Home Crystal structure of (4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane-κ 8 N 2, O 6) potassium cyclopentadienide, [K([2.2.2]crypt)]Cp, C23H41KN2O6
Article Open Access

Crystal structure of (4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane-κ 8 N 2, O 6) potassium cyclopentadienide, [K([2.2.2]crypt)]Cp, C23H41KN2O6

  • Christina Fischer , Wilhelm Klein ORCID logo and Thomas F. Fässler ORCID logo EMAIL logo
Published/Copyright: August 31, 2021

Abstract

C23H41KN2O6, monoclinic, P21/c (no. 14), a = 10.9817(6) Å, b = 23.8330(15) Å, c = 9.7379(7) Å, β = 94.705(5)°, V = 2540.1(3) Å3, Z = 4, R gt (F) = 0.0327, wR ref(F 2) = 0.0682, T = 120 K.

CCDC no.: 2103410

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Colourless block
Size: 0.25 × 0.20 × 0.15 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.25 mm−1
Diffractometer, scan mode: Oxford Xcalibur 3, φ and π
θ max, completeness: 28.0°, >99%
N(hkl)measured, N(hkl)unique, R int: 32,316, 6125, 0.047
Criterion for I obs, N(hkl)gt: I obs > 2 σ(I obs), 4029
N(param)refined: 453
Programs: CrysAlisPRO [1], SHELX [2, 3], Diamond [4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
K 0.37019 (3) 0.13897 (2) 0.60803 (3) 0.01955 (8)
N1 0.12350 (10) 0.11496 (4) 0.47325 (11) 0.0203 (2)
N2 0.62089 (10) 0.16191 (5) 0.74401 (11) 0.0203 (2)
O1 0.34765 (8) 0.08353 (4) 0.34195 (9) 0.0231 (2)
O2 0.57483 (8) 0.08797 (4) 0.50517 (9) 0.0224 (2)
O3 0.42672 (8) 0.10438 (4) 0.88158 (9) 0.0222 (2)
O4 0.20947 (8) 0.06480 (4) 0.73713 (9) 0.0227 (2)
O5 0.21257 (8) 0.22836 (4) 0.54725 (10) 0.0268 (2)
O6 0.45760 (8) 0.25150 (4) 0.63071 (9) 0.0239 (2)
C1 0.13196 (13) 0.10268 (6) 0.32584 (15) 0.0253 (3)
H1A 0.0514 (15) 0.0896 (6) 0.2814 (15) 0.035 (4)*
H1B 0.1518 (12) 0.1381 (6) 0.2783 (14) 0.024 (4)*
C2 0.22976 (13) 0.06073 (6) 0.30041 (16) 0.0257 (3)
H2A 0.2197 (12) 0.0250 (6) 0.3553 (13) 0.024 (4)*
H2B 0.2237 (12) 0.0533 (6) 0.1985 (15) 0.027 (4)*
C3 0.44048 (13) 0.04239 (6) 0.33627 (16) 0.0236 (3)
H3A 0.4284 (13) 0.0121 (6) 0.4015 (14) 0.032 (4)*
H3B 0.4361 (12) 0.0253 (5) 0.2427 (14) 0.020 (4)*
C4 0.56307 (13) 0.06878 (7) 0.36642 (15) 0.0255 (3)
H4A 0.6258 (13) 0.0398 (6) 0.3550 (14) 0.028 (4)*
H4B 0.5711 (13) 0.0991 (6) 0.3060 (15) 0.031 (4)*
C5 0.69057 (13) 0.11418 (7) 0.53806 (15) 0.0265 (3)
H5A 0.6958 (12) 0.1511 (6) 0.4873 (13) 0.023 (4)*
H5B 0.7539 (14) 0.0903 (6) 0.5092 (14) 0.033 (4)*
C6 0.70998 (13) 0.12309 (6) 0.69139 (15) 0.0253 (3)
H6A 0.7027 (12) 0.0879 (6) 0.7346 (13) 0.018 (3)*
H6B 0.7931 (13) 0.1362 (6) 0.7119 (14) 0.026 (4)*
C7 0.61742 (13) 0.15441 (6) 0.89417 (14) 0.0230 (3)
H7A 0.6971 (14) 0.1559 (6) 0.9402 (14) 0.031 (4)*
H7B 0.5708 (12) 0.1858 (5) 0.9326 (12) 0.016 (3)*
C8 0.55280 (12) 0.10190 (6) 0.93247 (15) 0.0232 (3)
H8A 0.5583 (12) 0.0970 (5) 1.0314 (15) 0.022 (4)*
H8B 0.5894 (13) 0.0667 (6) 0.8941 (14) 0.030 (4)*
C9 0.36129 (13) 0.05691 (6) 0.92401 (16) 0.0247 (3)
H9A 0.3746 (13) 0.0527 (6) 1.0248 (16) 0.029 (4)*
H9B 0.3914 (14) 0.0219 (6) 0.8835 (14) 0.033 (4)*
C10 0.22805 (13) 0.06385 (6) 0.88335 (14) 0.0232 (3)
H10A 0.1978 (12) 0.0985 (6) 0.9228 (13) 0.021 (4)*
H10B 0.1846 (12) 0.0320 (5) 0.9218 (13) 0.019 (3)*
C11 0.08261 (13) 0.06706 (7) 0.69296 (15) 0.0264 (3)
H11A 0.0423 (14) 0.0330 (6) 0.7285 (15) 0.036 (4)*
H11B 0.0457 (13) 0.1011 (6) 0.7342 (14) 0.028 (4)*
C12 0.06761 (13) 0.06713 (6) 0.53823 (15) 0.0247 (3)
H12A −0.0221 (15) 0.0653 (6) 0.5095 (15) 0.036 (4)*
H12B 0.1020 (12) 0.0322 (6) 0.5092 (13) 0.019 (4)*
C13 0.04758 (13) 0.16510 (6) 0.48871 (16) 0.0250 (3)
H13A 0.0283 (12) 0.1672 (5) 0.5859 (15) 0.022 (4)*
H13B −0.0294 (14) 0.1626 (6) 0.4304 (14) 0.030 (4)*
C14 0.10737 (13) 0.21931 (6) 0.45306 (17) 0.0271 (3)
H14A 0.0484 (12) 0.2497 (6) 0.4633 (13) 0.022 (4)*
H14B 0.1326 (13) 0.2213 (6) 0.3564 (15) 0.032 (4)*
C15 0.26416 (14) 0.28219 (6) 0.52912 (17) 0.0280 (3)
H15A 0.2030 (13) 0.3105 (6) 0.5380 (14) 0.030 (4)*
H15B 0.2964 (14) 0.2842 (6) 0.4360 (16) 0.035 (4)*
C16 0.36374 (13) 0.29203 (6) 0.64038 (16) 0.0268 (3)
H16A 0.3984 (13) 0.3289 (6) 0.6307 (13) 0.031 (4)*
H16B 0.3312 (12) 0.2890 (5) 0.7334 (14) 0.021 (4)*
C17 0.55787 (13) 0.26237 (6) 0.72976 (16) 0.0275 (3)
H17A 0.5278 (12) 0.2630 (6) 0.8257 (14) 0.025 (4)*
H17B 0.5884 (13) 0.3009 (6) 0.7127 (14) 0.031 (4)*
C18 0.65696 (13) 0.21978 (6) 0.71538 (17) 0.0267 (3)
H18A 0.6809 (13) 0.2224 (6) 0.6222 (15) 0.028 (4)*
H18B 0.7269 (13) 0.2308 (6) 0.7787 (14) 0.025 (4)*
C19 0.82887 (12) 0.08625 (6) 0.14593 (15) 0.0248 (3)
H19 0.7900 (13) 0.0546 (6) 0.1859 (14) 0.025 (4)*
C20 0.90191 (12) 0.08470 (6) 0.03450 (15) 0.0241 (3)
H20 0.9220 (13) 0.0529 (6) −0.0155 (14) 0.026 (4)*
C21 0.94360 (12) 0.13917 (6) 0.01261 (14) 0.0217 (3)
H21 0.9954 (13) 0.1499 (6) −0.0544 (14) 0.025 (4)*
C22 0.89716 (12) 0.17456 (6) 0.11033 (14) 0.0230 (3)
H22 0.9106 (12) 0.2145 (6) 0.1172 (13) 0.021 (4)*
C23 0.82596 (12) 0.14175 (6) 0.19253 (14) 0.0226 (3)
H23 0.7849 (12) 0.1547 (5) 0.2659 (14) 0.020 (4)*

Source of material

The Zintl phase K4Sn9 was prepared from stoichiometric mixtures of the elements in steel containers, which were encapsulated in an evacuated fused silica tube. The mixture was heated to 550 °C for 46 h and slowly cooled to room temperature with a rate of 1 °C/min. Bis-cyclopentadienyl-germanium (GeCp2) was prepared as described in literature [5], [6], [7]. 91.9 mg K4Sn9 (0.075 mmol), 15.2 mg 4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane ([2.2.2]cryptand; 0.3 mmol; Merck, p. a.), and 15.2 mg GeCp2 (0.075 mmol) were given into a dry Schlenk vessel and ca. 2 ml NH3 (Westfalen, 99.999%, stored over elemental Na) were condensed on this. The red solution was stored at −70 °C for 11 months, after this time colourless crystals of the title compound were obtained. A crystal appropriate for X-ray diffraction measurements was selected under perfluoroalkylether in a stream of cold nitrogen gas.

Experimental details

All H atoms have been located from the difference Fourier map and refined with free atomic coordinates and isotropic displacement parameters [3].

Comment

For the study of behaviour and reactivity of tetrel element Zintl compounds in solution, liquid ammonia has been found to be highly suitable [8, 9]. To support the dissolution of the solid Zintl compounds often sequestering agents like crown ethers or cryptands are necessary. During our investigations with the goal to extend or interconnect such clusters via additional tetrel or transition metal atoms [9, 10], [2.2.2]cryptand has been used to dissolve K4Sn9 in liquid ammonia in presence of GeCp2. As found in several examples where the Cp component forms well-crystallised side products [9, 11], [12], [13] the title compound has been obtained as a crystallised product of a partial metathesis reaction, while the remaining ingredients, Ge as well as [Sn9]4− cluster anions, were not found as parts of crystalline phases after this experiment.

[K(crypt-222)]Cp crystallises in space group P21/c with one formula unit as the asymmetric unit and all atoms are at general positions. The cyclopentadienyl counter anion is formed by a regular pentagon of C atoms with C–C distances in a very narrow range of 1.399(2) and 1.402(2) Å and C–C–C angles are between 107.67(12) and 108.29(12)°, all atoms are perfectly planar (angle sum 540.00°). The H atoms of the anion, which are freely refined without any constraints, are in plane, too, and are found in C–H distances between 0.928(13) and 0.965(14) Å. The potassium cation is coordinated by one [2.2.2]cryptand molecule with K–O distances between 2.7781(9) and 2.9009(9) Å and K–N distances of 2.9675(11) and 3.0056(11) Å. Separated this way, no close contacts between K+ and Cp are observed. The shortest intermolecular distances between the K atom and atoms belonging to the anion are K–H19 (5.38 Å) and K–C19 (6.34 Å). This is in contrast to pure KCp which is found to crystallise in polymeric “multidecker” strands [14, 15], while the presence of crown ether often induces the formation of molecular [(18-crown-6)K(Cp)] [16] or even double-sandwich-like [(18-crown-6)K(Cp)K(18-crown-6)]+ units [17], all including η 5 coordination of the K atoms with K–C distances around 3 Å. In the title compound the (K[2.2.2]crypt) complex and the Cp anion are packed in an 1:1 ion packing with identical ten-membered polyhedra of three equally charged ions and seven oppositely charged ions. The shortest C–C distances between different Cp ions are 4.65 Å and possible π–π interactions are not observed. Hydrogen bonds to electronegative O or N atoms of the cryptand which are sometimes formed e.g. with crown ether molecules [13], can also be neglected as the shortest intermolecular C–O distance is 3.81 Å (H⋅⋅⋅O 2.94 Å, C–H⋅⋅⋅O 150°). Thus, in absence of any noteworthy interactions to neighbouring entities the anion in the title compound can be considered as an example of a “naked” cyclopentadienyl group.


Corresponding author: Thomas F. Fässler, Department of Chemistry, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Rigaku Oxford Diffraction. CrysAlis CCD, CrysAlis RED (Version 1.171.33.34d); Oxford Diffraction Ltd.: Yarnton, Oxfordshire, UK, 2009.Search in Google Scholar

2. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.Search in Google Scholar PubMed

3. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

4. Brandenburg, K. DIAMOND. Visual Crystal Structure Information System (Version 3.2i); Crystal Impact: Bonn, Germany, 2012.Search in Google Scholar

5. Grenz, M., Hahn, E., du Mont, W. W., Pickardt, J. Neue Strukturen mit Germanium(II): Germanocen und dimeres Tricarbonyl(di-tert-butoxygermylen)nickel(0). Angew. Chem. 1984, 69, 69–70; https://doi.org/10.1002/ange.19840960125.Search in Google Scholar

6. Mathur, S., Shen, H., Sivakov, V., Werner, U. Germanium nanowires and core-shell nanostructures by chemical vapor deposition of [Ge(C5H5)2]. Chem. Mater. 2004, 16, 2449–2456; https://doi.org/10.1021/cm031175l.Search in Google Scholar

7. Fjeldberg, T., HaalandSchilling, A. B. E. R., Lappert, M. F., Thorne, A. J. Subvalent group 4B metal alkyls and amides. part 8. germanium and tin carbene analogues MR2, [M = Ge or Sn, R = CH(SiMe3)2]: syntheses and structures in the gas phase (electron diffraction); molecular-orbital calculations for MH2 and GeMe2. Dalton Trans. 1986, 1986, 1551–1556; https://doi.org/10.1039/dt9860001551.Search in Google Scholar

8. Henneberger, T., Klein, W., Fässler, T. F. Silicon containing nine atom clusters from liquid ammonia solution: crystal structures of the first protonated clusters [HSi9]3− and [H{2Si/Ge}]2. Z. Anorg. Allg. Chem. 2018, 644, 1018–1027; https://doi.org/10.1002/zaac.201800227.Search in Google Scholar

9. Benda, C. B., Waibel, M., Fässler, T. F. On the formation of intermetalloid clusters: titanocene(III)diammin as a versatile reactant toward nonastannide zintl clusters. Angew. Chem. 2015, 127, 532–536; https://doi.org/10.1002/ange.201407855.Search in Google Scholar

10. Bentlohner, M. M., Jantke, L.-A., Henneberger, T., Fischer, C., Mayer, K., Klein, W., Fässler, T. F. On the nature of bridging metal atoms in intermetalloid clusters: synthesis and structure of the metal-atom-bridged zintl clusters [Sn(Ge9)2]4− and [Zn(Ge9)2]6−. Chem. Eur J. 2016, 22, 13946–13952; https://doi.org/10.1002/chem.201601706.Search in Google Scholar PubMed

11. Benda, C. B., Klein, W., Fässler, T. F. Crystal structure of 1,2,3,4,5- pentamethyl-1,3-cyclopentadiene, C10H16. Z. Kristallogr. N. Cryst. Struct. 2017, 232, 511–512; https://doi.org/10.1515/ncrs-2016-0402.Search in Google Scholar

12. Henneberger, T., Klein, W., Fässler, T. F. Crystal structure of [(1,2-η)-1,2,3,4,5-pentamethyl-cyclopenta-2,4-dien-1-yl] (1,4,10,13-tetraoxa-7,16-diazacyclooctadecane- κ6N2,O4) rubidium(I), [Rb(diaza-18-crown-6)]Cp*, C22H41N2O4Rb. Z. Kristallogr. N. Cryst. Struct. 2019, 234, 165–167; https://doi.org/10.1515/ncrs-2019-0368.Search in Google Scholar

13. Henneberger, T., Klein, W., Fässler, T. F. Crystal structure of (1,4,7,10,13,16-hexaoxacyclooctadecane-κ6O6) 1,2,3,4,5-pentamethyl-cyclopenta-2,4-dien-1-yl(potassium, rubidium)-ammonia (1/2), [K0.3Rb0.7(18-crown-6)]Cp*2̇ NH3, C22H45K0.3N2O6Rb0.7. Z. Kristallogr. N. Cryst. Struct. 2019, 234, 1241–1243; https://doi.org/10.1515/ncrs-2019-0368.Search in Google Scholar

14. Dinnebier, R. E., Behrens, U., Olbrich, F. Solid State Structures of Cyclopentadienyllithium, -sodium, and -potassium. determination by high-resolution powder diffraction. Organometallics 1997, 16, 3855–3858; https://doi.org/10.1021/om9700122.Search in Google Scholar

15. Jordan, V., Behrens, U., Olbrich, F., Weiss, E. Über Metallalkyl- und Arylverbindungen LV. Cyclopentadienyl- und Indenyl-Verbindungen des Kaliums und Natriums. J. Organomet. Chem. 1996, 517, 81–88; https://doi.org/10.1016/0022-328x(95)05988-2.Search in Google Scholar

16. Neander, S., Tio, F. E., Buschmann, R., Behrens, U., Olbrich, F. Cyclopentadienyl, indenyl, fluorenyl, and pentamethylcyclopentadienyl complexes of potassium with 18-crown-6. J. Organomet. Chem. 1999, 582, 58–65; https://doi.org/10.1016/s0022-328x(98)01186-3.Search in Google Scholar

17. Brennessel, W. W., Ellis, J. E. Napthalene and anthracene cobaltates(1-): useful storable sources of an atomic cobalt anion. Inorg. Chem. 2012, 51, 9076–9094; https://doi.org/10.1021/ic301240u.Search in Google Scholar PubMed

Received: 2021-07-21
Accepted: 2021-08-16
Published Online: 2021-08-31
Published in Print: 2021-12-20

© 2021 Christina Fischer et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. Redetermination of the crystal structure of 3-bromonitrobenzene at 200 K, C6H4BrNO2 – temperature effects on cell constants
  4. Crystal structure of (E)-ethyl 2-((4-oxo-4H-chromen-3-yl)methyleneaminooxy)acetate, C14H13NO5
  5. Crystal structure of (8R,10R,14R, Z)-2-((3–Fluoropyridin-4-yl) methylene)-12-hydroxy-4,4,8,10,14-pentamethyl-17-((R)-2,6, 6-trimethyltetrahydro-2H-pyran-2-yl) hexadecahydro-3H-cyclopenta[a] phenanthren-3-one, C36H52FNO3
  6. Crystal structure of [6,6′-((1E,1′E)-(propane-1,3- diylbis(azaneylylidene))bis(methaneylylidene)) bis(3-chlorophenol)-κ4N,N′,O,O′] copper(II), C17H14Cl2CuN2O2
  7. The crystal structure of 6-amino-2-carboxypyridin-1-ium bromide, C6H7BrN2O2
  8. Redetermination of the crystal structure of bis[N,N′-ethylenebis(acetylacetoniminato)nickel(II)] sodium perchlorate, C24H36ClN4NaNi2O8
  9. The crystal structure of 3-methyl-2,6-dinitrophenol, C7H6N2O5
  10. The crystal structure of 5-chloro-2-(quinolin-8-yl)isoindoline-1,3-dione, C17H9ClN2O2
  11. Crystal structure of trans-tetraaqua-bis{2-carboxy-4-((5-carboxypyridin-3-yl)oxy)benzoato-κ1 N}cobalt(II) dihydrate C28H28O20N2Co
  12. Crystal structure of 3-allyl-4-(2-bromoethyl)-5-(4-methoxyphenyl)-2-(p-tolyl)furan, C23H23BrO2
  13. The crystal structure of 6,6′-(((2-(dimethylamino)ethyl)azanediyl)bis(methylene))bis(benzo[d][1,3]dioxol-5-ol ato-κ4N,N′,O,O′)-(pyridine-2,6-dicarboxylato-N,O,O′)-titanium(IV)-dichloromethane(1/1), C27H25N3O10Ti
  14. Crystal structure of (((1E,1′E)-1,2-phenylenebis(methaneylylidene))bis(hydrazin-1-yl-2-ylidene))bis(aminomethaniminium) dinitrate C10H16N10O6
  15. Crystal structure of catena-poly[triaqua-(μ 2-1,3-di(1H-imidazol-1-yl)propane-κ 2 N:N′)-(4,4′-(1H-1,2,4-triazole-3,5-diyl)dibenzoato-κ 1 O)nickel(II)]N,N′-dimethylformamide (1/1), C28H35N8O8Ni
  16. The crystal structure of 3,3′-[1,4-phenylenebis(methylene)]bis(1-ethenyl-1H-imidazol-3-ium) dichloride – dichloromethane – water (1/1/1), C19H24Cl4N4O1
  17. Crystal structure of 1,1′-(methane-1,1-diyl)bis(3-propyl-1H-imidazol-3-ium) bis(hexafluoridophosphate), C13H22F12N4P2
  18. Crystal structure of dichlorido-bis(4-chlorophenyl-κC 1)tin(IV), C12H8Cl4Sn
  19. Synthesis and crystal structure of 4-acetylpyrene, C18H12O
  20. Crystal structure of 2,2′-(butane-1,4-diylbis(azanylylidene))bis(methanylylidene))bis(4-methoxyphenol), C20H24N2O4
  21. The crystal structure of (E)-2-(((5-((triphenylstannyl)thio)-1,3,4-thiadiazol-2-yl)imino)methyl)phenol, C27H21N3OS2Sn
  22. Crystal structure of diaqua-bis(μ2-6-phenylpyridine-2-carboxylate-κ3N,O:O)-bis(6-phenylpyridine-2-carboxylato-κ2N,O)lead(II) – N,N-dimethylformamide – water (1/2/4), C54H58N6O16Pb2
  23. Crystal structure of methyl 4-acetoxy-3-methoxybenzoate, C11H12O5
  24. Crystal structure of 2,2′-(propane-1,3-dilylbis(azaneylylidene))bis(methanylylidene)bis(4-methylphenol), C19H22N2O2
  25. Crystal structure of dichlorido-bis(4-methylphenyl-κC1)tin(IV), C14H14Cl2Sn
  26. Crystal structure of methyl (E)-3-(4-acetoxyphenyl)acrylate, C12H12O4
  27. The crystal structure of bis(benzoato-κ2 O,O′)-(2,9-dimethyl-1,10-phenanthroline-κ2 N,N′)-copper(II), C28H22CuN2O4
  28. Crystal structure of (8R,10R,14R,Z)-12-hydroxy-2-((6-methoxypyridin-2-yl)methylene)-4,4,8,10,14-pentamethyl-17-((R)-2,6,6-trimethyltetrahydro-2H-pyran-2-yl)hexadecahydro-3H-cyclopenta[a]phenanthren-3-one–water (2/1), C37H56NO4.5
  29. Crystal structure of dimethyl-bis(4-bromophenyl-κC1)tin(IV), C14H14Br2Sn
  30. The crystal structure of the cocrystal di-μ2-chlorido-octamethyl-di-μ3-oxido-bis(2,3,4,5-tetrafluorobenzoato-κ2 O,O′)tetratin(IV) ─ octamethyl-di-μ3-oxido-bis(μ2-2,3,4,5-tetrafluorobenzoato-κ2 O:O′)-bis(μ2-2,3,4,5-tetrafluorobenzoato-κ2 O:O;O′)tetratin(IV) C58H54Cl2F24O16Sn8
  31. Crystal structure of 3-iodo-N 2-(2-methyl-1-(methylsulfonyl)propan-2-yl)-N 1-(2-methyl-4-(perfluoropropan-2-yl)phenyl)phthalamide, C23H22F7I1N2O4S1
  32. Crystal structure of 1-(2-(4-bromophenyl)-2,3-dihydro-1H-benzo[e]indol-1-yl)-naphthalen-2-ol – dichloromethane – dimethyl sulfoxide (1/1/1), C28H18BrNO·CH2Cl2·C2H6SO
  33. Crystal structure of [meso-5,7,7,12,14,14,-hexamethyl-1,4,8,11-tetraazacyclotetradecane]nickel(II) diperchlorate – dimethylsulphoxide (1/2), C20H48Cl2N4NiO10S2
  34. Crystal structure of 1,1′-(1,3-phenylenebis(methylene))bis(pyridin-1-ium) bis(1,2-dicyanoethene-1,2-dithiolato-κ2 S:S) palladium(II), C26H18N6PdS4
  35. The crystal structure of bis(6-phenylpyridine-2-carboxylato-κ2 N,O)copper(II), C24H16N2O4Cu
  36. Crystal structure of dichlorido-bis(4-chlorophenyl-κC)-bis(triphenylarsine oxide-κO)tin(IV), C48H38As2Cl4O2Sn
  37. Crystal structure of (4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane-κ 8 N 2, O 6) potassium cyclopentadienide, [K([2.2.2]crypt)]Cp, C23H41KN2O6
  38. The crystal structure of bis(2-oxidopyridin-1-ium-3-carboxylato-κ2O,O′)-(phenantroline-κ2N,N′)manganese(II) - methanol (1/3), C27H28N4O9Mn
  39. Crystal structure of 4-(dimethylamino)pyridinium dibromido-tris(4-chlorophenyl-κC)stannate(IV), C25H23Br2Cl3N2Sn
  40. Crystal structure of (3E,5E)-1-(4-cyanobenzenesulfonyl)-3,5-bis(3-fluorobenzylidene)piperidin-4-one-dichloromethane (1/1), C27H20Cl2F2N2O3S
  41. Crystal structure of (3E,5E)-3,5-bis(4-fluorobenzylidene)-1-((4-trifluoromethyl)benzenesulfonyl)piperidin-4-one, C26H18F5NO3S
  42. Crystal structure of chlorido-(4-methyl-2-((phenylimino)methyl)phenolato-κ2 N,O)-(pyridine-κ1 N)platinum(II), C19H17ClN2OPt
  43. Crystal structure of (4-methylbenzyl)(triphenyl)phosphonium chloride dihydrate, C26H28ClO2P
  44. The crystal structure of poly[μ2-chlorido-(μ2-1,2-bis(4-pyridyl)ethane-κ2N:N′silver(I)], C12H12AgClN2
  45. Crystal structure of poly[(μ4-benzene-1,2,4,5-tetracarboxylato)-bis(μ2-adipohydrazide)dicadmium], C11H15N4O6Cd
  46. The crystal structure of (E)-N′-(butan-2-ylidene)isonicotinohydrazide 0.5 hydrate C10H13N3O·0.5H2O
  47. The crystal structure of bis(6-phenylpyridine-2-carboxylate-κ2 N,O)-(2,2′-bipyridine-κ2 N,N′)zinc(II) monohydrate, C34H26N4O5Zn
  48. The crystal structure of (1R *,2S *)-1,2-bis(2-fluorophenyl)-3,8-dimethoxyacenaphthene-1,2-diol, C26H20F2O4
  49. Crystal structure of catena-poly[(μ2-1-((2-ethyl-4-methyl-1H-imidazol-1-yl)methyl)-1H-benzotriazole-κ2N:N′)-(nitrato-κ2O,O′)silver (I)], C13H15Ag1N6O3
  50. The crystal structure of [(phenantroline-κ2 N,N′)-bis(6-phenylpyridine-2-carboxylate-κ2 N,O)cobalt(II)]monohydrate, C36H26N4O5Co
  51. Crystal structure of (1E)-N-[(1E)-1-(4-chlorophenyl)ethylidene]-2-[1-(4-chlorophenyl)ethylidene]hydrazine-1-carbohydrazonamide, C 17 H 17 Cl 2 N 5
  52. The crystal structure of (E)-2-((tert-butylimino)methyl)-4-chlorophenol, C11H14ClNO
  53. Crystal structure of all-cis-2,4,6-trihydroxycyclohexane- 1,3,5-triaminium chloride sulfate, C6H18ClN3O7S
  54. Crystal structure of dichlorido-bis(dimethyl sulfoxide-κO)bis(4-methylphenyl-κC 1)tin(IV), C18H26Cl2O2S2Sn
  55. Crystal structure of dichlorido-bis(4-chlorophenyl-κC 1)(2,2′-bipyridyl-κ 2 N,N′)tin(IV), C22H16Cl4N2Sn
  56. Redetermination of the crystal structure of (E)-5-bromo-2-hydroxybenzaldehyde oxime, C 7 H 6 BrNO 2
  57. The crystal structure of (E)-amino(2-(4-methylbenzylidene)hydrazineyl)methaniminium 4-methylbenzoate, C9H13N4 + C8H7O2
  58. Crystal structure of 2-chloro-3-(isopentylamino)naphthalene-1,4-dione, C 15 H 16 ClNO 2
  59. The crystal structure of bis(2-acetyl-5-methoxyphenyl)carbonate 1.5 hydrate, C19H18O7
  60. The crystal structure of poly[(μ 4-4,4′-(azanediylbis(methylene))dibenzoato-κ 4 O:N:O′:Oʺ)zinc(II)], C16H13NO4Zn
  61. The crystal structure of catena-poly[(1,10-phenanthroline-k2N,N′)-(μ3-tetraoxidomoybdato(VI)-k3O:O′:O″)manganese(II)] C12H8N2O4MoMn
  62. Crystal structure of catena-poly[(4-hydroxyl-5-(methoylcarbonyl)thiophene-2-carboxylato-κ1 O)-(μ2-piperazine-1,4-diylbis(pyridin-4-ylmethanone)-κ2 N:N′)silver(I)] monohydrate, C23H23AgN4O8S
  63. Crystal structure of bis(4-bromo-2-(((3-bromopropyl)imino)methyl)phenolato-κ2N,O)-oxido-vanadium(IV), C20H20Br4N2O3V
  64. The crystal structure of (2a′S,2a1′S,3R,5a′S,7′R)-5-(furan-3-yl)-2a′,2a1′-dihydroxy-7′-methyldecahydro-2H-spiro[furan-3,6′-naphtho[1,8-bc]furan]-2,2′(2a′H)-dione, C19H22O7
  65. The crystal structure of 3-bromopicolinic acid, C6H4BrNO2
  66. Crystal structure of 1,1′-(1,4-phenylenebis(methylene))bis(pyridin-1-ium) bis(1,2-dicyanoethene-1,2-dithiolato-κ2 S,S) platinum(II), C26H18N6PtS4
  67. Synthesis and crystal structure of 5-(8-((3-carboxyazetidin-1-ium-1-yl)methyl)-7-hydroxy-4-oxo-4H-chromen-3-yl)-2-hydroxybenzenesulfonate monohydrate, C20H19NO10S
  68. The crystal structure of 3-amino-5-carboxypyridin-1-ium bromide, C6H7BrN2O2
  69. The crystal structure of (2-hydroxy-5-methyl-phenyl)-(1H-pyrazol-4-yl)-methanone hemihydrate, C11H10.5N2O2.5
  70. Crystal structure of tetraaqua-(2-(4-formylphenoxy)acetato-k1O)cadmium(II), C18H22O12Cd
  71. Crystal structure of diethyl 6,12-dimethyl-3,9-di-p-tolyl-3,9-diazapentacyclo[6.4.0.02,7.04,11.05,10]dodecane-1,5-dicarboxylate, C32H38N2O4
  72. Crystal structure of (E)-N′-(1-(3-chloro-4-fluorophenyl)ethylidene)-4-hydroxy – tetrahydrofuran (2/1), C17H16ClFN2O2.5
Downloaded on 17.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2021-0296/html
Scroll to top button