Home Redetermination of the crystal structure of bis[N,N′-ethylenebis(acetylacetoniminato)nickel(II)] sodium perchlorate, C24H36ClN4NaNi2O8
Article Open Access

Redetermination of the crystal structure of bis[N,N′-ethylenebis(acetylacetoniminato)nickel(II)] sodium perchlorate, C24H36ClN4NaNi2O8

  • Lucky Dey , Saswata Rabi , Zinnat A. Begum ORCID logo , Tsugiko Takase , Ismail M.M. Rahman ORCID logo , Edward R.T. Tiekink EMAIL logo and Tapashi Ghosh Roy
Published/Copyright: August 9, 2021

Abstract

C24H36ClN4NaNi2O8, monoclinic, C2/c (no. 15), a = 19.5909(11) Å, b = 10.8023(6) Å, c = 14.5722(8) Å, β = 112.032(1)°, V = 2858.7(3) Å3, Z = 4, R gt (F) = 0.0260, wR ref (F 2) = 0.0701, T = 93(2) K.

CCDC no.: 2098373

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Red block
Size: 0.20 × 0.20 × 0.20 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 1.48 mm−1
Diffractometer, scan mode: Rigaku Saturn724, ω
θ max, completeness: 27.5°, >99%
N(hkl)measured, N(hkl)unique, R int: 14,344, 3261, 0.033
Criterion for I obs, N(hkl)gt: I obs > 2 σ(I obs), 3129
N(param)refined: 186
Programs: REQAB [1], CrystalClear [2], SHELX [34], WinGX/ORTEP [5]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
Ni 0.67462 (2) 0.65612 (2) 0.82671 (2) 0.01590 (8)
O1 0.60788 (5) 0.72456 (9) 0.71032 (7) 0.0207 (2)
O2 0.58999 (5) 0.59640 (9) 0.83993 (7) 0.0207 (2)
N1 0.75757 (6) 0.71569 (10) 0.80915 (9) 0.0194 (2)
N2 0.73819 (6) 0.58926 (10) 0.94563 (8) 0.0184 (2)
C1 0.62408 (8) 0.79199 (13) 0.64739 (10) 0.0202 (3)
C2 0.69423 (8) 0.82287 (13) 0.65729 (11) 0.0239 (3)
H2 0.699881 0.874073 0.607606 0.029*
C3 0.75898 (8) 0.78446 (13) 0.73576 (11) 0.0219 (3)
C4 0.82698 (8) 0.66642 (14) 0.88110 (12) 0.0252 (3)
H4A 0.866150 0.729908 0.896655 0.030*
H4B 0.842624 0.593109 0.853181 0.030*
C5 0.81466 (7) 0.63091 (14) 0.97357 (11) 0.0215 (3)
H5A 0.848873 0.563636 1.008442 0.026*
H5B 0.824057 0.702938 1.018655 0.026*
C6 0.72007 (8) 0.52347 (13) 1.00862 (10) 0.0208 (3)
C7 0.64664 (8) 0.48441 (14) 0.98815 (11) 0.0238 (3)
H7 0.638224 0.430687 1.034448 0.029*
C8 0.58714 (8) 0.51861 (13) 0.90652 (10) 0.0212 (3)
C9 0.55915 (9) 0.83626 (14) 0.55946 (12) 0.0277 (3)
H9A 0.520992 0.772111 0.539704 0.042*
H9B 0.574860 0.853528 0.504330 0.042*
H9C 0.539327 0.911954 0.577096 0.042*
C10 0.83117 (9) 0.82580 (15) 0.73190 (14) 0.0325 (4)
H10A 0.855965 0.881642 0.787464 0.049*
H10B 0.822188 0.869280 0.669411 0.049*
H10C 0.862402 0.753415 0.736296 0.049*
C11 0.77744 (8) 0.48404 (15) 1.10601 (11) 0.0289 (3)
H11A 0.810566 0.423580 1.094259 0.043*
H11B 0.753314 0.446412 1.147139 0.043*
H11C 0.805829 0.556444 1.140091 0.043*
C12 0.51235 (8) 0.46434 (16) 0.88615 (12) 0.0301 (3)
H12A 0.475258 0.530180 0.865340 0.045*
H12B 0.511615 0.425025 0.946377 0.045*
H12C 0.501329 0.402391 0.833417 0.045*
Na1 0.500000 0.73770 (7) 0.750000 0.02234 (17)
Cl1 0.500000 1.02255 (5) 0.750000 0.02701 (12)
O3 0.54812 (6) 0.94232 (12) 0.82627 (9) 0.0382 (3)
O4 0.54217 (9) 1.09586 (15) 0.70970 (12) 0.0587 (4)

Source of material

Preparation of 5,7,12,14-tetramethyl-1,4,8,11-tetraazacyclotetradeca-4,6,11,13-tetraene (LH2): Ethylenediamine (6.7 mL, 0.1 mmol) was added to acetylacetone (10.29 mL, 0.1 mmol) in methanol (50 mL) taken in a 100 mL volumetric flask. The solution was stirred on a magnetic stirrer while 70% perchloric acid (8.9 mL, 0.1 mmol) was added slowly from a dropping funnel. The temperature of the reaction mixture was maintained at 333–338 K, at which stage the solution turned yellow. The resulting mixture was refluxed for 15 h. The reaction mixture was then allowed to stand for 2–3 days at room temperature, after which the solid product was filtered off, washed with methanol and finally with diethyl ether. The white crystalline product, LH2, was dried in vacuo.

Preparation of nickel(II) complex of L: Nickel acetate tetrahydrate (0.25 g, 1.0 mmol) and LH2 (0.449 g, 1.0 mmol) were dissolved separately in 30 mL hot methanol and mixed. After heating on a water bath for a few minutes, the solution immediately turned brown. The solution was then heated for 30 min to reduce the volume to 20 mL. Sodium perchlorate (0.368 g, 3.0 mmol) was added to the cooled solution. After standing overnight, a deep-brown precipitate, anticipated to be [NiL](ClO4)2, was separated by filtration, washed with methanol followed by diethyl ether and stored in a vacuum desiccator.

Preparation of crystals: Crystals were grown by the slow crystallization from its acetonitrile/n-hexane (1:1, v/v) solution. X-ray crystallography proved to the formulation to be [NiL]2Na(ClO4), a known species [6], so no further characterisation was performed. The melting point of the sample was not determined as perchlorates are explosive at elevated temperatures.

Experimental details

The C-bound H atoms were geometrically placed (C–H = 0.95–0.99 Å) and refined as riding with U iso(H) = 1.2–1.5U eq(C). Owing to poor agreement, one reflection, i.e. (−1 1 6), was omitted from the final cycles of refinement.

Comment

In continuation of recent and on-going studies of N4-donor macrocycles and their transition metal complexes [78], an attempt was made to synthesise the nickel(II) complex derived from 5,7,12,14-tetramethyl-1,4,8,11-tetraazacyclotetradeca-4,6,11,13-tetraene, prepared from the 1:1 condensation reaction of ethylenediamine and acetylacetone. However, under the reaction conditions employed, cyclisation did not occur/persist and the title complex [NiL]2Na(ClO4), hereafter (I), was obtained. While the crystal structure of (I) has been reported previously [6], the new data enables a more detailed discussion of geometric parameters and the absence of disorder facilitates the discussion of supramolecular association in the crystal.

The molecular structure of two-fold symmetric (I) is shown in the figure (70% probably displacement ellipsoids); the Na1 and Cl1 atoms lie on the two-fold axis of symmetry. The nickel(II) centre lies within a square-planar geometry defined by a N2O2 donor set with the r.m.s. deviation for the five atoms being 0.0175 Å; the maximum deviation from the least-squares plane being 0.0208(5) Å for atom O1. There is no pattern in the Ni–O and Ni–N bond lengths with Ni–N1 [1.8527(11) Å], Ni–N2 [1.8592(12) Å] and Ni–O2 [1.8552(9) Å] being equal within experimental error and shorter than Ni–O1 [1.8625(10) Å]. Greater ranges of Ni–O [1.8570(18) and 1.8663(18) Å] and Ni–N [1.8454(18) and 1.8553(18) Å] bond lengths are noted in the structure of NiL [9]. These observations suggest the interactions formed between the O1 and O2 atoms and the sodium cation [Na1⃛O1 = 2.3953(9) Å and Na1⃛O2 = 2.3285(11) Å] do not exert a significant influence upon the Ni–O bonds. In the N1–C3–C2–C1–O1 residue, the sequence of bond lengths, i.e. 1.3110(18), 1.414(2), 1.368(2) and 1.3003(16) Å, in particular the lengthening and shortening of the formal imine and alkoxy bonds, suggest considerable delocalisation of π-electron density; the equivalent values for the N2–C6–C7–C8–O2 residue are 1.3107(18), 1.419(2), 1.367(2) and 1.3006(17) Å, respectively.

The Na1 cation provides the link between the two NiL complexes and also interacts with symmetry equivalent perchlorate–O3 atoms [2 × 2.4948(15) Å]. This results in a disparity in the Cl–O bonds, with Cl1–O3 [1.4454(12) Å] being longer than Cl1–O4 [1.4208(14) Å], in keeping with expectation.

The structure of (I) is not the only example where a second residue links two NiL complexes. In another example, Zn(NCS)2 mediates the formation of a three-molecule aggregate, with the zinc centre attaining a N2O4 donor set [10]. With each of Cd(NCS)2 and Cd(N3)2, NiL2 is an ancillary ligand in one-dimensional coordination polymers formulated as {Cd(NCS)2NiL2}n and {Cd(N3)2NiL2}n, respectively [11].

In the crystal, methylene-C–H⃛O(perchlorate) [C5–H5a⃛O3i: H5a⃛O3i = 2.50 Å, C5⃛O3i = 3.2369(19) Å with angle at H5a = 131° for symmetry operation (i): 3/2−x, 3/2−y, 2−z] and methyl-C–H⃛O(perchlorate) [C10–H10c⃛O4ii: H10c⃛O4ii = 2.43 Å, C10⃛O4ii = 3.386(2) Å with angle at H10c = 165° for (ii): 3/2−x, −1/2+y, 3/2−z] interactions combine with methylene- and methyl-C–H⃛π(chelate ring) interactions, well-known in coordination chemistry [12], within a three-dimensional architecture. While each ring participates in two C–H⃛π(chelate ring) contacts, one to either side of the plane, only data for the shortest contact for each are given [C11–H11c⃛Cg(O1,N1,C1–C3)i: H11c⃛Cg(O1,N1,C1–C3)i = 2.78 Å with angle at H11c = 145°; C10–H10b…Cg(O2,N2,C6–C8)iii: H10b…Cg(O2,N2,C6–C8)iii = 2.54 Å with angle at H10b = 149° for (iii): 3/2−x, 1/2+y, 3/2−z].

An analysis of the calculated Hirshfeld surfaces and of the full and delineated two-dimensional fingerprint plots was also conducted, being calculated with Crystal Explorer 17 [13] employing literature methods [14]. The calculations show all surface contacts involve hydrogen and over half of these are H⃛H contacts, contributing 52.5%. The next most significant contributions to the Hirshfeld surface are O⃛H/H⃛O contacts at 23.2%. The remaining contributions to the surface are from C⃛H/H⃛C [14.2%], N⃛H/H⃛N [5.9%] and Ni⃛H/H⃛Ni [4.2%].


Corresponding author: Edward R.T. Tiekink, Research Centre for Crystalline Materials, School of Medical and Life Sciences, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; and Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia, E-mail: ; Ismail M.M. Rahman, Institute of Environmental Radioactivity, Fukushima University, 1 Kanayagawa, Fukushima City, Fukushima 960-1296, Japan, E-mail: ; and Tapashi Ghosh Roy, Department of Chemistry, Faculty of Science, University of Chittagong, Chattogram 4331, Bangladesh, E-mail:

Funding source: Japan Society for the Promotion of Science doi.org/10.13039/501100001691

Award Identifier / Grant number: 21K12287

Funding source: Japan Science and Technology Agency doi.org/10.13039/501100002241

Funding source: Japan International Cooperation Agency doi.org/10.13039/501100004532

Award Identifier / Grant number: JPMJSA1603

Funding source: Sunway University doi.org/10.13039/501100010798

Award Identifier / Grant number: GRTIN-IRG-01–2021

Funding source: Environmental Radioactivity Research Network Center

Award Identifier / Grant number: I-21-09

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: (a) Science and Technology Research Partnership for Sustainable Development (SATREPS) grant in collaboration with the Japan Science and Technology Agency (JST) and the Japan International Cooperation Agency (JICA) (Grant No. JPMJSA1603), and (b) Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (JSPS; Grant No. 21K12287). In addition, the Environmental Radioactivity Research Network Center at Fukushima University, Japan, is thanked for analytical support through Grant No. I-21-09. Sunway University Sdn Bhd is thanked for financial support of crystallographic work through Grant No. GRTIN-IRG-01–2021.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Rigaku. REQAB; Rigaku Corporation: Tokyo, Japan, 1998.Search in Google Scholar

2. Rigaku. CrystalClear; Rigaku Corporation: Tokyo, Japan, 2010.Search in Google Scholar

3. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.Search in Google Scholar PubMed

4. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

5. Farrugia, L. J. WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr. 2012, 45, 849–854; https://doi.org/10.1107/s0021889812029111.Search in Google Scholar

6. Armstrong, L. G., Lip, H. C., Lindoy, L. F., McPartlin, M., Tasker, P. A. Alkali-metal salt adducts of nickel(II) complexes of quadridentate Schiff-base ligands. The X-ray structure of N,N′- ethylenebis(acetylacetoneiminato)nickel(II). J. Chem. Soc., Dalton Trans. 1977, 1771–1774.10.1002/chin.197752332Search in Google Scholar

7. Dey, L., Rabi, S., Palit, D., Hazari, S. K. S., Begum, Z. A., Rahman, I. M. M., Roy, T. G. Syntheses, characterization, and antimicrobial studies of Ni(II), Cu(II), and Co(III) complexes with an N-pendant azamacrocyclic chelator. J. Mol. Struct. 2021, 1240, 130579; https://doi.org/10.1016/j.molstruc.2021.130579.Search in Google Scholar

8. Dey, L., Rabi, S., Begum, Z. A., Takase, T., Rahman, I. M. M., Tiekink, E. R. T., Roy, T. G. Redetermination of the crystal structure of (2E,4Z,13E,15Z)-3,5,14,16-tetramethyl- 2,6,13,17-tetraazatricyclo[16.4.0.07,12]docosa- 1(22),2,4,7,9,11,13,15,18,20-decaene, C22H24N4. Z. Kristallogr. NCS 2021, 236.10.1515/ncrs-2021-0244Search in Google Scholar

9. Cariati, F., Morazzoni, F., Busetto, C., Del Piero, G., Zazzetta, A. Paramagnetic anisotropy in cobalt(II) Schiff-base complexes. X-Ray crystal structure and electron spin resonance of N,N′-ethylenebis-(acetylacetoneiminato)cobalt(II)-doped N,N′-ethylenebis(acetylacetoneiminato)nickel(II). J. Chem. Soc., Dalton Trans. 1976, 342–347.10.1039/DT9760000342Search in Google Scholar

10. Li, G.-B., Fang, H.-C., Cai, Y.-P., Zhou, Z.-Y., Thallapally, P. K., Tian, J. Construction of a novel Zn–Ni trinuclear Schiff base and a Ni2+ chemosensor. Inorg. Chem. 2010, 49, 7241–7243; https://doi.org/10.1021/ic101036m.Search in Google Scholar PubMed

11. Ge, Y.-Y., Li, G.-B., Fang, H.-C., Zhan, X.-L., Gu, Z.-G., Chen, J.-H., Sun, F., Cai, Y.-P., Thallapally, P. K. Auxiliary ligand-dependent assembly of several Ni/Ni–Cd compounds with N2O2 donor tetradentate symmetrical Schiff base ligand. Cryst. Growth Des. 2010, 10, 4987–4994; https://doi.org/10.1021/cg101082t.Search in Google Scholar

12. Tiekink, E. R. T. Supramolecular assembly based on “emerging” intermolecular interactions of particular interest to coordination chemists. Coord. Chem. Rev. 2017, 345, 209–228; https://doi.org/10.1016/j.ccr.2017.01.009.Search in Google Scholar

13. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D., Spackman, M. A.. Crystal Explorer (v17); The University of Western Australia: Australia, 2017.Search in Google Scholar

14. Tan, S. L., Jotani, M. M., Tiekink, E. R. T. Utilizing Hirshfeld surface calculations, non-covalent interaction (NCI) plots and the calculation of interaction energies in the analysis of molecular packing. Acta Crystallogr. 2019, E75, 308–318; https://doi.org/10.1107/s2056989019001129.Search in Google Scholar

Received: 2021-06-22
Accepted: 2021-06-22
Published Online: 2021-08-09
Published in Print: 2021-12-20

© 2021 Lucky Dey et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. Redetermination of the crystal structure of 3-bromonitrobenzene at 200 K, C6H4BrNO2 – temperature effects on cell constants
  4. Crystal structure of (E)-ethyl 2-((4-oxo-4H-chromen-3-yl)methyleneaminooxy)acetate, C14H13NO5
  5. Crystal structure of (8R,10R,14R, Z)-2-((3–Fluoropyridin-4-yl) methylene)-12-hydroxy-4,4,8,10,14-pentamethyl-17-((R)-2,6, 6-trimethyltetrahydro-2H-pyran-2-yl) hexadecahydro-3H-cyclopenta[a] phenanthren-3-one, C36H52FNO3
  6. Crystal structure of [6,6′-((1E,1′E)-(propane-1,3- diylbis(azaneylylidene))bis(methaneylylidene)) bis(3-chlorophenol)-κ4N,N′,O,O′] copper(II), C17H14Cl2CuN2O2
  7. The crystal structure of 6-amino-2-carboxypyridin-1-ium bromide, C6H7BrN2O2
  8. Redetermination of the crystal structure of bis[N,N′-ethylenebis(acetylacetoniminato)nickel(II)] sodium perchlorate, C24H36ClN4NaNi2O8
  9. The crystal structure of 3-methyl-2,6-dinitrophenol, C7H6N2O5
  10. The crystal structure of 5-chloro-2-(quinolin-8-yl)isoindoline-1,3-dione, C17H9ClN2O2
  11. Crystal structure of trans-tetraaqua-bis{2-carboxy-4-((5-carboxypyridin-3-yl)oxy)benzoato-κ1 N}cobalt(II) dihydrate C28H28O20N2Co
  12. Crystal structure of 3-allyl-4-(2-bromoethyl)-5-(4-methoxyphenyl)-2-(p-tolyl)furan, C23H23BrO2
  13. The crystal structure of 6,6′-(((2-(dimethylamino)ethyl)azanediyl)bis(methylene))bis(benzo[d][1,3]dioxol-5-ol ato-κ4N,N′,O,O′)-(pyridine-2,6-dicarboxylato-N,O,O′)-titanium(IV)-dichloromethane(1/1), C27H25N3O10Ti
  14. Crystal structure of (((1E,1′E)-1,2-phenylenebis(methaneylylidene))bis(hydrazin-1-yl-2-ylidene))bis(aminomethaniminium) dinitrate C10H16N10O6
  15. Crystal structure of catena-poly[triaqua-(μ 2-1,3-di(1H-imidazol-1-yl)propane-κ 2 N:N′)-(4,4′-(1H-1,2,4-triazole-3,5-diyl)dibenzoato-κ 1 O)nickel(II)]N,N′-dimethylformamide (1/1), C28H35N8O8Ni
  16. The crystal structure of 3,3′-[1,4-phenylenebis(methylene)]bis(1-ethenyl-1H-imidazol-3-ium) dichloride – dichloromethane – water (1/1/1), C19H24Cl4N4O1
  17. Crystal structure of 1,1′-(methane-1,1-diyl)bis(3-propyl-1H-imidazol-3-ium) bis(hexafluoridophosphate), C13H22F12N4P2
  18. Crystal structure of dichlorido-bis(4-chlorophenyl-κC 1)tin(IV), C12H8Cl4Sn
  19. Synthesis and crystal structure of 4-acetylpyrene, C18H12O
  20. Crystal structure of 2,2′-(butane-1,4-diylbis(azanylylidene))bis(methanylylidene))bis(4-methoxyphenol), C20H24N2O4
  21. The crystal structure of (E)-2-(((5-((triphenylstannyl)thio)-1,3,4-thiadiazol-2-yl)imino)methyl)phenol, C27H21N3OS2Sn
  22. Crystal structure of diaqua-bis(μ2-6-phenylpyridine-2-carboxylate-κ3N,O:O)-bis(6-phenylpyridine-2-carboxylato-κ2N,O)lead(II) – N,N-dimethylformamide – water (1/2/4), C54H58N6O16Pb2
  23. Crystal structure of methyl 4-acetoxy-3-methoxybenzoate, C11H12O5
  24. Crystal structure of 2,2′-(propane-1,3-dilylbis(azaneylylidene))bis(methanylylidene)bis(4-methylphenol), C19H22N2O2
  25. Crystal structure of dichlorido-bis(4-methylphenyl-κC1)tin(IV), C14H14Cl2Sn
  26. Crystal structure of methyl (E)-3-(4-acetoxyphenyl)acrylate, C12H12O4
  27. The crystal structure of bis(benzoato-κ2 O,O′)-(2,9-dimethyl-1,10-phenanthroline-κ2 N,N′)-copper(II), C28H22CuN2O4
  28. Crystal structure of (8R,10R,14R,Z)-12-hydroxy-2-((6-methoxypyridin-2-yl)methylene)-4,4,8,10,14-pentamethyl-17-((R)-2,6,6-trimethyltetrahydro-2H-pyran-2-yl)hexadecahydro-3H-cyclopenta[a]phenanthren-3-one–water (2/1), C37H56NO4.5
  29. Crystal structure of dimethyl-bis(4-bromophenyl-κC1)tin(IV), C14H14Br2Sn
  30. The crystal structure of the cocrystal di-μ2-chlorido-octamethyl-di-μ3-oxido-bis(2,3,4,5-tetrafluorobenzoato-κ2 O,O′)tetratin(IV) ─ octamethyl-di-μ3-oxido-bis(μ2-2,3,4,5-tetrafluorobenzoato-κ2 O:O′)-bis(μ2-2,3,4,5-tetrafluorobenzoato-κ2 O:O;O′)tetratin(IV) C58H54Cl2F24O16Sn8
  31. Crystal structure of 3-iodo-N 2-(2-methyl-1-(methylsulfonyl)propan-2-yl)-N 1-(2-methyl-4-(perfluoropropan-2-yl)phenyl)phthalamide, C23H22F7I1N2O4S1
  32. Crystal structure of 1-(2-(4-bromophenyl)-2,3-dihydro-1H-benzo[e]indol-1-yl)-naphthalen-2-ol – dichloromethane – dimethyl sulfoxide (1/1/1), C28H18BrNO·CH2Cl2·C2H6SO
  33. Crystal structure of [meso-5,7,7,12,14,14,-hexamethyl-1,4,8,11-tetraazacyclotetradecane]nickel(II) diperchlorate – dimethylsulphoxide (1/2), C20H48Cl2N4NiO10S2
  34. Crystal structure of 1,1′-(1,3-phenylenebis(methylene))bis(pyridin-1-ium) bis(1,2-dicyanoethene-1,2-dithiolato-κ2 S:S) palladium(II), C26H18N6PdS4
  35. The crystal structure of bis(6-phenylpyridine-2-carboxylato-κ2 N,O)copper(II), C24H16N2O4Cu
  36. Crystal structure of dichlorido-bis(4-chlorophenyl-κC)-bis(triphenylarsine oxide-κO)tin(IV), C48H38As2Cl4O2Sn
  37. Crystal structure of (4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane-κ 8 N 2, O 6) potassium cyclopentadienide, [K([2.2.2]crypt)]Cp, C23H41KN2O6
  38. The crystal structure of bis(2-oxidopyridin-1-ium-3-carboxylato-κ2O,O′)-(phenantroline-κ2N,N′)manganese(II) - methanol (1/3), C27H28N4O9Mn
  39. Crystal structure of 4-(dimethylamino)pyridinium dibromido-tris(4-chlorophenyl-κC)stannate(IV), C25H23Br2Cl3N2Sn
  40. Crystal structure of (3E,5E)-1-(4-cyanobenzenesulfonyl)-3,5-bis(3-fluorobenzylidene)piperidin-4-one-dichloromethane (1/1), C27H20Cl2F2N2O3S
  41. Crystal structure of (3E,5E)-3,5-bis(4-fluorobenzylidene)-1-((4-trifluoromethyl)benzenesulfonyl)piperidin-4-one, C26H18F5NO3S
  42. Crystal structure of chlorido-(4-methyl-2-((phenylimino)methyl)phenolato-κ2 N,O)-(pyridine-κ1 N)platinum(II), C19H17ClN2OPt
  43. Crystal structure of (4-methylbenzyl)(triphenyl)phosphonium chloride dihydrate, C26H28ClO2P
  44. The crystal structure of poly[μ2-chlorido-(μ2-1,2-bis(4-pyridyl)ethane-κ2N:N′silver(I)], C12H12AgClN2
  45. Crystal structure of poly[(μ4-benzene-1,2,4,5-tetracarboxylato)-bis(μ2-adipohydrazide)dicadmium], C11H15N4O6Cd
  46. The crystal structure of (E)-N′-(butan-2-ylidene)isonicotinohydrazide 0.5 hydrate C10H13N3O·0.5H2O
  47. The crystal structure of bis(6-phenylpyridine-2-carboxylate-κ2 N,O)-(2,2′-bipyridine-κ2 N,N′)zinc(II) monohydrate, C34H26N4O5Zn
  48. The crystal structure of (1R *,2S *)-1,2-bis(2-fluorophenyl)-3,8-dimethoxyacenaphthene-1,2-diol, C26H20F2O4
  49. Crystal structure of catena-poly[(μ2-1-((2-ethyl-4-methyl-1H-imidazol-1-yl)methyl)-1H-benzotriazole-κ2N:N′)-(nitrato-κ2O,O′)silver (I)], C13H15Ag1N6O3
  50. The crystal structure of [(phenantroline-κ2 N,N′)-bis(6-phenylpyridine-2-carboxylate-κ2 N,O)cobalt(II)]monohydrate, C36H26N4O5Co
  51. Crystal structure of (1E)-N-[(1E)-1-(4-chlorophenyl)ethylidene]-2-[1-(4-chlorophenyl)ethylidene]hydrazine-1-carbohydrazonamide, C 17 H 17 Cl 2 N 5
  52. The crystal structure of (E)-2-((tert-butylimino)methyl)-4-chlorophenol, C11H14ClNO
  53. Crystal structure of all-cis-2,4,6-trihydroxycyclohexane- 1,3,5-triaminium chloride sulfate, C6H18ClN3O7S
  54. Crystal structure of dichlorido-bis(dimethyl sulfoxide-κO)bis(4-methylphenyl-κC 1)tin(IV), C18H26Cl2O2S2Sn
  55. Crystal structure of dichlorido-bis(4-chlorophenyl-κC 1)(2,2′-bipyridyl-κ 2 N,N′)tin(IV), C22H16Cl4N2Sn
  56. Redetermination of the crystal structure of (E)-5-bromo-2-hydroxybenzaldehyde oxime, C 7 H 6 BrNO 2
  57. The crystal structure of (E)-amino(2-(4-methylbenzylidene)hydrazineyl)methaniminium 4-methylbenzoate, C9H13N4 + C8H7O2
  58. Crystal structure of 2-chloro-3-(isopentylamino)naphthalene-1,4-dione, C 15 H 16 ClNO 2
  59. The crystal structure of bis(2-acetyl-5-methoxyphenyl)carbonate 1.5 hydrate, C19H18O7
  60. The crystal structure of poly[(μ 4-4,4′-(azanediylbis(methylene))dibenzoato-κ 4 O:N:O′:Oʺ)zinc(II)], C16H13NO4Zn
  61. The crystal structure of catena-poly[(1,10-phenanthroline-k2N,N′)-(μ3-tetraoxidomoybdato(VI)-k3O:O′:O″)manganese(II)] C12H8N2O4MoMn
  62. Crystal structure of catena-poly[(4-hydroxyl-5-(methoylcarbonyl)thiophene-2-carboxylato-κ1 O)-(μ2-piperazine-1,4-diylbis(pyridin-4-ylmethanone)-κ2 N:N′)silver(I)] monohydrate, C23H23AgN4O8S
  63. Crystal structure of bis(4-bromo-2-(((3-bromopropyl)imino)methyl)phenolato-κ2N,O)-oxido-vanadium(IV), C20H20Br4N2O3V
  64. The crystal structure of (2a′S,2a1′S,3R,5a′S,7′R)-5-(furan-3-yl)-2a′,2a1′-dihydroxy-7′-methyldecahydro-2H-spiro[furan-3,6′-naphtho[1,8-bc]furan]-2,2′(2a′H)-dione, C19H22O7
  65. The crystal structure of 3-bromopicolinic acid, C6H4BrNO2
  66. Crystal structure of 1,1′-(1,4-phenylenebis(methylene))bis(pyridin-1-ium) bis(1,2-dicyanoethene-1,2-dithiolato-κ2 S,S) platinum(II), C26H18N6PtS4
  67. Synthesis and crystal structure of 5-(8-((3-carboxyazetidin-1-ium-1-yl)methyl)-7-hydroxy-4-oxo-4H-chromen-3-yl)-2-hydroxybenzenesulfonate monohydrate, C20H19NO10S
  68. The crystal structure of 3-amino-5-carboxypyridin-1-ium bromide, C6H7BrN2O2
  69. The crystal structure of (2-hydroxy-5-methyl-phenyl)-(1H-pyrazol-4-yl)-methanone hemihydrate, C11H10.5N2O2.5
  70. Crystal structure of tetraaqua-(2-(4-formylphenoxy)acetato-k1O)cadmium(II), C18H22O12Cd
  71. Crystal structure of diethyl 6,12-dimethyl-3,9-di-p-tolyl-3,9-diazapentacyclo[6.4.0.02,7.04,11.05,10]dodecane-1,5-dicarboxylate, C32H38N2O4
  72. Crystal structure of (E)-N′-(1-(3-chloro-4-fluorophenyl)ethylidene)-4-hydroxy – tetrahydrofuran (2/1), C17H16ClFN2O2.5
Downloaded on 16.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2021-0254/html
Scroll to top button