to Minor Ginsenoside Rg3(S) by Pulsed Electric Field-Assisted Acid Hydrolysis Treatment
  24. Antioxidant, Anti-microbial Properties and Chemical Composition of Cumin Essential Oils Extracted by Three Methods
  25. Regulatory mechanism of ulinastatin on autophagy of macrophages and renal tubular epithelial cells
  26. Investigation of the sustained-release mechanism of hydroxypropyl methyl cellulose skeleton type Acipimox tablets
  27. Bio-accumulation of Polycyclic Aromatic Hydrocarbons in the Grey Mangrove (Avicennia marina) along Arabian Gulf, Saudi Coast
  28. Dynamic Change of Secondary Metabolites and spectrum-effect relationship of Malus halliana Koehne flowers during blooming
  29. Lipids constituents from Gardenia aqualla Stapf & Hutch
  30. Effect of using microwaves for catalysts preparation on the catalytic acetalization of glycerol with furfural to obtain fuel additives
  31. Effect of Humic Acid on the Degradation of Methylene Blue by Peroxymonosulfate
  32. Serum containing drugs of Gua Lou Xie Bai decoction (GLXB-D) can inhibit TGF-β1-Induced Epithelial to Mesenchymal Transition (EMT) in A549 Cells
  33. Antiulcer Activity of Different Extracts of Anvillea garcinii and Isolation of Two New Secondary Metabolites
  34. Analysis of Metabolites in Cabernet Sauvignon and Shiraz Dry Red Wines from Shanxi by 1H NMR Spectroscopy Combined with Pattern Recognition Analysis
  35. Can water temperature impact litter decomposition under pollution of copper and zinc mixture
  36. Released from ZrO2/SiO2 coating resveratrol inhibits senescence and oxidative stress of human adipose-derived stem cells (ASC)
  37. Validated thin-layer chromatographic method for alternative and simultaneous determination of two anti-gout agents in their fixed dose combinations
  38. Fast removal of pollutants from vehicle emissions during cold-start stage
  39. Review Article
  40. Catalytic activities of heterogeneous catalysts obtained by copolymerization of metal-containing 2-(acetoacetoxy)ethyl methacrylate
  41. Antibiotic Residue in the Aquatic Environment: Status in Africa
  42. Regular Articles
  43. Mercury fractionation in gypsum using temperature desorption and mass spectrometric detection
  44. Phytosynthetic Ag doped ZnO nanoparticles: Semiconducting green remediators
  45. Epithelial–Mesenchymal Transition Induced by SMAD4 Activation in Invasive Growth Hormone-Secreting Adenomas
  46. Physicochemical properties of stabilized sewage sludge admixtures by modified steel slag
  47. In Vitro Cytotoxic and Antiproliferative Activity of Cydonia oblonga flower petals, leaf and fruit pellet ethanolic extracts. Docking simulation of the active flavonoids on anti-apoptotic protein Bcl-2
  48. Synthesis and Characterization of Pd exchanged MMT Clay for Mizoroki-Heck Reaction
  49. A new selective, and sensitive method for the determination of lixivaptan, a vasopressin 2 (V2)-receptor antagonist, in mouse plasma and its application in a pharmacokinetic study
  50. Anti-EGFL7 antibodies inhibit rat prolactinoma MMQ cells proliferation and PRL secretion
  51. Density functional theory calculations, vibration spectral analysis and molecular docking of the antimicrobial agent 6-(1,3-benzodioxol-5-ylmethyl)-5-ethyl-2-{[2-(morpholin-4-yl)ethyl] sulfanyl}pyrimidin-4(3H)-one
  52. Effect of Nano Zeolite on the Transformation of Cadmium Speciation and Its Uptake by Tobacco in Cadmium-contaminated Soil
  53. Effects and Mechanisms of Jinniu Capsule on Methamphetamine-Induced Conditioned Place Preference in Rats
  54. Calculating the Degree-based Topological Indices of Dendrimers
  55. Efficient optimization and mineralization of UV absorbers: A comparative investigation with Fenton and UV/H2O2
  56. Metabolites of Tryptophane and Phenylalanine as Markers of Small Bowel Ischemia-Reperfusion Injury
  57. Adsorption and determination of polycyclic aromatic hydrocarbons in water through the aggregation of graphene oxide
  58. The role of NR2C2 in the prolactinomas
  59. Chromium removal from industrial wastewater using Phyllostachys pubescens biomass loaded Cu-S nanospheres
  60. Hydrotalcite Anchored Ruthenium Catalyst for CO2 Hydrogenation Reaction
  61. Preparation of Calcium Fluoride using Phosphogypsum by Orthogonal Experiment
  62. The mechanism of antibacterial activity of corylifolinin against three clinical bacteria from Psoralen corylifolia L
  63. 2-formyl-3,6-bis(hydroxymethyl)phenyl benzoate in Electrochemical Dry Cell
  64. Electro-photocatalytic degradation of amoxicillin using calcium titanate
  65. Effect of Malus halliana Koehne Polysaccharides on Functional Constipation
  66. Structural Properties and Nonlinear Optical Responses of Halogenated Compounds: A DFT Investigation on Molecular Modelling
  67. DMFDMA catalyzed synthesis of 2-((Dimethylamino)methylene)-3,4-dihydro-9-arylacridin-1(2H)-ones and their derivatives: in-vitro antifungal, antibacterial and antioxidant evaluations
  68. Production of Methanol as a Fuel Energy from CO2 Present in Polluted Seawater - A Photocatalytic Outlook
  69. Study of different extraction methods on finger print and fatty acid of raw beef fat using fourier transform infrared and gas chromatography-mass spectrometry
  70. Determination of trace fluoroquinolones in water solutions and in medicinal preparations by conventional and synchronous fluorescence spectrometry
  71. Extraction and determination of flavonoids in Carthamus tinctorius
  72. Therapeutic Application of Zinc and Vanadium Complexes against Diabetes Mellitus a Coronary Disease: A review
  73. Study of calcined eggshell as potential catalyst for biodiesel formation using used cooking oil
  74. Manganese oxalates - structure-based Insights
  75. Topological Indices of H-Naphtalenic Nanosheet
  76. Long-Term Dissolution of Glass Fibers in Water Described by Dissolving Cylinder Zero-Order Kinetic Model: Mass Loss and Radius Reduction
  77. Topological study of the para-line graphs of certain pentacene via topological indices
  78. A brief insight into the prediction of water vapor transmissibility in highly impermeable hybrid nanocomposites based on bromobutyl/epichlorohydrin rubber blends
  79. Comparative sulfite assay by voltammetry using Pt electrodes, photometry and titrimetry: Application to cider, vinegar and sugar analysis
  80. MicroRNA delivery mediated by PEGylated polyethylenimine for prostate cancer therapy
  81. Reversible Fluorescent Turn-on Sensors for Fe3+ based on a Receptor Composed of Tri-oxygen Atoms of Amide Groups in Water
  82. Sonocatalytic degradation of methyl orange in aqueous solution using Fe-doped TiO2 nanoparticles under mechanical agitation
  83. Hydrotalcite Anchored Ruthenium Catalyst for CO2 Hydrogenation Reaction
  84. Production and Analysis of Recycled Ammonium Perrhenate from CMSX-4 superalloys
  85. Topical Issue on Agriculture
  86. New phosphorus biofertilizers from renewable raw materials in the aspect of cadmium and lead contents in soil and plants
  87. Survey of content of cadmium, calcium, chromium, copper, iron, lead, magnesium, manganese, mercury, sodium and zinc in chamomile and green tea leaves by electrothermal or flame atomizer atomic absorption spectrometry
  88. Biogas digestate – benefits and risks for soil fertility and crop quality – an evaluation of grain maize response
  89. A numerical analysis of heat transfer in a cross-current heat exchanger with controlled and newly designed air flows
  90. Freshwater green macroalgae as a biosorbent of Cr(III) ions
  91. The main influencing factors of soil mechanical characteristics of the gravity erosion environment in the dry-hot valley of Jinsha river
  92. Free amino acids in Viola tricolor in relation to different habitat conditions
  93. The influence of filler amount on selected properties of new experimental resin dental composite
  94. Effect of poultry wastewater irrigation on nitrogen, phosphorus and carbon contents in farmland soil
  95. Response of spring wheat to NPK and S fertilization. The content and uptake of macronutrients and the value of ionic ratios
  96. The Effect of Macroalgal Extracts and Near Infrared Radiation on Germination of Soybean Seedlings: Preliminary Research Results
  97. Content of Zn, Cd and Pb in purple moor-grass in soils heavily contaminated with heavy metals around a zinc and lead ore tailing landfill
  98. Topical Issue on Research for Natural Bioactive Products
  99. Synthesis of (±)-3,4-dimethoxybenzyl-4-methyloctanoate as a novel internal standard for capsinoid determination by HPLC-ESI-MS/MS(QTOF)
  100. Repellent activity of monoterpenoid esters with neurotransmitter amino acids against yellow fever mosquito, Aedes aegypti
  101. Effect of Flammulina velutipes (golden needle mushroom, eno-kitake) polysaccharides on constipation
  102. Bioassay-directed fractionation of a blood coagulation factor Xa inhibitor, betulinic acid from Lycopus lucidus
  103. Antifungal and repellent activities of the essential oils from three aromatic herbs from western Himalaya
  104. Chemical composition and microbiological evaluation of essential oil from Hyssopus officinalis L. with white and pink flowers
  105. Bioassay-guided isolation and identification of Aedes aegypti larvicidal and biting deterrent compounds from Veratrum lobelianum
  106. α-Terpineol, a natural monoterpene: A review of its biological properties
  107. Utility of essential oils for development of host-based lures for Xyleborus glabratus (Coleoptera: Curculionidae: Scolytinae), vector of laurel wilt
  108. Phenolic composition and antioxidant potential of different organs of Kazakh Crataegus almaatensis Pojark: A comparison with the European Crataegus oxyacantha L. flowers
  109. Isolation of eudesmane type sesquiterpene ketone from Prangos heyniae H.Duman & M.F.Watson essential oil and mosquitocidal activity of the essential oils
  110. Comparative analysis of the polyphenols profiles and the antioxidant and cytotoxicity properties of various blue honeysuckle varieties
  111. Special Issue on ICCESEN 2017
  112. Modelling world energy security data from multinomial distribution by generalized linear model under different cumulative link functions
  113. Pine Cone and Boron Compounds Effect as Reinforcement on Mechanical and Flammability Properties of Polyester Composites
  114. Artificial Neural Network Modelling for Prediction of SNR Effected by Probe Properties on Ultrasonic Inspection of Austenitic Stainless Steel Weldments
  115. Calculation and 3D analyses of ERR in the band crack front contained in a rectangular plate made of multilayered material
  116. Improvement of fuel properties of biodiesel with bioadditive ethyl levulinate
  117. Properties of AlSi9Cu3 metal matrix micro and nano composites produced via stir casting
  118. Investigation of Antibacterial Properties of Ag Doped TiO2 Nanofibers Prepared by Electrospinning Process
  119. Modeling of Total Phenolic contents in Various Tea samples by Experimental Design Methods
  120. Nickel doping effect on the structural and optical properties of indium sulfide thin films by SILAR
  121. The effect mechanism of Ginnalin A as a homeopathic agent on various cancer cell lines
  122. Excitation functions of proton induced reactions of some radioisotopes used in medicine
  123. Oxide ionic conductivity and microstructures of Pr and Sm co-doped CeO2-based systems
  124. Rapid Synthesis of Metallic Reinforced in Situ Intermetallic Composites in Ti-Al-Nb System via Resistive Sintering
  125. Oxidation Behavior of NiCr/YSZ Thermal Barrier Coatings (TBCs)
  126. Clustering Analysis of Normal Strength Concretes Produced with Different Aggregate Types
  127. Magnetic Nano-Sized Solid Acid Catalyst Bearing Sulfonic Acid Groups for Biodiesel Synthesis
  128. The biological activities of Arabis alpina L. subsp. brevifolia (DC.) Cullen against food pathogens
  129. Humidity properties of Schiff base polymers
  130. Free Vibration Analysis of Fiber Metal Laminated Straight Beam
  131. Comparative study of in vitro antioxidant, acetylcholinesterase and butyrylcholinesterase activity of alfalfa (Medicago sativa L.) collected during different growth stages
  132. Isothermal Oxidation Behavior of Gadolinium Zirconate (Gd2Zr2O7) Thermal Barrier Coatings (TBCs) produced by Electron Beam Physical Vapor Deposition (EB-PVD) technique
  133. Optimization of Adsorption Parameters for Ultra-Fine Calcite Using a Box-Behnken Experimental Design
  134. The Microstructural Investigation of Vermiculite-Infiltrated Electron Beam Physical Vapor Deposition Thermal Barrier Coatings
  135. Modelling Porosity Permeability of Ceramic Tiles using Fuzzy Taguchi Method
  136. Experimental and theoretical study of a novel naphthoquinone Schiff base
  137. Physicochemical properties of heat treated sille stone for ceramic industry
  138. Sand Dune Characterization for Preparing Metallurgical Grade Silicon
  139. Catalytic Applications of Large Pore Sulfonic Acid-Functionalized SBA-15 Mesoporous Silica for Esterification
  140. One-photon Absorption Characterizations, Dipole Polarizabilities and Second Hyperpolarizabilities of Chlorophyll a and Crocin
  141. The Optical and Crystallite Characterization of Bilayer TiO2 Films Coated on Different ITO layers
  142. Topical Issue on Bond Activation
  143. Metal-mediated reactions towards the synthesis of a novel deaminolysed bisurea, dicarbamolyamine
  144. The structure of ortho-(trifluoromethyl)phenol in comparison to its homologues – A combined experimental and theoretical study
  145. Heterogeneous catalysis with encapsulated haem and other synthetic porphyrins: Harnessing the power of porphyrins for oxidation reactions
  146. Recent Advances on Mechanistic Studies on C–H Activation Catalyzed by Base Metals
  147. Reactions of the organoplatinum complex [Pt(cod) (neoSi)Cl] (neoSi = trimethylsilylmethyl) with the non-coordinating anions SbF6– and BPh4
  148. Erratum
  149. Investigation on Two Compounds of O, O’-dithiophosphate Derivatives as Corrosion Inhibitors for Q235 Steel in Hydrochloric Acid Solution
Downloaded on 22.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/chem-2018-0001/html?lang=en
Scroll to top button