Startseite Crystal structure of 3-iodo-N 2-(2-methyl-1-(methylsulfonyl)propan-2-yl)-N 1-(2-methyl-4-(perfluoropropan-2-yl)phenyl)phthalamide, C23H22F7I1N2O4S1
Artikel Open Access

Crystal structure of 3-iodo-N 2-(2-methyl-1-(methylsulfonyl)propan-2-yl)-N 1-(2-methyl-4-(perfluoropropan-2-yl)phenyl)phthalamide, C23H22F7I1N2O4S1

  • Juan Luo , Jie Wang , Gao-Yan Qiu , Wan-Ming Xiong und Da-Yong Peng ORCID logo EMAIL logo
Veröffentlicht/Copyright: 6. September 2021

Abstract

8[C23H22F7I1N2O4S1], monoclinic, Cc (no. 9), a = 19.762(3) Å, b = 24.690(4) Å, c = 12.106(2) Å, β = 113.696(2)°, V = 5408.8(15) Å3, Z = 1, R gt (F) = 0.0488, wR ref (F 2) = 0.1411, T = 296(2) K.

CCDC no.: 2103950

The asymmetric unit of the title crystal structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Colorless block
Size: 0.21 × 0.16 × 0.13 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 1.34 mm−1
Diffractometer, scan mode: Bruker APEX-II, φ and ω
θ max, completeness: 25.5°, >99%
N(hkl)measured, N(hkl)unique, R int: 20,707, 9580, 0.027
Criterion for I obs, N(hkl)gt: 8203
N(param)refined: 693
Programs: Bruker [1], SHELX [2, 3], Diamond [4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
C1 0.3214 (4) 0.2403 (3) −0.0290 (6) 0.0404 (16)
C2 0.2995 (4) 0.1950 (3) 0.0318 (6) 0.0391 (15)
C3 0.3091 (5) 0.1407 (4) 0.0062 (7) 0.0491 (18)
C4 0.2835 (6) 0.0987 (4) 0.0526 (10) 0.067 (2)
H4 0.289174 0.063165 0.032527 0.080*
C5 0.2488 (6) 0.1097 (4) 0.1296 (10) 0.065 (2)
H5 0.233742 0.081380 0.165102 0.078*
C6 0.2370 (5) 0.1617 (4) 0.1531 (8) 0.059 (2)
H6 0.210986 0.168330 0.200951 0.071*
C7 0.2622 (4) 0.2055 (3) 0.1085 (7) 0.0402 (15)
C8 0.2535 (4) 0.2620 (3) 0.1429 (6) 0.0422 (16)
C9 0.1665 (4) 0.3244 (3) 0.1698 (7) 0.0466 (17)
C10 0.1207 (5) 0.3592 (4) 0.0817 (8) 0.055 (2)
H10 0.105407 0.350772 0.000383 0.066*
C11 0.0976 (6) 0.4077 (4) 0.1173 (12) 0.074 (3)
H11 0.067233 0.431490 0.058865 0.089*
C12 0.1195 (7) 0.4204 (4) 0.2380 (12) 0.073 (3)
C13 0.1662 (7) 0.3853 (5) 0.3230 (10) 0.073 (3)
H13 0.183007 0.394640 0.404142 0.087*
C14 0.1889 (5) 0.3367 (4) 0.2922 (8) 0.058 (2)
C15 0.2371 (10) 0.2995 (7) 0.3871 (10) 0.103 (5)
H15A 0.242812 0.312921 0.464859 0.155*
H15B 0.284629 0.297427 0.383374 0.155*
H15C 0.215099 0.264180 0.374767 0.155*
C16 0.0909 (10) 0.4696 (6) 0.277 (2) 0.113 (6)
C17 0.1001 (10) 0.5218 (7) 0.224 (2) 0.120 (5)
C18 0.0252 (13) 0.4609 (9) 0.297 (2) 0.128 (6)
C19 0.2691 (4) 0.3053 (3) −0.2012 (6) 0.0439 (16)
C20 0.3163 (6) 0.2824 (5) −0.2652 (9) 0.068 (3)
H20A 0.365207 0.274896 −0.206647 0.102*
H20B 0.318756 0.308466 −0.322329 0.102*
H20C 0.294229 0.249601 −0.306609 0.102*
C21 0.1916 (6) 0.3156 (5) −0.2925 (10) 0.071 (3)
H21A 0.172299 0.283242 −0.338216 0.106*
H21B 0.192322 0.344162 −0.345978 0.106*
H21C 0.160951 0.326091 −0.251616 0.106*
C22 0.2998 (5) 0.3572 (4) −0.1269 (8) 0.056 (2)
H22A 0.340168 0.346644 −0.052364 0.067*
H22B 0.261246 0.372025 −0.105472 0.067*
C23 0.4266 (7) 0.4010 (5) −0.1450 (13) 0.084 (3)
H23A 0.445594 0.426902 −0.184493 0.126*
H23B 0.435927 0.365041 −0.165484 0.126*
H23C 0.450587 0.405917 −0.059227 0.126*
C24 0.0051 (4) 0.2088 (3) 0.9579 (7) 0.0419 (16)
C25 −0.0119 (4) 0.2631 (3) 0.8960 (7) 0.0414 (16)
C26 −0.0494 (5) 0.3024 (4) 0.9309 (7) 0.0507 (18)
C27 −0.0677 (5) 0.3521 (4) 0.8729 (8) 0.057 (2)
H27 −0.093314 0.377724 0.897322 0.069*
C28 −0.0475 (5) 0.3631 (3) 0.7793 (8) 0.057 (2)
H28 −0.058964 0.396514 0.740719 0.069*
C29 −0.0098 (5) 0.3245 (3) 0.7414 (7) 0.0514 (19)
H29 0.002981 0.331985 0.677020 0.062*
C30 0.0085 (4) 0.2748 (3) 0.8000 (6) 0.0384 (15)
C31 0.0559 (4) 0.2360 (3) 0.7680 (7) 0.0439 (16)
C32 0.0698 (4) 0.1870 (4) 0.6033 (7) 0.0514 (19)
C33 0.1013 (6) 0.1396 (4) 0.6603 (9) 0.063 (2)
H33 0.099568 0.130356 0.733587 0.075*
C34 0.1362 (7) 0.1052 (5) 0.6069 (11) 0.076 (3)
H34 0.156911 0.072722 0.644300 0.091*
C35 0.1398 (6) 0.1191 (5) 0.5008 (11) 0.072 (3)
C36 0.1081 (6) 0.1673 (5) 0.4445 (9) 0.069 (3)
H36 0.110865 0.176621 0.372031 0.083*
C37 0.0733 (5) 0.2012 (4) 0.4927 (8) 0.057 (2)
C38 0.0397 (6) 0.2524 (5) 0.4290 (9) 0.076 (3)
H38A 0.062589 0.262305 0.375394 0.114*
H38B 0.047265 0.280719 0.487136 0.114*
H38C −0.012304 0.247171 0.383565 0.114*
C39 0.1807 (7) 0.0840 (6) 0.4446 (14) 0.095 (4)
C42 −0.0434 (5) 0.1146 (3) 0.9414 (8) 0.0490 (18)
C43 −0.0555 (7) 0.1167 (5) 1.0589 (10) 0.074 (3)
H43A −0.024012 0.143797 1.111258 0.111*
H43B −0.043995 0.082015 1.098040 0.111*
H43C −0.106206 0.125457 1.040756 0.111*
C44 0.0283 (6) 0.0855 (4) 0.9605 (10) 0.068 (3)
H44A 0.036337 0.086870 0.887414 0.102*
H44B 0.025116 0.048464 0.981798 0.102*
H44C 0.068662 0.102932 1.024212 0.102*
C45 −0.1111 (5) 0.0864 (3) 0.8475 (8) 0.0506 (18)
H45A −0.153290 0.110144 0.830186 0.061*
H45B −0.120412 0.053934 0.884307 0.061*
C46 −0.2017 (6) 0.0531 (5) 0.6206 (10) 0.070 (3)
H46A −0.207546 0.041174 0.541826 0.105*
H46B −0.230727 0.085097 0.613474 0.105*
H46C −0.218001 0.025029 0.659227 0.105*
F1 0.1488 (9) 0.4850 (6) 0.4041 (12) 0.180 (5)
F2 0.1548 (8) 0.5255 (5) 0.1951 (15) 0.162 (4)
F3 0.0377 (9) 0.5198 (6) 0.1150 (16) 0.183 (5)
F4 0.0930 (7) 0.5658 (4) 0.2815 (14) 0.152 (4)
F5 −0.0260 (8) 0.4434 (7) 0.1993 (18) 0.189 (6)
F6 −0.0056 (8) 0.5021 (5) 0.3272 (15) 0.165 (5)
F7 0.0309 (11) 0.4240 (8) 0.3690 (19) 0.203 (6)
I1 0.36428 (5) 0.12208 (4) −0.10412 (7) 0.0916 (3)
I2 −0.07813 (4) 0.28808 (3) 1.07728 (6) 0.0813 (3)
N1 0.2632 (3) 0.2637 (3) −0.1176 (5) 0.0417 (14)
H1 0.219654 0.253770 −0.126091 0.050*
N2 0.1853 (3) 0.2745 (3) 0.1336 (6) 0.0462 (15)
H2 0.151071 0.250602 0.103721 0.055*
N3 0.0315 (4) 0.2220 (3) 0.6520 (6) 0.0480 (15)
H3 −0.010131 0.235105 0.603317 0.058*
N4 −0.0431 (4) 0.1700 (3) 0.8969 (6) 0.0441 (14)
H4A −0.076099 0.178089 0.826944 0.053*
O1 0.3856 (3) 0.2531 (3) −0.0024 (5) 0.0543 (14)
O2 0.3051 (3) 0.2934 (2) 0.1810 (6) 0.0546 (14)
O3 0.2969 (5) 0.4088 (3) −0.3209 (6) 0.080 (2)
O4 0.3236 (5) 0.4594 (3) −0.1341 (8) 0.079 (2)
O5 0.0578 (3) 0.2023 (2) 1.0562 (5) 0.0555 (14)
O6 0.1154 (3) 0.2203 (3) 0.8463 (5) 0.0574 (15)
O7 −0.0862 (4) 0.1134 (3) 0.6563 (6) 0.0622 (15)
O8 −0.0678 (4) 0.0185 (3) 0.7230 (7) 0.0705 (17)
S3 −0.10845 (12) 0.06747 (8) 0.70715 (19) 0.0500 (4)
S4 0.33232 (13) 0.41046 (9) −0.1915 (2) 0.0571 (5)
F13 0.1693 (6) 0.0073 (4) 0.3237 (10) 0.127 (3)
F9 0.2957 (5) 0.0537 (5) 0.4547 (11) 0.141 (4)
F12 0.0712 (6) 0.0408 (6) 0.3216 (12) 0.152 (4)
F10 0.2978 (6) 0.1098 (6) 0.5918 (13) 0.155 (4)
F8 0.1672 (10) 0.1079 (7) 0.3186 (15) 0.194 (6)
C41 0.1393 (8) 0.0392 (7) 0.3720 (17) 0.108 (5)
C40 0.2584 (9) 0.0800 (8) 0.5047 (18) 0.108 (5)
F11 0.2628 (10) 0.0404 (7) 0.6038 (15) 0.191 (6)
F14 0.1408 (11) 0.0060 (7) 0.4750 (17) 0.197 (6)

Source of material

Twenty percent flubendiamide water dispersible granules (10 g) were dissolved in 30 mL acetone, and the filtrate was concentrated and crystallized after suction filtration to obtain an off-white solid product (1.58 g) with a yield of 79%. The off-white solid was recrystallized from methanol, and colorless crystals were obtained at room temperature after a few days.

Experimental details

All H atoms were included in calculated positions and refined as riding atoms, with C–H = 0.90–0.97 Å with U iso(H) = 1.5 U eq(C) for methyl H atoms and 1.2 U eq(C) for all other H atoms.

Comment

Flubendiamide, 3-iodo-N-(2-methanesulfonyl-1,1-dmethylethyl)-N′-(2-methyl-4-(1,2,2,2-tetrafluoro-1-trifluoromethylethyl)phenyl)phthalamide, is a new modern insecticide of phthalic acid diamides commercialized by Japan's Shinko Co., Ltd. and Bayer Crop Science Company of Germany [5], [6], [7]. In 1993, Nihon Nohyaku discovered the parent compound of flubendiamide during the research and development of the herbicide of pyrazine dicarboxamide. Through the discovery of effective substituents, he synthesized flubendiamide in 1998. Flubendiamide is a systemic foliar insecticide with extremely high activity against a broad spectrum of lepidopteran insects [8], [9], [10]. And it works fast and lasts for a long time. However, the toxicity to mammals is extremely low, and non-target organisms have almost no impact. It is less harmful to the biological enrichment and biomagnification that may cause animals in the body, reflecting excellent environmental performance [11]. Currently, there are more than 200 crops registered for flubendiamide [12]. The mechanism of action of bisamide insecticides is relatively novel compared to traditional nerve agents. They are a type of muscle toxins, mainly contact and stomach poisons, and insecticides with antifeedant activity [13, 14]. The mechanism of action of flubendiamide is to activate the calcium ion release channel in the ryanodine receptor cells, leading to the uncontrolled release of stored calcium ions, and ultimately causing insects to stop eating, lethargy, contractile paralysis and until death [15].

There are two crystallographic independent molecules in the asymmetric unit (molecule A and B in the figure). In the molecule of the title compound bond lengths and angles are very similar to those given in the literature [16, 17]. The torsion angles of C3–C2–C1–N1, C2–C1–N1–C19, C1–N1–C19–C22, N1–C19–C22–S4 and C19–C22–S4–C23 of the molecule A are 103.3(8)°, 173.0(7)°, 68.7(9)°, 166.7(6)° and 93.9(9)°, respectively. Those torsion angles of the molecule B are 98.6(9)°, 174.5(7)°, 175.4(7)°, 73.1(8)° and 166.4(7)°, respectively.


Corresponding author: Da-Yong Peng, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, Department of Chemistry, Jiangxi Agricultural University, Nanchang 330045, People’s Republic of China, E-mail:

Funding source: The “13th Five-Year” National Key Research Program of China

Award Identifier / Grant number: 2017YFD0301604

Award Identifier / Grant number: 21562022

Funding source: The Natural Science Foundation of Jiangxi Province

Award Identifier / Grant number: 20161BAB204189

Award Identifier / Grant number: 20181BAB203015

Funding source: Natural Science Foundation of Education Department of Jiangxi Province

Award Identifier / Grant number: GJJ180204

Acknowledgments

X-ray data were collected at Instrumental Analysis Center Nanchang Hangkong University, Nanchang, 330063, People's Republic of China

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by The “13th Five-Year” National Key Research Program of China (2017YFD0301604), the National Natural Science Foundation of China (21562022), The Natural Science Foundation of Jiangxi Province (Grant No. 20161BAB204189, 20181BAB203015), Natural Science Foundation of Education Department of Jiangxi Province (No. GJJ180204).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Bruker. APEX2, SAINT and SADABS; Bruker AXS Inc.: Madison, Wisconsin, USA, 2009.Suche in Google Scholar

2. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.Suche in Google Scholar PubMed

3. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Suche in Google Scholar

4. Brandenburg, K. DIAMOND. Visual Crystal Structure Information System (Ver. 4.0); Crystal Impact: Bonn, Germany, 2015.Suche in Google Scholar

5. Hartunga, S., Iwasakib, M., Ogawab, N., Kreuziga, R. Laboratory tests on sorption and transformation of the insecticide flubendiamide in Japanese tea field soil. Sci. Total Environ. 2013, 443, 904–909; https://doi.org/10.1016/j.scitotenv.2012.11.027.Suche in Google Scholar PubMed

6. Yan, H. H., Xue, C. B., Li, G. Y., Zhao, X. L., Che, X. Z., Wang, L. L. Flubendiamide resistance and Bi-PASA detection of ryanodine receptor G4946E mutation in the diamond-back moth (Plutella xylostella L.). Pestic. Biochem. Physiol. 2014, 115, 73–77; https://doi.org/10.1016/j.pestbp.2014.09.003.Suche in Google Scholar PubMed

7. Singh, B. R., Singh, B., Kooner, R., Singh, B. Simple and efficient method for the estimation of residues of flubendiamide and its metabolite desiodo flubendiamide. J. Agric. Food Chem. 2008, 56, 2299–2302; https://doi.org/10.1021/jf073081s.Suche in Google Scholar PubMed

8. Mandil, R., Rahal, A., Prakash, A., Garg, S. K., Gangwar, N. K., Swain, D. K. Ameliorative potential of α-tocopherol against flubendiamide and copper-induced testicular-insult in Wistar rats. Chem. Biol. Interact. 2016, 260, 91–101; https://doi.org/10.1016/j.cbi.2016.11.004.Suche in Google Scholar PubMed

9. Tohnishi, M., Nishimatsu, T., Motoba, K., Hirooka, T., Seo, A. Development of a novel insecticide, flubendiamide. J. Pestic. Sci. 2010, 35, 508–515; https://doi.org/10.1584/jpestics.35.508.Suche in Google Scholar

10. Bernal, J., Nozal, M. J., Martín, M., Bernal, J. L., Ares, A. M. Trace analysis of flubendiamide in bee pollen using enhanced matrix removal-lipid sorbent clean-up and liquid chromatography-electrospray ionization mass spectrometry. Microchem. J. 2019, 148, 541–547; https://doi.org/10.1016/j.microc.2019.05.037.Suche in Google Scholar

11. Cordova, D., Benner, E. A., Sacher, M. D., Rauh, J. J., Sopa, J. S., Lahm, G. P., Selby, T. P., Stevenson, T. M., Flexner, L., Gutteridge, S. Anthranilic diamides: a new class of insecticides with a novel mode of action, ryanodine receptor activation. Pestic. Biochem. Physiol. 2006, 84, 196–214; https://doi.org/10.1016/j.pestbp.2005.07.005.Suche in Google Scholar

12. Ares, A. M., Valverde, S., Bernal, J. L., Toribio, L., Nozal, M. J., Bernal, J. Determination of flubendiamide in honey at trace levels by using solid phase extraction and liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. Food Chem. 2017, 232, 169–176; https://doi.org/10.1016/j.foodchem.2017.03.162.Suche in Google Scholar PubMed

13. Al-Wabel, M. I., Al-Omran, A., El-Naggar, A. H., Nadeem, M., Usman, A. Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresour. Technol. 2013, 131, 374–379; https://doi.org/10.1016/j.biortech.2012.12.165.Suche in Google Scholar PubMed

14. Albarran, A., Celis, R., Hermosin, M. C., Lopez-Pineiro, A., Cornejo, J. Behaviour of simazine in soil amended with the final residue of the olive-oil extraction process. Chemosphere 2004, 54, 717–724; https://doi.org/10.1016/j.chemosphere.2003.09.004.Suche in Google Scholar PubMed

15. Teixeira, L. A., Andaloro, J. T. Diamide insecticides: global efforts to address insect resistance stewardship challenges. Pestic. Biochem. Physiol. 2013, 106, 76–78; https://doi.org/10.1016/j.pestbp.2013.01.010.Suche in Google Scholar

16. Chen, Y. W., Li, Y. X., Pan, L., Liu, J. B., Wan, Y. Y., Chen, W., Xiong, L. X., Yang, N., Song, H. B., Li, Z. M. Synthesis, insecticidal activities and SAR of novel phthalamides targeting calcium channel. Bioorg. Med. Chem. 2014, 22, 6366–6379; https://doi.org/10.1016/j.bmc.2014.09.052.Suche in Google Scholar PubMed

17. Kehl, A., Gieshoff, T., Schollmeyer, D., Waldvogel, S. R. Electrochemical conversion of phthaldianilides to phthalazin-1,4-diones by dehydrogenative N–N bond formation. Chem. Eur J. 2018, 24, 590–593; https://doi.org/10.1002/chem.201705578.Suche in Google Scholar PubMed

Received: 2021-07-16
Accepted: 2021-08-18
Published Online: 2021-09-06
Published in Print: 2021-12-20

© 2021 Juan Luo et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Artikel in diesem Heft

  1. Frontmatter
  2. New Crystal Structures
  3. Redetermination of the crystal structure of 3-bromonitrobenzene at 200 K, C6H4BrNO2 – temperature effects on cell constants
  4. Crystal structure of (E)-ethyl 2-((4-oxo-4H-chromen-3-yl)methyleneaminooxy)acetate, C14H13NO5
  5. Crystal structure of (8R,10R,14R, Z)-2-((3–Fluoropyridin-4-yl) methylene)-12-hydroxy-4,4,8,10,14-pentamethyl-17-((R)-2,6, 6-trimethyltetrahydro-2H-pyran-2-yl) hexadecahydro-3H-cyclopenta[a] phenanthren-3-one, C36H52FNO3
  6. Crystal structure of [6,6′-((1E,1′E)-(propane-1,3- diylbis(azaneylylidene))bis(methaneylylidene)) bis(3-chlorophenol)-κ4N,N′,O,O′] copper(II), C17H14Cl2CuN2O2
  7. The crystal structure of 6-amino-2-carboxypyridin-1-ium bromide, C6H7BrN2O2
  8. Redetermination of the crystal structure of bis[N,N′-ethylenebis(acetylacetoniminato)nickel(II)] sodium perchlorate, C24H36ClN4NaNi2O8
  9. The crystal structure of 3-methyl-2,6-dinitrophenol, C7H6N2O5
  10. The crystal structure of 5-chloro-2-(quinolin-8-yl)isoindoline-1,3-dione, C17H9ClN2O2
  11. Crystal structure of trans-tetraaqua-bis{2-carboxy-4-((5-carboxypyridin-3-yl)oxy)benzoato-κ1 N}cobalt(II) dihydrate C28H28O20N2Co
  12. Crystal structure of 3-allyl-4-(2-bromoethyl)-5-(4-methoxyphenyl)-2-(p-tolyl)furan, C23H23BrO2
  13. The crystal structure of 6,6′-(((2-(dimethylamino)ethyl)azanediyl)bis(methylene))bis(benzo[d][1,3]dioxol-5-ol ato-κ4N,N′,O,O′)-(pyridine-2,6-dicarboxylato-N,O,O′)-titanium(IV)-dichloromethane(1/1), C27H25N3O10Ti
  14. Crystal structure of (((1E,1′E)-1,2-phenylenebis(methaneylylidene))bis(hydrazin-1-yl-2-ylidene))bis(aminomethaniminium) dinitrate C10H16N10O6
  15. Crystal structure of catena-poly[triaqua-(μ 2-1,3-di(1H-imidazol-1-yl)propane-κ 2 N:N′)-(4,4′-(1H-1,2,4-triazole-3,5-diyl)dibenzoato-κ 1 O)nickel(II)]N,N′-dimethylformamide (1/1), C28H35N8O8Ni
  16. The crystal structure of 3,3′-[1,4-phenylenebis(methylene)]bis(1-ethenyl-1H-imidazol-3-ium) dichloride – dichloromethane – water (1/1/1), C19H24Cl4N4O1
  17. Crystal structure of 1,1′-(methane-1,1-diyl)bis(3-propyl-1H-imidazol-3-ium) bis(hexafluoridophosphate), C13H22F12N4P2
  18. Crystal structure of dichlorido-bis(4-chlorophenyl-κC 1)tin(IV), C12H8Cl4Sn
  19. Synthesis and crystal structure of 4-acetylpyrene, C18H12O
  20. Crystal structure of 2,2′-(butane-1,4-diylbis(azanylylidene))bis(methanylylidene))bis(4-methoxyphenol), C20H24N2O4
  21. The crystal structure of (E)-2-(((5-((triphenylstannyl)thio)-1,3,4-thiadiazol-2-yl)imino)methyl)phenol, C27H21N3OS2Sn
  22. Crystal structure of diaqua-bis(μ2-6-phenylpyridine-2-carboxylate-κ3N,O:O)-bis(6-phenylpyridine-2-carboxylato-κ2N,O)lead(II) – N,N-dimethylformamide – water (1/2/4), C54H58N6O16Pb2
  23. Crystal structure of methyl 4-acetoxy-3-methoxybenzoate, C11H12O5
  24. Crystal structure of 2,2′-(propane-1,3-dilylbis(azaneylylidene))bis(methanylylidene)bis(4-methylphenol), C19H22N2O2
  25. Crystal structure of dichlorido-bis(4-methylphenyl-κC1)tin(IV), C14H14Cl2Sn
  26. Crystal structure of methyl (E)-3-(4-acetoxyphenyl)acrylate, C12H12O4
  27. The crystal structure of bis(benzoato-κ2 O,O′)-(2,9-dimethyl-1,10-phenanthroline-κ2 N,N′)-copper(II), C28H22CuN2O4
  28. Crystal structure of (8R,10R,14R,Z)-12-hydroxy-2-((6-methoxypyridin-2-yl)methylene)-4,4,8,10,14-pentamethyl-17-((R)-2,6,6-trimethyltetrahydro-2H-pyran-2-yl)hexadecahydro-3H-cyclopenta[a]phenanthren-3-one–water (2/1), C37H56NO4.5
  29. Crystal structure of dimethyl-bis(4-bromophenyl-κC1)tin(IV), C14H14Br2Sn
  30. The crystal structure of the cocrystal di-μ2-chlorido-octamethyl-di-μ3-oxido-bis(2,3,4,5-tetrafluorobenzoato-κ2 O,O′)tetratin(IV) ─ octamethyl-di-μ3-oxido-bis(μ2-2,3,4,5-tetrafluorobenzoato-κ2 O:O′)-bis(μ2-2,3,4,5-tetrafluorobenzoato-κ2 O:O;O′)tetratin(IV) C58H54Cl2F24O16Sn8
  31. Crystal structure of 3-iodo-N 2-(2-methyl-1-(methylsulfonyl)propan-2-yl)-N 1-(2-methyl-4-(perfluoropropan-2-yl)phenyl)phthalamide, C23H22F7I1N2O4S1
  32. Crystal structure of 1-(2-(4-bromophenyl)-2,3-dihydro-1H-benzo[e]indol-1-yl)-naphthalen-2-ol – dichloromethane – dimethyl sulfoxide (1/1/1), C28H18BrNO·CH2Cl2·C2H6SO
  33. Crystal structure of [meso-5,7,7,12,14,14,-hexamethyl-1,4,8,11-tetraazacyclotetradecane]nickel(II) diperchlorate – dimethylsulphoxide (1/2), C20H48Cl2N4NiO10S2
  34. Crystal structure of 1,1′-(1,3-phenylenebis(methylene))bis(pyridin-1-ium) bis(1,2-dicyanoethene-1,2-dithiolato-κ2 S:S) palladium(II), C26H18N6PdS4
  35. The crystal structure of bis(6-phenylpyridine-2-carboxylato-κ2 N,O)copper(II), C24H16N2O4Cu
  36. Crystal structure of dichlorido-bis(4-chlorophenyl-κC)-bis(triphenylarsine oxide-κO)tin(IV), C48H38As2Cl4O2Sn
  37. Crystal structure of (4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane-κ 8 N 2, O 6) potassium cyclopentadienide, [K([2.2.2]crypt)]Cp, C23H41KN2O6
  38. The crystal structure of bis(2-oxidopyridin-1-ium-3-carboxylato-κ2O,O′)-(phenantroline-κ2N,N′)manganese(II) - methanol (1/3), C27H28N4O9Mn
  39. Crystal structure of 4-(dimethylamino)pyridinium dibromido-tris(4-chlorophenyl-κC)stannate(IV), C25H23Br2Cl3N2Sn
  40. Crystal structure of (3E,5E)-1-(4-cyanobenzenesulfonyl)-3,5-bis(3-fluorobenzylidene)piperidin-4-one-dichloromethane (1/1), C27H20Cl2F2N2O3S
  41. Crystal structure of (3E,5E)-3,5-bis(4-fluorobenzylidene)-1-((4-trifluoromethyl)benzenesulfonyl)piperidin-4-one, C26H18F5NO3S
  42. Crystal structure of chlorido-(4-methyl-2-((phenylimino)methyl)phenolato-κ2 N,O)-(pyridine-κ1 N)platinum(II), C19H17ClN2OPt
  43. Crystal structure of (4-methylbenzyl)(triphenyl)phosphonium chloride dihydrate, C26H28ClO2P
  44. The crystal structure of poly[μ2-chlorido-(μ2-1,2-bis(4-pyridyl)ethane-κ2N:N′silver(I)], C12H12AgClN2
  45. Crystal structure of poly[(μ4-benzene-1,2,4,5-tetracarboxylato)-bis(μ2-adipohydrazide)dicadmium], C11H15N4O6Cd
  46. The crystal structure of (E)-N′-(butan-2-ylidene)isonicotinohydrazide 0.5 hydrate C10H13N3O·0.5H2O
  47. The crystal structure of bis(6-phenylpyridine-2-carboxylate-κ2 N,O)-(2,2′-bipyridine-κ2 N,N′)zinc(II) monohydrate, C34H26N4O5Zn
  48. The crystal structure of (1R *,2S *)-1,2-bis(2-fluorophenyl)-3,8-dimethoxyacenaphthene-1,2-diol, C26H20F2O4
  49. Crystal structure of catena-poly[(μ2-1-((2-ethyl-4-methyl-1H-imidazol-1-yl)methyl)-1H-benzotriazole-κ2N:N′)-(nitrato-κ2O,O′)silver (I)], C13H15Ag1N6O3
  50. The crystal structure of [(phenantroline-κ2 N,N′)-bis(6-phenylpyridine-2-carboxylate-κ2 N,O)cobalt(II)]monohydrate, C36H26N4O5Co
  51. Crystal structure of (1E)-N-[(1E)-1-(4-chlorophenyl)ethylidene]-2-[1-(4-chlorophenyl)ethylidene]hydrazine-1-carbohydrazonamide, C 17 H 17 Cl 2 N 5
  52. The crystal structure of (E)-2-((tert-butylimino)methyl)-4-chlorophenol, C11H14ClNO
  53. Crystal structure of all-cis-2,4,6-trihydroxycyclohexane- 1,3,5-triaminium chloride sulfate, C6H18ClN3O7S
  54. Crystal structure of dichlorido-bis(dimethyl sulfoxide-κO)bis(4-methylphenyl-κC 1)tin(IV), C18H26Cl2O2S2Sn
  55. Crystal structure of dichlorido-bis(4-chlorophenyl-κC 1)(2,2′-bipyridyl-κ 2 N,N′)tin(IV), C22H16Cl4N2Sn
  56. Redetermination of the crystal structure of (E)-5-bromo-2-hydroxybenzaldehyde oxime, C 7 H 6 BrNO 2
  57. The crystal structure of (E)-amino(2-(4-methylbenzylidene)hydrazineyl)methaniminium 4-methylbenzoate, C9H13N4 + C8H7O2
  58. Crystal structure of 2-chloro-3-(isopentylamino)naphthalene-1,4-dione, C 15 H 16 ClNO 2
  59. The crystal structure of bis(2-acetyl-5-methoxyphenyl)carbonate 1.5 hydrate, C19H18O7
  60. The crystal structure of poly[(μ 4-4,4′-(azanediylbis(methylene))dibenzoato-κ 4 O:N:O′:Oʺ)zinc(II)], C16H13NO4Zn
  61. The crystal structure of catena-poly[(1,10-phenanthroline-k2N,N′)-(μ3-tetraoxidomoybdato(VI)-k3O:O′:O″)manganese(II)] C12H8N2O4MoMn
  62. Crystal structure of catena-poly[(4-hydroxyl-5-(methoylcarbonyl)thiophene-2-carboxylato-κ1 O)-(μ2-piperazine-1,4-diylbis(pyridin-4-ylmethanone)-κ2 N:N′)silver(I)] monohydrate, C23H23AgN4O8S
  63. Crystal structure of bis(4-bromo-2-(((3-bromopropyl)imino)methyl)phenolato-κ2N,O)-oxido-vanadium(IV), C20H20Br4N2O3V
  64. The crystal structure of (2a′S,2a1′S,3R,5a′S,7′R)-5-(furan-3-yl)-2a′,2a1′-dihydroxy-7′-methyldecahydro-2H-spiro[furan-3,6′-naphtho[1,8-bc]furan]-2,2′(2a′H)-dione, C19H22O7
  65. The crystal structure of 3-bromopicolinic acid, C6H4BrNO2
  66. Crystal structure of 1,1′-(1,4-phenylenebis(methylene))bis(pyridin-1-ium) bis(1,2-dicyanoethene-1,2-dithiolato-κ2 S,S) platinum(II), C26H18N6PtS4
  67. Synthesis and crystal structure of 5-(8-((3-carboxyazetidin-1-ium-1-yl)methyl)-7-hydroxy-4-oxo-4H-chromen-3-yl)-2-hydroxybenzenesulfonate monohydrate, C20H19NO10S
  68. The crystal structure of 3-amino-5-carboxypyridin-1-ium bromide, C6H7BrN2O2
  69. The crystal structure of (2-hydroxy-5-methyl-phenyl)-(1H-pyrazol-4-yl)-methanone hemihydrate, C11H10.5N2O2.5
  70. Crystal structure of tetraaqua-(2-(4-formylphenoxy)acetato-k1O)cadmium(II), C18H22O12Cd
  71. Crystal structure of diethyl 6,12-dimethyl-3,9-di-p-tolyl-3,9-diazapentacyclo[6.4.0.02,7.04,11.05,10]dodecane-1,5-dicarboxylate, C32H38N2O4
  72. Crystal structure of (E)-N′-(1-(3-chloro-4-fluorophenyl)ethylidene)-4-hydroxy – tetrahydrofuran (2/1), C17H16ClFN2O2.5
Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2021-0289/html
Button zum nach oben scrollen