Startseite Crystal structure of (tricyclohexylphosphane-κP)-[(Z)-N-(3-fluorophenyl)-O-methylthiocarbamato-k1S]gold(I), C26H40AuFNOPS
Artikel Open Access

Crystal structure of (tricyclohexylphosphane-κP)-[(Z)-N-(3-fluorophenyl)-O-methylthiocarbamato-k1S]gold(I), C26H40AuFNOPS

  • Chien Ing Yeo , Yee Seng Tan und Edward R. T. Tiekink ORCID logo EMAIL logo
Veröffentlicht/Copyright: 2. Oktober 2020

Abstract

C26H40AuFNOPS, triclinic, P1 (no. 1), a = 9.62498(7) Å, b = 11.78239(10) Å, c = 12.74349(13) Å, α = 78.7411(8)°, β = 73.5635(8)°, γ = 76.6096(1)°, V = 1335.34(2) Å3, Z = 2, Rgt(F) = 0.0224, wRref(F2) = 0.0557, T = 100 K.

CCDC no.: 2027114

The molecular structures are shown in the Figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal:Colourless block
Size:0.14 × 0.08 × 0.06 mm
Wavelength:Cu Kα radiation (1.54184 Å)
μ:11.8 mm−1
Diffractometer, scan mode:XtaLAB Synergy, ω
θmax, completeness:75.3°, >99%
N(hkl)meas., N(hkl)unique, Rint:66,451, 10,653, 0.030
Criterion for Iobs, N(hkl)gt:Iobs > 2 σ(Iobs), 10,567
N(param)ref.:638
Programs:CrysAlisPRO [1], SHELX [2], [3], WinGX/ORTEP [4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
Au10.66877 (2)0.94917 (2)0.86592 (2)0.02693 (7)
S10.50132 (16)0.88755 (13)1.02309 (13)0.0296 (3)
P10.83683 (16)1.00086 (14)0.70931 (13)0.0283 (3)
O10.3991 (5)1.1114 (4)0.9725 (4)0.0328 (9)
N10.2734 (6)1.0304 (5)1.1402 (5)0.0337 (11)
C10.3771 (6)1.0189 (5)1.0521 (5)0.0267 (11)
C2a0.2638 (7)0.9264 (5)1.2191 (5)0.0309 (13)
C3a0.3376 (8)0.9039 (6)1.3020 (6)0.0366 (14)
H3a0.3900740.9595641.3097230.044*
C4a0.3340 (7)0.8001 (6)1.3726 (6)0.0355 (13)
F1a0.4082 (7)0.7793 (5)1.4510 (5)0.0464 (18)
C5a0.2601 (7)0.7160 (6)1.3664 (6)0.0357 (13)
H5a0.2629790.6432591.4142650.043*
C6a0.1804 (8)0.7435 (6)1.2856 (6)0.0380 (14)
H6a0.1241050.6892081.2807120.046*
C7a0.1806 (7)0.8466 (6)1.2131 (6)0.0357 (14)
H7a0.1246760.8632031.1595000.043*
C2′b0.2638 (7)0.9264 (5)1.2191 (5)0.0309 (13)
C3′b0.3376 (8)0.9039 (6)1.3020 (6)0.0366 (14)
H3′b0.3900740.9595641.3097230.044*
C4′b0.3340 (7)0.8001 (6)1.3726 (6)0.0355 (13)
H4′b0.3854500.7855881.4288750.043*
C5′b0.2601 (7)0.7160 (6)1.3664 (6)0.0357 (13)
H5′b0.2629790.6432591.4142650.043*
C6′b0.1804 (8)0.7435 (6)1.2856 (6)0.0380 (14)
F1′b0.090 (2)0.6796 (17)1.288 (2)0.061 (7)
C7′b0.1806 (7)0.8466 (6)1.2131 (6)0.0357 (14)
H7′b0.1246760.8632031.1595000.043*
C80.2945 (8)1.2199 (6)0.9894 (7)0.0449 (17)
H8A0.2866041.2398191.0622430.067*
H8B0.1978961.2102390.9851740.067*
H8C0.3280771.2832970.9320880.067*
C110.8548 (7)0.9020 (6)0.6092 (5)0.0334 (13)
H110.9423590.9140680.5463270.040*
C120.8797 (8)0.7734 (6)0.6632 (6)0.0366 (15)
H12A0.9718510.7562330.6881630.044*
H12B0.7974940.7628010.7294060.044*
C130.8902 (9)0.6854 (8)0.5877 (7)0.053 (2)
H13A0.8991000.6049060.6292420.064*
H13B0.9794370.6882790.5258170.064*
C140.7545 (10)0.7131 (9)0.5423 (7)0.060 (2)
H14A0.7662550.6587010.4889010.072*
H14B0.6667700.7010910.6034050.072*
C150.7316 (12)0.8383 (10)0.4859 (8)0.067 (3)
H15A0.6410130.8547940.4590180.081*
H15B0.8157730.8481290.4210070.081*
C160.7179 (8)0.9266 (7)0.5631 (7)0.0465 (18)
H16A0.6290530.9215700.6249330.056*
H16B0.7061041.0074560.5222550.056*
C211.0218 (8)0.9802 (10)0.7340 (7)0.059 (2)
H211.0409920.8923540.7513610.070*
C221.0266 (9)1.0070 (14)0.8374 (7)0.085 (4)
H22A0.9595960.9633890.8969140.102*
H22B0.9865711.0921010.8397880.102*
C231.1723 (7)0.9804 (6)0.8632 (6)0.0368 (14)
H23A1.1877650.8983850.9009610.044*
H23B1.1697311.0327110.9160890.044*
C241.3027 (9)0.9936 (14)0.7669 (8)0.090 (4)
H24A1.3195121.0752070.7568980.108*
H24B1.3904160.9403740.7864060.108*
C251.2948 (8)0.9704 (11)0.6641 (8)0.069 (3)
H25A1.3396000.8864460.6588630.083*
H25B1.3589031.0174040.6056700.083*
C261.1483 (7)0.9924 (6)0.6354 (6)0.0346 (13)
H26A1.1307821.0728240.5946440.042*
H26B1.1526290.9360030.5856810.042*
C31c0.7819 (12)1.1511 (6)0.6493 (6)0.078 (4)
H31c0.6925031.1403340.6300710.094*
C32c0.7069 (16)1.2391 (9)0.7256 (8)0.045 (3)
H32Ac0.7815061.2646430.7510390.054*
H32Bc0.6405211.2023300.7912580.054*
C33c0.6154 (9)1.3490 (6)0.6691 (7)0.059 (2)
H33Ac0.5367371.3256560.6466790.071*
H33Bc0.5689561.4078200.7207020.071*
C34c0.7247 (18)1.4019 (9)0.5659 (10)0.051 (4)
H34Ac0.6740051.4767260.5312400.061*
H34Bc0.8082611.4181940.5876250.061*
C35c0.7809 (17)1.3114 (9)0.4840 (8)0.039 (3)
H35Ac0.6964661.2956500.4629700.047*
H35Bc0.8479871.3440510.4162720.047*
C36c0.8626 (6)1.1965 (5)0.5351 (5)0.0377 (14)
H36Ac0.8807691.1357580.4865520.045*
H36Bc0.9597261.2088100.5380220.045*
C31′c0.7819 (12)1.1511 (6)0.6493 (6)0.078 (4)
H31Cc0.8349311.1861120.6884460.094*
C32′c0.6357 (13)1.2144 (9)0.6981 (11)0.042 (3)
H32Cc0.6152481.1940650.7794380.050*
H32Dc0.5619461.1870300.6733910.050*
C33′c0.6154 (9)1.3490 (6)0.6691 (7)0.059 (2)
H33Cc0.6743781.3799190.7054590.071*
H33Dc0.5103761.3851770.6954880.071*
C34′c0.6667 (15)1.3806 (12)0.5415 (11)0.056 (5)
H34Cc0.6106421.3469400.5049060.067*
H34Dc0.6488771.4672090.5206480.067*
C35′c0.8315 (14)1.3299 (10)0.5047 (13)0.051 (5)
H35Cc0.8661951.3503200.4236700.062*
H35Dc0.8868511.3655420.5402340.062*
C36′c0.8626 (6)1.1965 (5)0.5351 (5)0.0377 (14)
H36Cc0.8362341.1605470.4811420.045*
H36Dc0.9698631.1699170.5280340.045*
Au20.93580 (2)0.39019 (2)0.87113 (2)0.02961 (7)
S1A1.0989 (2)0.32835 (14)0.71298 (14)0.0380 (4)
P1A0.75511 (17)0.42992 (14)1.02503 (13)0.0305 (3)
O1A1.1869 (5)0.5211 (4)0.7141 (4)0.0331 (9)
N1A1.2592 (7)0.4590 (5)0.5450 (5)0.0341 (12)
C1A1.1908 (7)0.4434 (5)0.6470 (5)0.0282 (12)
C2Ad1.2616 (7)0.3788 (6)0.4748 (6)0.0334 (13)
C3Ad1.1758 (8)0.4133 (6)0.3987 (6)0.0364 (14)
H3Ad1.1119090.4879510.3964420.044*
C4Ad1.1854 (8)0.3370 (6)0.3265 (6)0.0377 (14)
F1Ad1.1005 (7)0.3731 (5)0.2528 (5)0.0481 (19)
C5Ad1.2738 (9)0.2282 (6)0.3252 (6)0.0414 (16)
H5Ad1.2763180.1774400.2749240.050*
C6Ad1.3606 (9)0.1950 (7)0.4018 (6)0.0450 (17)
H6Ad1.4243450.1201760.4030970.054*
C7Ad1.3555 (8)0.2692 (6)0.4758 (6)0.0406 (15)
H7Ad1.4156240.2452970.5268100.049*
C2A′e1.2616 (7)0.3788 (6)0.4748 (6)0.0334 (13)
C3A′e1.1758 (8)0.4133 (6)0.3987 (6)0.0364 (14)
H3A′e1.1119090.4879510.3964420.044*
C4A′e1.1854 (8)0.3370 (6)0.3265 (6)0.0377 (14)
H4A′e1.1269320.3616560.2744510.045*
C5A′e1.2738 (9)0.2282 (6)0.3252 (6)0.0414 (16)
H5A′e1.2763180.1774400.2749240.050*
C6A′e1.3606 (9)0.1950 (7)0.4018 (6)0.0450 (17)
F1A′e1.461 (2)0.1001 (15)0.4013 (17)0.060 (7)
C7A′e1.3555 (8)0.2692 (6)0.4758 (6)0.0406 (15)
H7A′e1.4156240.2452970.5268100.049*
C8A1.2601 (8)0.6179 (6)0.6603 (6)0.0393 (15)
H8A11.2153340.6615230.6005530.059*
H8A21.3648110.5877500.6297330.059*
H8A31.2500110.6703970.7140100.059*
C11A0.5766 (8)0.4848 (6)0.9849 (7)0.0453 (17)
H11A0.5676610.4216070.9463470.054*
C12A0.4395 (8)0.4957 (7)1.0788 (6)0.0453 (16)
H12C0.4422990.5542231.1239470.054*
H12D0.4359150.4188811.1267930.054*
C13A0.3006 (9)0.5343 (9)1.0338 (9)0.068 (3)
H13C0.2897140.4692540.9997490.082*
H13D0.2130180.5490941.0962100.082*
C14A0.3044 (9)0.6415 (8)0.9511 (7)0.0522 (19)
H14C0.2979130.7099640.9877720.063*
H14D0.2179020.6565530.9194500.063*
C15A0.4447 (10)0.6291 (9)0.8587 (8)0.064 (3)
H15C0.4411490.5712720.8130440.077*
H15D0.4493570.7058070.8107880.077*
C16A0.5809 (10)0.5901 (10)0.9000 (9)0.080 (4)
H16C0.6665470.5727610.8368490.096*
H16D0.5957460.6555530.9314580.096*
C21A0.7316 (6)0.2951 (5)1.1207 (5)0.0284 (12)
H21A0.6458010.3144761.1844130.034*
C22A0.8688 (8)0.2430 (6)1.1654 (7)0.0413 (16)
H22C0.9563260.2302791.1025580.050*
H22D0.8840720.3001411.2067070.050*
C23A0.8550 (10)0.1269 (7)1.2410 (7)0.053 (2)
H23C0.9471970.0948831.2651640.064*
H23D0.7732770.1405551.3074710.064*
C24A0.8256 (11)0.0383 (7)1.1820 (7)0.050 (2)
H24C0.9107830.0198751.1188330.060*
H24D0.813699−0.0356151.2333280.060*
C25A0.6870 (9)0.0867 (6)1.1406 (7)0.0483 (18)
H25C0.6007720.0989521.2043880.058*
H25D0.6716060.0284801.1004410.058*
C26A0.6981 (7)0.2029 (5)1.0640 (6)0.0353 (14)
H26C0.6040650.2342221.0421710.042*
H26D0.7772570.1888240.9961390.042*
C31A0.7938 (12)0.5279 (7)1.1046 (6)0.063 (3)
H31B0.8815800.4780271.1287210.076*
C32A0.8562 (14)0.6321 (9)1.0397 (6)0.082 (4)
H32E0.7820670.6838471.0027150.099*
H32F0.9435300.6045510.9812370.099*
C33Af0.9011 (8)0.7037 (6)1.1054 (6)0.0467 (17)
H33Ef0.9202490.7791151.0591250.056*
H33Ff0.9942340.6607951.1239990.056*
C34Af0.7850 (13)0.7301 (9)1.2121 (7)0.051 (4)
H34Ef0.8292670.7626201.2582680.061*
H34Ff0.7024970.7912051.1934180.061*
C35Af0.7253 (13)0.6248 (9)1.2776 (6)0.084 (4)
H35Ef0.6354320.6521711.3340770.100*
H35Ff0.7988130.5767421.3171280.100*
C33Bg0.9011 (8)0.7037 (6)1.1054 (6)0.0467 (17)
H33Gg1.0095640.6965661.0809790.056*
H33Hg0.8573890.7874601.0864940.056*
C34Bg0.860 (2)0.674 (2)1.2274 (9)0.023 (8)
H34Gg0.9431010.6162471.2494700.027*
H34Hg0.8493550.7459371.2599130.027*
C35Bg0.7253 (13)0.6248 (9)1.2776 (6)0.084 (4)
H35Gg0.6414420.6914741.2916690.100*
H35Hg0.7339440.5793681.3502040.100*
C36A0.6875 (8)0.5468 (6)1.2138 (5)0.0443 (16)
H36E0.6812200.4691741.2598140.053*
H36F0.5885820.5814871.2011510.053*
  1. aOccupancy: 0.763(14).

  2. bOccupancy: 0.237(14).

  3. cOccupancy: 0.5.

  4. dOccupancy: 0.741(14).

  5. eOccupancy: 0.259(14).

  6. fOccupancy: 0.77 (3).

  7. gOccupancy: 0.23(3).

Source of material

NaOH (Merck; 0.020 g, 0.50 mmol) in water (5 mL) was added to a suspension of (cyclohexyl)3PAuCl (0.256 g, 0.50 mmol) in acetonitrile (20 mL), followed by the addition of MeOC(=S)N(H)C6H4F-3 [5] (0.093 g, 0.50 mmol) in acetonitrile (20 mL) and stirred for 3 h. The resulting mixture was left for slow evaporation at room temperature, yielding crystals after 2 weeks. Yield: 0.261 g (79%). M. pt.: (Biobase automatic melting point apparatus MP450): 425–426 K. Elemental Analysis for C26H40AuFNOPS (Leco TruSpec Micro CHN Elemental Analyser): C, 47.20; H, 6.09; N, 2.12%. Found: C, 47.04; H, 6.19; N, 1.82%. IR (Bruker Vertex 70v FTIR Spectrophotometer; cm−1): 1575 (s) ν(C=N), 1155 (s) ν(C–O), 1124 (s) ν(C–S). 1H NMR (Bruker Ascend 400 MHz NMR spectrometer with chemical shifts relative to Me4Si in CDCl3 solution at 298 K, ppm): δ 7.20 (dt, 1H, aryl-H5, 4JHF = 6.92 Hz, 3JHH = 7.33 Hz), 6.71–6.64 (m, br, 3H, aryl-H2,4,6), 3.84 (s, 3H, OCH3), 1.96–1.22 (m, br, 33H, Cy3P). 13C{1H} NMR (as for 1H NMR): δ 165.9 (Cq), 163.2 (d, aryl-C3, 1JCF = 243.79 Hz), 152.7 (d, aryl-C1, 3JCF = 9.77 Hz), 129.5 (d, aryl-C5, 3JCF = 9.56 Hz), 118.0 (d, aryl-C6, 4JCF = 2.36 Hz), 109.4 (d, aryl-C2, 2JCF = 22.06 Hz), 109.0 (d, aryl-C4, 2JCF = 21.19 Hz), 55.1 (OCH3), 33.3 (d, i-PC6H11, 1JCP = 28.01 Hz), 30.7 (o-PC6H11), 27.1 (d, m-PC6H11, 3JCP = 11.89 Hz), 25.9 (p-PC6H11). 31P{1H} NMR (as for 1H NMR but with chemical shift referenced to 85% aqueous H3PO4 as the external reference): δ 57.7.

Experimental details

The C-bound H atoms were geometrically placed (C–H = 0.95–1.00 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). Disorder was modelled in four regions of the structure. Each 3-fluorophenyl ring was disordered over two co-planar orientations so the C atoms were exactly coincident but, two positions were apparent for the F atoms; the latter were refined independently. At the conclusion of the refinement, the major component of the C2- and C2a-rings had site occupancy factors of 0.763(14) and 0.741(14), respectively. The cyclohexyl‐C31 ring exhibited two, partially overlapping chair conformations. Thus, while the C31, C33 and C36 atoms were coincident, the remaining atoms were statistically disordered (from refinement) and refined independently. The cyclohexyl–C31a ring exhibited two conformations, i.e. chair and boat, depending on the relative orientation of the C34a atom. From independent refinement, the chair conformation was most pronounced with a site occupancy factor of 0.77(3). For the different orientations of the two disordered cyclohexyl rings, soft distance constraints were introduced with 1,1‐C–C and 1,2‐C⋯C separations being 1.53 ± 0.01 and 2.52 ± 0.01 Å, respectively. Finally, the crystal was refined as an inversion twin with the minor component contributing 0.109(8) to the measured crystal.

Comment

The specific interest leading to the synthesis and characterization of the title compound, Cy3Au[SC(OMe)=NC6H4F-3], (I), revolves around the noted biological activity of related species, such as anti-cancer [6] and anti-bacterial [7] potential; Cy = cyclo‐C6H11. The inclusion of a fluoride atom in the molecular structure was motivated by suggestions in the literature that such chemical substitution enhances biological activity [8]. Herein, the synthesis, spectroscopic characterization and X-ray crystal structure determination of (I) are described.

The crystallographic asymmetric unit of (I) comprises two formula units and their molecular structures are shown in the figure (50% displacement ellipsoids; minor disorder components are omitted). Each of the gold(I) atoms in (I) is coordinated by phosphane–P [Au1–P1 = 2.2638(15) Å; Au2–P1a = 2.2674(15) Å] and thiolate‐S [Au1–S1 = 2.2987(15) Å; Au2–S1a = 2.3043(15) Å] atoms with the equivalent bonds being experimentally indistinguishable. The P- and S-donor atoms define an almost linear geometry with the P1–Au1–S1 angle of 177.25(6)° being significantly greater than the P1a–Au2–S1a angle of 170.98(6)°. In each case, the thiolato ligand is orientated so the O atom is directed towards the Au atom with the Au1⋯O1 and Au2⋯O1a separations being 2.993(5) and 3.164(5) Å, respectively. These separations indicate there is no direct correlation between the magnitude of the Au⋯O interaction and the deviation from the ideal linear angle. In some related structures an alternate conformation of the thiolate ligand is observed where the O atom is directed away from the Au atom, an orientation which allows for the formation of an intramolecular Au⋯π(phenyl) contact instead. Calculations (DFT) indicate that Au⋯π interactions are approximately 6 kcal/mol more stable than Au⋯O contacts [9], [10] but, the former are susceptible to steric effects [11]. In this regard, it is noteworthy that none of the known Cy3PAu[SC(OR)=NAr] structures feature intramolecular Au⋯π interactions, an observation that is ascribed to the bulky nature of the cyclohexyl substituents [11]. The major conformational difference in the molecules is apparent in the relative disposition of the fluorophenyl groups with respect to the central CNOS plane, as seen in the dihedral angles formed between the plane through the C1, N1, O1 and S1 atoms and that through the fluorophenyl ring of 87.9(2)° for the Au1-molecule, which is clearly closer to orthogonal compared to the equivalent angle of 75.1(2)° for the Au2-molecule.

In the molecular packing for (I), layers of molecules assemble in the ab-plane with the cyclohexyl and fluorophenyl rings projecting to either side. These stack along the c-axis so the latter rings occupy channels. Yet, there are no close interactions between the rings. A more detailed analysis of the packing is not warranted owing to the disorder in several of the residues.


Corresponding author: Edward R. T. Tiekink, Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia, E-mail:

Funding source: Ministry of Education, Malaysia

Award Identifier / Grant number: TR002-2014A

Funding source: Sunway University

Award Identifier / Grant number: STR-RCTR-RCCM-001-201

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This research was supported by the Trans‐disciplinary Research Grant Scheme (TR002‐2014A) provided by the Ministry of Education, Malaysia. Sunway University Sdn Bhd is thanked for financial support of this work through Grant No. STR‐RCTR‐RCCM‐001‐2019.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Rigaku Oxford Diffraction: CrysAlisPRO; Rigaku Corporation: Oxford, UK, 2018.Suche in Google Scholar

2. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.Suche in Google Scholar

3. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Suche in Google Scholar

4. Farrugia, L. J. WinGX and ORTEP for Windows: an update. J. Appl. Cryst. 2012, 45, 849–854; https://doi.org/10.1107/s0021889812029111.Suche in Google Scholar

5. Yeo, C. I., Tan, S. L., Kwong, H. C., Tiekink, E. R. T. [(Z)-N-(3‐Fluorophenyl)-O-methylthiocarbamato-κS]-(triphenylphosphane-κP)gold(I): crystal structure, Hirshfeld surface analysis and computational study. Acta Crystallogr. 2020, E76, 1284–1290; https://doi.org/10.1107/s2056989020009469.Suche in Google Scholar

6. Ooi, K. K., Yeo, C. I., Mahandaran, T., Ang, K. P., Akim, A. M., Cheah, Y.‐K., Seng, H.‐L., Tiekink, E. R. T. G2/M cell cycle arrest on HT-29 cancer cells and toxicity assessment of triphenylphosphanegold(I) carbonimidothioates, Ph3PAu[SC(OR)=NPh], R = Me, Et, and iPr, during zebrafish development. J. Inorg. Biochem. 2017, 166, 173–181; https://doi.org/10.1016/j.jinorgbio.2016.11.008.Suche in Google Scholar

7. Yeo, C. I., Sim, J.‐H., Khoo, C.‐H., Goh, Z.‐J., Ang, K.‐P., Cheah, Y.‐K., Fairuz, Z. A., Halim, S. N. B. A., Ng, S. W., Seng, H.‐L., Tiekink, E. R. T. Pathogenic Gram-positive bacteria are highly sensitive to triphenylphosphanegold(O-alkylthiocarbamates), Ph3PAu[SC(OR)=N(p-tolyl)] (R = Me, Et and iPr). Gold Bull. 2013, 46, 145–152; https://doi.org/10.1007/s13404-013-0091-z.Suche in Google Scholar

8. Meanwell, N. A. Fluorine and fluorinated motifs in the design and application of bioisosteres for drug design. J. Med. Chem. 2018, 61, 5822–5880; https://doi.org/10.1021/acs.jmedchem.7b01788.Suche in Google Scholar

9. Yeo, C. I., Khoo, C.‐H., Chu, W.‐C., Chen, B.‐J., Chu, P.‐L., Sim, J.‐H., Cheah, Y.-K., Ahmad, J., Halim, S. N. A., Seng, H.‐L., Ng, S. W., Otero-de-la‐Roza, A., Tiekink, E. R. T. The importance of Au⋯π(aryl) interactions in the formation of spherical aggregates in binuclear phosphanegold(I) complexes of a bipodal thiocarbamate dianion: a combined crystallographic and computational study, and anti-microbial activity. RSC Adv. 2015, 5, 41401–41411; https://doi.org/10.1039/c5ra05604g.Suche in Google Scholar

10. Yeo, C. I., Tan, S. L., Otero-de-la-Roza, A., Tiekink, E. R. T. A conformational polymorph of Ph3PAu[SC(OEt)=NPh] featuring an intramolecular Au⋯π interaction. Z. Kristallogr. Cryst. Mater. 2016, 231, 653–661; https://doi.org/10.1515/zkri-2016-1988.Suche in Google Scholar

11. Kuan, F. S., Ho, S. Y., Tadbuppa, P. P., Tiekink, E. R. T. Electronic and steric control over Au⋯Au, C–H⋯O and C–H⋯π interactions in the crystal structures of mononuclear triarylphosphinegold(I) carbonimidothioates: R3PAu[SC(OMe)=NR′] for R = Ph, o-tol, m-tol or p-tol, and R′ = Ph, o-tol, m-tol, p-tol or C6H4NO2-4. CrystEngComm 2008, 10, 548–564; https://doi.org/10.1039/b717198f.Suche in Google Scholar

Received: 2020-07-24
Accepted: 2020-09-03
Published Online: 2020-10-02
Published in Print: 2021-01-26

© 2020 Chien Ing Yeo et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Artikel in diesem Heft

  1. Frontmatter
  2. New Crystal Structures
  3. The crystal structure of 3-oxo-urs-12-en-28-oic acid, C30H46O3·1/6H2O
  4. The crystal structure of (3S,12R,20R,24R)-3,12-diacetyl-20,24-epoxy-dammarane-3,12,25–triol–ethyl acetate (4/1), C34H56O6⋅ 0.25(C4H8O2)
  5. A new polymorph of tetrakis(dimethylammonium) catena-poly[tetrakis(μ2-sulfato-κ2O:O′)dizinc(II)], Zn2C8H32N4O16S4
  6. Crystal structure of 10-oxysophoridine, C15H22N2O2
  7. The crystal structure of (5R,8R,9R,10R,12R,13R,14R)-12-hydroxy-4,4,8,10,14-pentamethyl-17-((R)-2,6,6-trimethyltetrahydro-2H-pyran-2-yl)tetradecahydro-3H-cyclopenta[a]phenanthrene-3,6(2H)-dione, C30H48O4
  8. Synthesis, crystal structure and optical property of 1,6-bis(p-tolylthio)pyrene, C30H22S2
  9. The crystal structure of hexakis(2-(pyridin-2-ylamino)pyridin-1-ium) decavanadate(V) dihydrate, C60H64N18O30V10
  10. Preparation and crystal structure of a cationic olefin polymerization precatalyst: (1,7-bis(2,6–dichlorophenyl)-1,7-di-aza-4-oxo-heptan-1,4,7-triyl)dimethyl zirconium(IV), C18H20Cl4N2OZr
  11. The crystal structure of fac-tricarbonyl(4,4-dimethyl-2,2-dipyridyl-κ2N,N′)- (pyrazole-κN)rhenium(I) nitrate, C18H16O3N4Re
  12. Synthesis and crystal structure of hexaaquacopper(II) 2,5-dicarboxyterephthalate, C10H16O14Cu
  13. The crystal structure of (8R,10R,12R,14R)- 12-hydroxy-16-(5-(2-hydroxypropan-2-yl)-2-methyltetrahydrofuran-2-yl)- 4,4,8,10,14-pentamethyltetradecahydro-3H- cyclopenta[a]phenanthrene-3,6(2H)-dione, C30H48O5
  14. Structure of the mixed crystal (S)-(6-(bromo/chloro)-2-methoxy-2,6-dihydroquinolin-3-yl)(phenyl)methanol, C17H14Br0.5Cl0.5NO2
  15. The crystal structure of trans-tetraaqua-bis(4-acetylphenoxyacetato-κ1O)manganese(II), C20H26O12Mn
  16. Crystal structure of (E)-2-(4-fluoro-3-(trifluoromethyl)benzylidene)-7-methoxy-3,4-dihydronaphthalen-1(2H)-one, C19H14F4O2
  17. Crystal structure of DL-α-(methylaminomethyl)benzyl alcohol, C9H13NO
  18. The crystal structure of dipentaerthritol hexanitrate, C10H16N6O19
  19. Crystal structure of N,N-diphenylformamide, C13H11NO
  20. Crystal structure of (E)-2-(3,5-bis(trifluoromethyl)benzylidene)-7-methoxy-3,4-dihydronaphthalen- 1(2H)-one, C20H14F6O2
  21. Crystal structure of ortho-methoxy benzaldehyde, C8H8O2 – a second polymorph and deposition of 3D coordinates
  22. Crystal structure of catena-poly[diaqua-bis(μ2-2-(4-(2,4,4-trimethylpentan-2-yl)phenoxy)propanoato-κ2O:O')-(2-(4-(2,4,4-trimethylpentan-2-yl)phenoxy)propanoato-κ2O,O')yttrium(III)], C51H79O11Y
  23. Crystal structure of benzylthiouronium chloride, C8H11ClN2S
  24. Synthesis and crystal structure of tert-butyl (2′R,3R,3′R,4aR,9aS)-1-acetyl-5-chloro-3″-methyl-2,5″,9′-trioxo-1″-phenyl-1″,4a′,5″,9a′-tetrahydro-1′H,3′H,9′H-dispiro[indoline-3,4′-xanthene-2′,4″-pyrazole]-3′-carboxylate, C36H32ClN3O7
  25. Crystal structure of 2-hydroxy-4-methoxy benzaldehyde, C8H8O3
  26. Crystal structure of poly[diaqua-(m3-3′,5′-dicarboxy-[1,1′-biphenyl]-3,4-dicarboxylato-K4O,O′:O″:O‴) cadmium(II)], C16H11O10Cd
  27. Crystal structure of {tetraaqua-bis(1-(4-hydroxy-2-oxotetrahydrofuran-3-yl)-2-((4aS,6R,8aS)-6-hydroxy-5-(hydroxymethyl)-5,8a-dimethyl-2-methylenedecahydronaphthalen-1-yl)ethane-1-sulfonato-k2O,O') calcium(II)}-{triaqua-bis(1-(4-hydroxy-2-oxotetrahydrofuran-3-yl)-2-((4aS,6R,8aS)-6-hydroxy-5-(hydroxymethyl)-5,8a-dimethyl-2-methylenedecahydronaphthalen-1-yl)ethane-1-sulfonato-k2O,O') calcium(II)} – water – acetone (1/1/8/2)
  28. Synthesis and crystal structure of bis{2-bromo-6-((E)-((4-((E)-1-(methoxy-imino)ethyl)phenyl)imino)methyl)phenolato- κ2N,O}zinc(II)-methanol(1/2), C65H60Br4N8O9Zn2
  29. Crystal structure of benzenesulphonic acid
  30. Crystal structure of N-benzyl-N-nicotinoyl-nicotine amide C19H15N3O2
  31. Crystal structure of poly[aqua(μ3-2,4-diamino-benzenesulfonato-κ4N:N′,O:O′)silver(I)], C12H18O8N4S2Ag2
  32. Crystal structure of 1,4-bis(methylpyridinium benzene) bis(1,2-dicyanoethene-1,2-dithiolato-κ2S:S)nickel(II), C26H18N6NiS4
  33. Crystal structure of the Cu(II) complex chlorido-(6-oxo-2-phenyl-1,6-dihydropyrimidine-4-carboxylato-k2N,O)-(phenanthroline-k2N,N')copper(II), C23H15ClCuN4O3
  34. Crystal structure of phenarsazine chloride acetic acid solvate, C14H13AsClNO2
  35. Crystal structure of poly[aqua-(μ2-3,3′,4,5′-biphenyl tetracarboxylate- κ3O,O′:O′′) -(μ2-4,4′-bis(pyrid-4-yl)biphenyl-κ2N:N′)zinc(II)], C27H18NO9Zn
  36. Crystal structure of catena-poly[(μ2-3-amino-benzenedisulfonato-κ2N:O)-bis (3-methyl-isoquinoline-κN)silver(I)], C26H24N3O3SAg
  37. Crystal structure of 2-((4-Aminophenyl)thio)acetic acid, C8H9NO2S
  38. Crystal structure of phenarsazine chloride dimethylsulfoxide solvate, C14H15AsClNOS
  39. Synthesis and crystal structure of 2-azido-N-phenylacetamide, C8H8N4O
  40. Crystal structure of chlorido{hydridotris[3-phenyl-5-methylpyrazol-1-yl-κN3]borato}copper(II), C30H28BClCuN6
  41. Crystal structure of benzanthrone – a redetermination for correct molecular geometry and localization of hydrogen atoms
  42. Crystal structure of 4-bromobenzaldehyde – complete redetermination at 200 K, C7H5BrO
  43. Crystal structure and spectroscopic properties of chlorido{hydridotris[3-,5-dimethylpyrazol-1-yl-κN3]borato}(3-,5-dimethylpyrazol-1-yl-κN)copper(II), C20H30BClCuN8
  44. The crystal structure of 4-((2-hydroxynaphthalen-1-yl)(pyrrolidin-1-yl)methyl)benzonitrile, C22H20N2O
  45. Crystal structure of 4-ethyl-3-phenylisoquinolin-1(2H)-one, C17H15NO
  46. Crystal structure of (tricyclohexylphosphane-κP)-[(Z)-N-(3-fluorophenyl)-O-methylthiocarbamato-k1S]gold(I), C26H40AuFNOPS
  47. Crystal structure of (3S,8R,10R,12R,14R)-12-hydroxy-4,4,8,10,14-pentamethyl-17-((R)-2,6,6-trimethyltetrahydro-2H-pyran-2-yl) hexadecahydro-1H-cyclopenta[a]phenanthren-3-yl acetate, C32H54O4
  48. The crystal structure of 2-[(S)-1-(naphthalen-1-yl)ethyl]-2,3,7,7a- tetrahydro-3a,6-epoxyisoindol-1(6H)-one, C19H20NO2
  49. Crystal structure of {hydridotris[3-(t-butyl)-5-isopropylpyrazol-1-yl-κN3]borato}thallium(I), C30H52BN6Tl
  50. Synthesis and crystal structure of 1-octyl-3-phenylquinoxalin-2(1H)-one, C22H26N2O
  51. The crystal structure of 2,6-difluorophenol, C6H4F2O
  52. 4-(9H-Fluoren-9-yl)-4-methylmorpholin-4-ium bromide, C18H20BrNO
  53. The crystal structure of 2,4-dimethylimidazole monohydrate, C5H10N2O
  54. The crystal structure of 1,2-dimethylimidazole, C5H8N2
  55. The crystal structure of 3-ammonio-4-aminobenzoate, C7H8N2O2 – a second polymorph
  56. The crystal structure of 4-hydroxy-2,5-bis(1-methyl-1H-imidazol-3-ium-2-ylthio)-3,6-dioxocyclohexa-1,4-dienolate chloride monohydrate, C14H15N4O5S2Cl
  57. The crystal structure of butyrylferrocene, C14H16FeO
  58. The crystal structure of bi-1,1′-cyclopentane-1,1′-diol, C10H18O2
  59. The crystal structure of 2-iso-propylimidazole, C6H10N2
  60. The crystal structure of aqua-tris (1,3-diphenylpropane-1,3-dionato-κ2O,O′)-lanthanum(III), C45H35LaO7
  61. Crystal structure of (3E,5E)-3,5-bis-4-methoxy-3-(trifluoromethyl)benzylidene)-1-methylpiperidin-4-one, C24H21F6NO3
  62. The crystal structure of 3,5-dichloro-6-diazo-2,4-dinitrocyclohexa-2,4-dien-1-one, C6Cl2N4O5
  63. Crystal structure of carbonyl(2-methylquinolin-8-olato-κ2N,O)(triphenylarsine-κAs)rhodium(I), C29H23AsNO2Rh
  64. Crystal structure of (1aS,1a1S,2S)-4a-butoxy-1a,1a1,2,4a,5,6-hexahydro-1H-cyclobuta[de]naphthalen-2-yl-4-nitrobenzoate, C22H25NO5
  65. Crystal structure of carbonyl(2-oxopyridin-1(2H)-olato-k2O,O′)(triphenylarsine-κAs)rhodium(I), C24H19AsNO3Rh
  66. Crystal structure of catena-poly[triqua-bis(μ2-4-carboxy-2-(1H-tetrazol-1-yl)-1H-imidazole-5-carboxylato-k3N,O:O′)barium(II)] tetrahydrate, C14H14BaN12O15
  67. Crystal structure of (E)-3′,6′-bis(ethylamino)-2-((quinoxalin-2-ylmethylene)amino)spiro[isoindoline-1,9′-xanthen]-3-one, C35H32N6O2
  68. Crystal structure of diaqua-bis(μ2-5-chloro-salicylato-κ3O,O′:O′)-bis(5-chloro-salicylato-κ2O,O′)-bis(1,10-phenanthroline-κ2N,N′) dilead(II) – water (1/2), C52H36C14N4O14Pb2·2(H2O)
  69. Crystal structure of (E)-2-(4-ethoxycarbonyl-3,5-dimethyl-2-(pyrrole-2-ylmethyleneamino)-3′,6′-dihydroxylspiro[isoindoline-1,9′-xanthen]-3-one-methanol (1/1), C31H29N3O7
  70. The crystal structure of 5H-dibenzo[b,e]azepine-6,11-dione, C14H9NO2
  71. Crystal structure of (E)-2-(4-fluoro-2-(trifluoromethyl)benzylidene)-7-methoxy-3,4-dihydronaphthalen-1(2H)-one, C19H14F4O2
  72. The crystal structure of N-(2-methoxy-4,5-bis[phenylselanyl]phenyl)picolinamide, C25H20N2O2Se2
  73. The crystal structure of (E)-2-(5-bromo-2-hydroxybenzylidene)-N-phenylhydrazine-1- carboxamide monohydrate, C14H14BrN3O3
  74. Crystal structure of fac-tricarbonyl-(nitrato-k1O)-bis(pyridine-κN)-rhenium, C13H10O6N3Re
  75. Crystal structure of (E)-2-(((1H-pyrrol-2-yl)methylene)amino)-3′,6′-dihydroxyspiro[isoindoline-1,9′-xanthen]-3-one — methanol (1/2), C27H25N3O6
  76. The crystal structure of 4-amino-N′-(4-aminobenzoyl)benzohydrazide monohydrate, C14H16N4O3
  77. Crystal structure of bis(amino(carbamothioylamino)methaniminium) 5-hydroxyisophthalate monohydrate, C12H20N8O6S2
  78. The crystal structure of 2-(chloromethyl)pyridine, C6H6ClN
  79. The crystal structure of 1-bromo-4-iodo-benzene, C6H4BrI
  80. The crystal structure of 2,6-dimethyl-4-nitro-phenol, C8H9NO3
  81. The crystal structure of 3-chloropropionic acid, C3H5ClO2
  82. The crystal structure of 2-(2-methoxyphenyl)acetic acid, C9H10O3
Heruntergeladen am 8.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2020-0399/html
Button zum nach oben scrollen