Home The crystal structure of catena-poly[(1,10-phenanthroline-k2N,N′)-(μ3-tetraoxidomoybdato(VI)-k3O:O′:O″)manganese(II)] C12H8N2O4MoMn
Article Open Access

The crystal structure of catena-poly[(1,10-phenanthroline-k2N,N′)-(μ3-tetraoxidomoybdato(VI)-k3O:O′:O″)manganese(II)] C12H8N2O4MoMn

  • Qiu Ze-Hai , Zhang Zhu-Sen and Chen Wu-Hua ORCID logo EMAIL logo
Published/Copyright: October 28, 2021

Abstract

C12H8N2O4MoMn, monoclinic, P21/m (no. 11), a = 8.9812(5) Å, b = 6.5212(3) Å, c = 10.6167(6) Å, β = 100.120(6)°, V = 612.13(6) Å3, Z = 2, R gt (F) = 0.0391, wRref(F2) = 0.0783, T = 293(2) K.

CCDC no.: 2115375

A part of the polymeric title crystal structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Yellow cube
Size: 0.40 × 0.31 × 0.22 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 2.07 mm−1
Diffractometer, scan mode: New Xcalibur, ω
θmax, completeness: 29.3°, 99%
N(hkl)measured, N(hkl)unique, Rint: 2729, 1520, 0.029
Criterion for Iobs, N(hkl)gt: Iobs > 2 σ(Iobs), 1342
N(param)refined: 118
Programs: CrysAlisPRO , Olex2 [1], SHELX [2, 3]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z Uiso*/Ueq
Mn1 0.19766 (9) 0.7500 0.16874 (8) 0.0209 (2)
Mo1 −0.00443 (5) 0.2500 0.17991 (4) 0.01716 (14)
C1 0.4663 (7) 0.7500 0.0065 (6) 0.0307 (14)
H1 0.3891 0.7500 −0.0646 0.037*
C2 0.6170 (8) 0.7500 −0.0123 (6) 0.0371 (16)
H2 0.6377 0.7500 −0.0952 0.044*
C3 0.7336 (8) 0.7500 0.0888 (6) 0.0356 (15)
H3 0.8334 0.7500 0.0760 0.043*
C4 0.6992 (6) 0.7500 0.2142 (6) 0.0266 (13)
C5 0.8112 (7) 0.7500 0.3289 (6) 0.0365 (16)
H5 0.9129 0.7500 0.3217 0.044*
C6 0.7752 (7) 0.7500 0.4441 (6) 0.0332 (15)
H6 0.8513 0.7500 0.5159 0.040*
C7 0.6176 (6) 0.7500 0.4599 (6) 0.0228 (12)
C8 0.5726 (7) 0.7500 0.5803 (6) 0.0249 (12)
H8 0.6447 0.7500 0.6548 0.030*
C9 0.4236 (7) 0.7500 0.5868 (6) 0.0302 (14)
H9 0.3922 0.7500 0.6657 0.036*
C10 0.3172 (7) 0.7500 0.4731 (6) 0.0269 (13)
H10 0.2150 0.7500 0.4788 0.032*
C11 0.5042 (6) 0.7500 0.3515 (5) 0.0202 (11)
C12 0.5446 (6) 0.7500 0.2258 (5) 0.0202 (11)
N1 0.4303 (5) 0.7500 0.1223 (4) 0.0226 (10)
N2 0.3546 (5) 0.7500 0.3588 (5) 0.0212 (10)
O1 0.1094 (3) 0.4728 (4) 0.2096 (3) 0.0303 (5)
O2 −0.1344 (6) 0.2500 0.2788 (5) 0.0580 (16)
O3 −0.1010 (6) 0.2500 0.0217 (4) 0.0483 (13)

Source of material

A mixture containing MnSO4·4H2O (0.480 g), 1,10-phenan-throline monohydrate (0.460 g), (NH4)2MoO4·4H2O (0.740 g), and deionized water (H2O) (15.0 mL), with pH value 7.5, was prepared by mixing these components and sealed in a 25 mL Teflon-lined stainless steel autoclave (70% of the total volume of the autoclave). Then, the resulting slurry was heated to 463 K in an oven and kept at the temperature for a week. Then dark yellow purity-phase crystals of the title compound (about 45% yield based on Mn) were obtained.

Experimental details

The hydrogen atoms were placed at calculated positions with the SHELX program.

Comment

Manganese complexes have been attracting attention for a long time due to the intriguing structures, deriving from its multi-form of oxidation states and multi-coordination modes [4, 5], and the outstanding physicochemical properties, including optical, electric, magnetic, and catalytic performances [68]. Therefore, the preparation of a new manganese compound has become an important research orientation [911]. The hydrothermal synthesis is known as one of the most efficient methods to obtain new manganese-organic compounds [12, 13]. Nevertheless, the synthetic features of “black box” and “one-pot” lead to the preparation processes being hardly controlled. Some subtle factors, including temperature, pH-value, solvent, ratio of reactants, structure direct-agent, counterion, and so on, will greatly affect reaction processes and experimental results [14]. Based on our previous work, on [Mn(phen)(H2O)MoO4·H2O] n (phen = 1′10-phenanthroline) [15], we obtained the analogous title compound [Mn(phen)MoO4] n , by virtue of somewhat changing the hydrothermal synthesis conditions. By constrast, the requirement of the title compound is under conditions of higher temperature and pH-value of reaction, without CH3COOH (aqueous solution) as pH-value conditioning agent.

Outwardly, the title compound shows the deeper color (yellow) than [Mn(phen)(H2O)MoO4·H2O] n . The single-crystal X-ray diffraction structure analyses indicate that the title compound shows the same one-dimensional configuration. The asymmetric unit contains one half of the emirical formula (Table 2). The [Mn(phen)]2+ moieties are connected by molybdates, MoO 4 2 . By contrast, the chemical composition of title compound has one crystal water molecule and one coordination water molecule less than [Mn(phen)(H2O)MoO4·H2O] n . Meanwhile, Mn-organic coordination ions [Mn(phen)]2+,and molybdates, MoO 4 2 , in title compound shows a zigzag arrangement, instead of straight line arrangement, in [Mn(phen)(H2O)MoO4·H2O] n . In [Mn(phen)]2+, the five-coordinated Mn2+ shows bond lengths of 2.230(5) and 2.249(5) Å for Mn–N, bond lengths of 2.051(3) and 2.055(4) Å for Mn–O b . The O/N–Mn–O/N bond angles are within the normal range of 74.60(17)–166.5(2)°. The four-coordinated Mo atom show bond distances of 1.750(4) and 1.773(3) Å for two-bridging oxygen atoms (Mo–O b ) and the bond distance of 1.701(4) Å for terminal oxygen atoms (Mo–O t ). The O–Mo–O bond angles are in the range of 108.3(3)–110.11(13)°. Bond valence sum calculations on the Mo and Mn sites afford values of 6.1 and 2.2.


Corresponding author: Chen Wu-Hua, College of Chemistry and Material Science, Fujian Provincial Colleges and University Engineering Research Center of Solid Waste Resource Utilization (Longyan University), Longyan University, Longyan 364012, Fujian Province, People’s Republic of China, E-mail:

Funding source: Natural Science Foundation of Fujian Province http://dx.doi.org/10.13039/501100003392

Award Identifier / Grant number: 2020J01367

Funding source: Qimai Science and Technology Innovation Foundation of Shanghang County

Award Identifier / Grant number: 2017SHQM02

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The work was supported by the Natural Science Foundation of Fujian Province (No. 2020J01367) and the Qimai Science and Technology Innovation Foundation of Shanghang County (No. 2017SHQM02).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

2. Sheldrick, G. M. SHELXTL – integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Search in Google Scholar PubMed PubMed Central

3. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

4. Meng, Q. G., Dai, F. N., Zhang, L. L., Wang, R. M., Sun, D. F. Synthesis, structure, and magnetism of three manganese-organic framework with PtS topology. Sci. China Chem. 2014, 57, 1507–1513; https://doi.org/10.1007/s11426-014-5153-4.Search in Google Scholar

5. Yin, J., Zhang, F.-J., Tai, X.-S. The crystal of catena-tetraaqua-bis(4-acetyphenoxyacetato-κ1O) manganese(II), C20H26O12Mn. Z. Kristallogr. N. Cryst. Struct. 2021, 236, 45–46.10.1515/ncrs-2020-0467Search in Google Scholar

6. Fu, Z., Yi, J., Chen, Y., Liao, S., Guo, N., Dai, J., Yang, G., Lian, Y., Wu, X. From interwoven to noninterpenetration: crystal structural motifs of two new manganese-organic frameworks mediated by the substituted group of the bridging ligand. Eur. J. Inorg. Chem. 2008, 4, 628–634; https://doi.org/10.1002/ejic.200700818.Search in Google Scholar

7. Sun, Z.-B., Si, Y.-N., Zhao, S.-N., Wang, Q.-Y., Zang, S.-Q. Ozone decomposition by a manganese-organic framework over the entire humidity range. J. Am. Chem. Soc. 2021, 143, 5150–5157; https://doi.org/10.1021/jacs.1c01027.Search in Google Scholar PubMed

8. Li, Y., Ma, D., Chen, C., Chen, M., Li, Z., Wu, Y., Zhu, S., Peng, G. A hydrostable and bromine-functionalized manganese-organic framework with luminescence sensing of Hg2+ and antiferromagnetic properties. J. Solid State Chem. 2019, 269, 257–263; https://doi.org/10.1016/j.jssc.2018.09.034.Search in Google Scholar

9. Tao, P., Liu, S.-J., Wong, W.-Y. Phosphorescent manganese(II) complexes and their emerging applications. Adv. Opt. Mater. 2020, 8, 2000985; https://doi.org/10.1002/adom.202000985.Search in Google Scholar

10. Ali, B., lqbal, M. A. Coordination complexes of manganese and their biomedical applications. ChemistrySelect 2017, 2, 1586–1604; https://doi.org/10.1002/slct.201601909.Search in Google Scholar

11. Mukherjee, A., Milstein, D. Homogenous catalysis by cobalt and manganese pincer complexes. ACS Catal. 2018, 8, 11435–11469; https://doi.org/10.1021/acscatal.8b02869.Search in Google Scholar

12. Qin, Y., She, P., Huang, X., Huang, W., Zhao, Q. Luminescent manganese(II) complexes: synthesis, properties and optoelectronic applications. Coord. Chem. Rev. 2020, 416, 213331; https://doi.org/10.1016/j.ccr.2020.213331.Search in Google Scholar

13. Ali, B., Shakir, M. R., Iqbal, M. A. Techniques in the synthesis of mononuclear manganese complexes: a review. Rev. Inorg. Chem. 2017, 37, 105–130; https://doi.org/10.1515/revic-2017-0004.Search in Google Scholar

14. Chen, W.-H., Zhang, Z.-S., Zhao, J.-H., Qiu, Z.-H., Yuan, Q.-L., Huang, T.-F., Lin, X.-Y., Hu, Z.-B. A little adjustment of synthetic strategy led to a new highly repeated heteropolyblue: structure, characterizations and photocatalytic properties. J. Mol. Struct. 2017, 1138, 192–197; https://doi.org/10.1016/j.molstruc.2017.02.087.Search in Google Scholar

15. Chen, W.-H., Zhou, J., Wang, Y.-F. Redetermination of the crystal structure of catena-poly[aqua-(1,10-phenanthroline-κ2N,N′)-(μ2-tetraoxidomolybdato(VI)-κ2O:O′) manganese(II) monohydrate, C12H12N2O6MoMn. Z. Kristallogr. N. Cryst. Struct. 2020, 235, 865–866.10.1515/ncrs-2020-0065Search in Google Scholar

Received: 2021-08-20
Accepted: 2021-10-14
Published Online: 2021-10-28
Published in Print: 2021-12-20

© 2021 Qiu Ze-Hai et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. Redetermination of the crystal structure of 3-bromonitrobenzene at 200 K, C6H4BrNO2 – temperature effects on cell constants
  4. Crystal structure of (E)-ethyl 2-((4-oxo-4H-chromen-3-yl)methyleneaminooxy)acetate, C14H13NO5
  5. Crystal structure of (8R,10R,14R, Z)-2-((3–Fluoropyridin-4-yl) methylene)-12-hydroxy-4,4,8,10,14-pentamethyl-17-((R)-2,6, 6-trimethyltetrahydro-2H-pyran-2-yl) hexadecahydro-3H-cyclopenta[a] phenanthren-3-one, C36H52FNO3
  6. Crystal structure of [6,6′-((1E,1′E)-(propane-1,3- diylbis(azaneylylidene))bis(methaneylylidene)) bis(3-chlorophenol)-κ4N,N′,O,O′] copper(II), C17H14Cl2CuN2O2
  7. The crystal structure of 6-amino-2-carboxypyridin-1-ium bromide, C6H7BrN2O2
  8. Redetermination of the crystal structure of bis[N,N′-ethylenebis(acetylacetoniminato)nickel(II)] sodium perchlorate, C24H36ClN4NaNi2O8
  9. The crystal structure of 3-methyl-2,6-dinitrophenol, C7H6N2O5
  10. The crystal structure of 5-chloro-2-(quinolin-8-yl)isoindoline-1,3-dione, C17H9ClN2O2
  11. Crystal structure of trans-tetraaqua-bis{2-carboxy-4-((5-carboxypyridin-3-yl)oxy)benzoato-κ1 N}cobalt(II) dihydrate C28H28O20N2Co
  12. Crystal structure of 3-allyl-4-(2-bromoethyl)-5-(4-methoxyphenyl)-2-(p-tolyl)furan, C23H23BrO2
  13. The crystal structure of 6,6′-(((2-(dimethylamino)ethyl)azanediyl)bis(methylene))bis(benzo[d][1,3]dioxol-5-ol ato-κ4N,N′,O,O′)-(pyridine-2,6-dicarboxylato-N,O,O′)-titanium(IV)-dichloromethane(1/1), C27H25N3O10Ti
  14. Crystal structure of (((1E,1′E)-1,2-phenylenebis(methaneylylidene))bis(hydrazin-1-yl-2-ylidene))bis(aminomethaniminium) dinitrate C10H16N10O6
  15. Crystal structure of catena-poly[triaqua-(μ 2-1,3-di(1H-imidazol-1-yl)propane-κ 2 N:N′)-(4,4′-(1H-1,2,4-triazole-3,5-diyl)dibenzoato-κ 1 O)nickel(II)]N,N′-dimethylformamide (1/1), C28H35N8O8Ni
  16. The crystal structure of 3,3′-[1,4-phenylenebis(methylene)]bis(1-ethenyl-1H-imidazol-3-ium) dichloride – dichloromethane – water (1/1/1), C19H24Cl4N4O1
  17. Crystal structure of 1,1′-(methane-1,1-diyl)bis(3-propyl-1H-imidazol-3-ium) bis(hexafluoridophosphate), C13H22F12N4P2
  18. Crystal structure of dichlorido-bis(4-chlorophenyl-κC 1)tin(IV), C12H8Cl4Sn
  19. Synthesis and crystal structure of 4-acetylpyrene, C18H12O
  20. Crystal structure of 2,2′-(butane-1,4-diylbis(azanylylidene))bis(methanylylidene))bis(4-methoxyphenol), C20H24N2O4
  21. The crystal structure of (E)-2-(((5-((triphenylstannyl)thio)-1,3,4-thiadiazol-2-yl)imino)methyl)phenol, C27H21N3OS2Sn
  22. Crystal structure of diaqua-bis(μ2-6-phenylpyridine-2-carboxylate-κ3N,O:O)-bis(6-phenylpyridine-2-carboxylato-κ2N,O)lead(II) – N,N-dimethylformamide – water (1/2/4), C54H58N6O16Pb2
  23. Crystal structure of methyl 4-acetoxy-3-methoxybenzoate, C11H12O5
  24. Crystal structure of 2,2′-(propane-1,3-dilylbis(azaneylylidene))bis(methanylylidene)bis(4-methylphenol), C19H22N2O2
  25. Crystal structure of dichlorido-bis(4-methylphenyl-κC1)tin(IV), C14H14Cl2Sn
  26. Crystal structure of methyl (E)-3-(4-acetoxyphenyl)acrylate, C12H12O4
  27. The crystal structure of bis(benzoato-κ2 O,O′)-(2,9-dimethyl-1,10-phenanthroline-κ2 N,N′)-copper(II), C28H22CuN2O4
  28. Crystal structure of (8R,10R,14R,Z)-12-hydroxy-2-((6-methoxypyridin-2-yl)methylene)-4,4,8,10,14-pentamethyl-17-((R)-2,6,6-trimethyltetrahydro-2H-pyran-2-yl)hexadecahydro-3H-cyclopenta[a]phenanthren-3-one–water (2/1), C37H56NO4.5
  29. Crystal structure of dimethyl-bis(4-bromophenyl-κC1)tin(IV), C14H14Br2Sn
  30. The crystal structure of the cocrystal di-μ2-chlorido-octamethyl-di-μ3-oxido-bis(2,3,4,5-tetrafluorobenzoato-κ2 O,O′)tetratin(IV) ─ octamethyl-di-μ3-oxido-bis(μ2-2,3,4,5-tetrafluorobenzoato-κ2 O:O′)-bis(μ2-2,3,4,5-tetrafluorobenzoato-κ2 O:O;O′)tetratin(IV) C58H54Cl2F24O16Sn8
  31. Crystal structure of 3-iodo-N 2-(2-methyl-1-(methylsulfonyl)propan-2-yl)-N 1-(2-methyl-4-(perfluoropropan-2-yl)phenyl)phthalamide, C23H22F7I1N2O4S1
  32. Crystal structure of 1-(2-(4-bromophenyl)-2,3-dihydro-1H-benzo[e]indol-1-yl)-naphthalen-2-ol – dichloromethane – dimethyl sulfoxide (1/1/1), C28H18BrNO·CH2Cl2·C2H6SO
  33. Crystal structure of [meso-5,7,7,12,14,14,-hexamethyl-1,4,8,11-tetraazacyclotetradecane]nickel(II) diperchlorate – dimethylsulphoxide (1/2), C20H48Cl2N4NiO10S2
  34. Crystal structure of 1,1′-(1,3-phenylenebis(methylene))bis(pyridin-1-ium) bis(1,2-dicyanoethene-1,2-dithiolato-κ2 S:S) palladium(II), C26H18N6PdS4
  35. The crystal structure of bis(6-phenylpyridine-2-carboxylato-κ2 N,O)copper(II), C24H16N2O4Cu
  36. Crystal structure of dichlorido-bis(4-chlorophenyl-κC)-bis(triphenylarsine oxide-κO)tin(IV), C48H38As2Cl4O2Sn
  37. Crystal structure of (4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane-κ 8 N 2, O 6) potassium cyclopentadienide, [K([2.2.2]crypt)]Cp, C23H41KN2O6
  38. The crystal structure of bis(2-oxidopyridin-1-ium-3-carboxylato-κ2O,O′)-(phenantroline-κ2N,N′)manganese(II) - methanol (1/3), C27H28N4O9Mn
  39. Crystal structure of 4-(dimethylamino)pyridinium dibromido-tris(4-chlorophenyl-κC)stannate(IV), C25H23Br2Cl3N2Sn
  40. Crystal structure of (3E,5E)-1-(4-cyanobenzenesulfonyl)-3,5-bis(3-fluorobenzylidene)piperidin-4-one-dichloromethane (1/1), C27H20Cl2F2N2O3S
  41. Crystal structure of (3E,5E)-3,5-bis(4-fluorobenzylidene)-1-((4-trifluoromethyl)benzenesulfonyl)piperidin-4-one, C26H18F5NO3S
  42. Crystal structure of chlorido-(4-methyl-2-((phenylimino)methyl)phenolato-κ2 N,O)-(pyridine-κ1 N)platinum(II), C19H17ClN2OPt
  43. Crystal structure of (4-methylbenzyl)(triphenyl)phosphonium chloride dihydrate, C26H28ClO2P
  44. The crystal structure of poly[μ2-chlorido-(μ2-1,2-bis(4-pyridyl)ethane-κ2N:N′silver(I)], C12H12AgClN2
  45. Crystal structure of poly[(μ4-benzene-1,2,4,5-tetracarboxylato)-bis(μ2-adipohydrazide)dicadmium], C11H15N4O6Cd
  46. The crystal structure of (E)-N′-(butan-2-ylidene)isonicotinohydrazide 0.5 hydrate C10H13N3O·0.5H2O
  47. The crystal structure of bis(6-phenylpyridine-2-carboxylate-κ2 N,O)-(2,2′-bipyridine-κ2 N,N′)zinc(II) monohydrate, C34H26N4O5Zn
  48. The crystal structure of (1R *,2S *)-1,2-bis(2-fluorophenyl)-3,8-dimethoxyacenaphthene-1,2-diol, C26H20F2O4
  49. Crystal structure of catena-poly[(μ2-1-((2-ethyl-4-methyl-1H-imidazol-1-yl)methyl)-1H-benzotriazole-κ2N:N′)-(nitrato-κ2O,O′)silver (I)], C13H15Ag1N6O3
  50. The crystal structure of [(phenantroline-κ2 N,N′)-bis(6-phenylpyridine-2-carboxylate-κ2 N,O)cobalt(II)]monohydrate, C36H26N4O5Co
  51. Crystal structure of (1E)-N-[(1E)-1-(4-chlorophenyl)ethylidene]-2-[1-(4-chlorophenyl)ethylidene]hydrazine-1-carbohydrazonamide, C 17 H 17 Cl 2 N 5
  52. The crystal structure of (E)-2-((tert-butylimino)methyl)-4-chlorophenol, C11H14ClNO
  53. Crystal structure of all-cis-2,4,6-trihydroxycyclohexane- 1,3,5-triaminium chloride sulfate, C6H18ClN3O7S
  54. Crystal structure of dichlorido-bis(dimethyl sulfoxide-κO)bis(4-methylphenyl-κC 1)tin(IV), C18H26Cl2O2S2Sn
  55. Crystal structure of dichlorido-bis(4-chlorophenyl-κC 1)(2,2′-bipyridyl-κ 2 N,N′)tin(IV), C22H16Cl4N2Sn
  56. Redetermination of the crystal structure of (E)-5-bromo-2-hydroxybenzaldehyde oxime, C 7 H 6 BrNO 2
  57. The crystal structure of (E)-amino(2-(4-methylbenzylidene)hydrazineyl)methaniminium 4-methylbenzoate, C9H13N4 + C8H7O2
  58. Crystal structure of 2-chloro-3-(isopentylamino)naphthalene-1,4-dione, C 15 H 16 ClNO 2
  59. The crystal structure of bis(2-acetyl-5-methoxyphenyl)carbonate 1.5 hydrate, C19H18O7
  60. The crystal structure of poly[(μ 4-4,4′-(azanediylbis(methylene))dibenzoato-κ 4 O:N:O′:Oʺ)zinc(II)], C16H13NO4Zn
  61. The crystal structure of catena-poly[(1,10-phenanthroline-k2N,N′)-(μ3-tetraoxidomoybdato(VI)-k3O:O′:O″)manganese(II)] C12H8N2O4MoMn
  62. Crystal structure of catena-poly[(4-hydroxyl-5-(methoylcarbonyl)thiophene-2-carboxylato-κ1 O)-(μ2-piperazine-1,4-diylbis(pyridin-4-ylmethanone)-κ2 N:N′)silver(I)] monohydrate, C23H23AgN4O8S
  63. Crystal structure of bis(4-bromo-2-(((3-bromopropyl)imino)methyl)phenolato-κ2N,O)-oxido-vanadium(IV), C20H20Br4N2O3V
  64. The crystal structure of (2a′S,2a1′S,3R,5a′S,7′R)-5-(furan-3-yl)-2a′,2a1′-dihydroxy-7′-methyldecahydro-2H-spiro[furan-3,6′-naphtho[1,8-bc]furan]-2,2′(2a′H)-dione, C19H22O7
  65. The crystal structure of 3-bromopicolinic acid, C6H4BrNO2
  66. Crystal structure of 1,1′-(1,4-phenylenebis(methylene))bis(pyridin-1-ium) bis(1,2-dicyanoethene-1,2-dithiolato-κ2 S,S) platinum(II), C26H18N6PtS4
  67. Synthesis and crystal structure of 5-(8-((3-carboxyazetidin-1-ium-1-yl)methyl)-7-hydroxy-4-oxo-4H-chromen-3-yl)-2-hydroxybenzenesulfonate monohydrate, C20H19NO10S
  68. The crystal structure of 3-amino-5-carboxypyridin-1-ium bromide, C6H7BrN2O2
  69. The crystal structure of (2-hydroxy-5-methyl-phenyl)-(1H-pyrazol-4-yl)-methanone hemihydrate, C11H10.5N2O2.5
  70. Crystal structure of tetraaqua-(2-(4-formylphenoxy)acetato-k1O)cadmium(II), C18H22O12Cd
  71. Crystal structure of diethyl 6,12-dimethyl-3,9-di-p-tolyl-3,9-diazapentacyclo[6.4.0.02,7.04,11.05,10]dodecane-1,5-dicarboxylate, C32H38N2O4
  72. Crystal structure of (E)-N′-(1-(3-chloro-4-fluorophenyl)ethylidene)-4-hydroxy – tetrahydrofuran (2/1), C17H16ClFN2O2.5
Downloaded on 16.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2021-0338/html
Scroll to top button