Startseite Crystal structure of {hydridotris[3-(t-butyl)-5-isopropylpyrazol-1-yl-κN3]borato}thallium(I), C30H52BN6Tl
Artikel Open Access

Crystal structure of {hydridotris[3-(t-butyl)-5-isopropylpyrazol-1-yl-κN3]borato}thallium(I), C30H52BN6Tl

  • Kiyoshi Fujisawa EMAIL logo , Daichi Shimizu und Edward R. T. Tiekink ORCID logo EMAIL logo
Veröffentlicht/Copyright: 2. Oktober 2020

Abstract

C30H52BN6Tl, monoclinic, P21/n (no. 14), a = 9.611(3) Å, b = 17.586(5) Å, c = 19.710(6) Å, β = 98.374(7)°, V = 3295.8(17) Å3, Z = 4, Rgt(F) = 0.0152, wRref(F2) = 0.0381, T = 182 K.

CCDC no.: 2027109

The molecular structure is shown in the Figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal:Colourless prism
Size:0.27 × 0.09 × 0.04 mm
Wavelength:Mo Kα radiation (0.71073 Å)
μ:4.93 mm−1
Diffractometer, scan mode:Rigaku XtaLAB P200, ω
θmax, completeness:27.5°, 99%
N(hkl)measured, N(hkl)unique, Rint:24,824, 7518, 0.023
Criterion for Iobs, N(hkl)gt:Iobs > 2 σ(Iobs), 6366
N(param)refined:358
Programs:NUMABS [1], CrystalClear [2], SIR2014 [3], SHELX [4], WinGX/ORTEP [5]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
Tl0.27659 (2)0.26547 (2)0.65845 (2)0.02258 (3)
N110.40691 (14)0.17760 (8)0.74799 (7)0.0198 (3)
N120.44197 (13)0.20309 (8)0.81438 (6)0.0177 (3)
N210.14323 (14)0.27354 (8)0.76019 (7)0.0190 (3)
N220.21860 (13)0.27641 (8)0.82514 (7)0.0173 (3)
N310.40338 (14)0.36588 (8)0.73614 (7)0.0206 (3)
N320.43995 (13)0.34937 (8)0.80487 (7)0.0180 (3)
C100.27880 (18)0.05073 (13)0.65581 (10)0.0362 (5)
H10A0.2338380.0260460.6915620.054*
H10B0.2645890.0196180.6141250.054*
H10C0.2370180.1010640.6458530.054*
C110.5081 (2)0.09579 (13)0.62434 (11)0.0418 (5)
H11A0.4679720.1463350.6135740.063*
H11B0.4931000.0639200.5831360.063*
H11C0.6092170.1005050.6402590.063*
C120.4986 (3)−0.02022 (12)0.69604 (11)0.0474 (6)
H12A0.599037−0.0158120.7136840.071*
H12B0.486507−0.0505380.6538720.071*
H12C0.450089−0.0451180.7304090.071*
C130.43649 (18)0.05926 (10)0.68063 (9)0.0254 (4)
C140.45971 (16)0.10721 (10)0.74565 (8)0.0201 (3)
C150.53087 (18)0.08736 (10)0.81035 (9)0.0254 (4)
H150.5789400.0410680.8226720.030*
C160.51701 (17)0.14869 (10)0.85260 (8)0.0210 (3)
C170.56893 (18)0.15472 (10)0.92851 (8)0.0256 (4)
H170.5659980.2094690.9419470.031*
C180.7210 (2)0.12717 (14)0.94493 (10)0.0428 (5)
H18A0.7248550.0724540.9359610.064*
H18B0.7561630.1370830.9933130.064*
H18C0.7793790.1543080.9160260.064*
C190.4740 (2)0.11002 (13)0.96988 (10)0.0383 (5)
H19A0.3770530.1283750.9587500.057*
H19B0.5062900.1171041.0189590.057*
H19C0.4776210.0558830.9584640.057*
C20−0.0981 (2)0.33071 (12)0.65806 (10)0.0353 (5)
H20A−0.1095830.3782320.6826210.053*
H20B−0.1724390.3266770.6185160.053*
H20C−0.0060950.3304000.6422350.053*
C21−0.0932 (2)0.18890 (12)0.66687 (10)0.0380 (5)
H21A−0.0020230.1882410.6501870.057*
H21B−0.1688510.1857000.6278480.057*
H21C−0.0993160.1454260.6974080.057*
C22−0.25254 (19)0.26461 (13)0.73012 (11)0.0378 (5)
H22A−0.2613300.2210050.7601620.057*
H22B−0.3260750.2619820.6901410.057*
H22C−0.2628140.3118460.7553100.057*
C23−0.10802 (17)0.26307 (10)0.70633 (9)0.0224 (3)
C240.00743 (16)0.26758 (9)0.76787 (9)0.0188 (3)
C25−0.00631 (17)0.26602 (10)0.83722 (9)0.0204 (3)
H25−0.0912090.2618860.8563280.024*
C260.12895 (17)0.27172 (9)0.87281 (8)0.0175 (3)
C270.17461 (17)0.27782 (9)0.94914 (8)0.0201 (3)
H270.2688130.2530300.9602410.024*
C280.0731 (2)0.23709 (12)0.98929 (10)0.0347 (4)
H28A−0.0185770.2625240.9814790.052*
H28B0.1101200.2383801.0383020.052*
H28C0.0623460.1841380.9739250.052*
C290.1903 (2)0.36127 (11)0.97006 (9)0.0320 (4)
H29A0.2546900.3864830.9430090.048*
H29B0.2280220.3647551.0189040.048*
H29C0.0981460.3861810.9617090.048*
C300.5185 (2)0.42674 (13)0.60530 (10)0.0405 (5)
H30A0.6190840.4248300.6231910.061*
H30B0.5050610.4521410.5605690.061*
H30C0.4810670.3748940.6001950.061*
C310.2842 (2)0.47519 (13)0.62709 (11)0.0399 (5)
H31A0.2447730.4237370.6229580.060*
H31B0.2716780.4995600.5818910.060*
H31C0.2357780.5050490.6585160.060*
C320.4981 (3)0.55250 (13)0.66185 (12)0.0539 (6)
H32A0.4505120.5805030.6948150.081*
H32B0.4806320.5777750.6171080.081*
H32C0.5994610.5513260.6779800.081*
C330.44121 (19)0.47087 (11)0.65504 (9)0.0275 (4)
C340.46267 (17)0.43287 (10)0.72519 (9)0.0215 (3)
C350.53899 (17)0.45957 (10)0.78619 (9)0.0241 (4)
H350.5919340.5053000.7923580.029*
C360.52228 (16)0.40638 (10)0.83568 (8)0.0199 (3)
C370.58361 (17)0.40756 (10)0.91067 (8)0.0234 (4)
H370.5118880.3866880.9376750.028*
C380.6185 (2)0.48894 (12)0.93479 (10)0.0405 (5)
H38A0.6918260.5095300.9102430.061*
H38B0.6522520.4888700.9841670.061*
H38C0.5339510.5205420.9253990.061*
C390.7148 (2)0.35812 (12)0.92414 (10)0.0369 (5)
H39A0.6928260.3068230.9063050.055*
H39B0.7468820.3554690.9736140.055*
H39C0.7891050.3802520.9011900.055*
B10.38144 (19)0.27889 (10)0.83853 (9)0.0180 (4)
H10.4107930.2829650.8892010.022*

Source of material

A solution of K{HB(3-tBu-5-iPrpz)3} (326.0 mg, 0.596 mmol) in dichloromethane (15 mL) was added to a solution of TlOAc (192.8 mg, 0.732 mmol) in ethanol (35 mL). The mixture was stirred for 3 h and the solvent then evaporated under vacuum. The resulting solid was extracted with dichloromethane (35 mL). The filtrate was evaporated under vacuum, and a white powder was obtained. Colourless crystals were obtained by slow evaporation from a saturated dichloromethane/ethanol (5:1 v/v) solution at room temperature. Yield: 52% (219.3 mg, 0.308 mmol).

Anal. Calcd. for C30H52BN6Tl. C, 50.61; H, 7.36; N, 11.80%. Found: C, 50.22; H, 7.20; N, 11.81%.

IR (JASCO FT/IR-6300 spectrophotometer, KBr; cm−1): 2963 (s) ν(C–H), 2867 (m) ν(C–H), 2562 (m) ν(B–H), 1529 (m) ν(C=N).

1H NMR (Bruker AVANCE III-500 NMR spectrometer, chemical shifts relative to CDCl3 298 K; ppm): δ 1.10 (doublet, J = 6.5 Hz, CH(CH3)2, 18H), 1.31 (singlet, C(CH3)3, 27H), 3.34 (septet, J = 6.5 Hz, CH(CH3)2, 3H), 5.85 (singlet, pyrazole-4, 3H).

13C{1H} NMR (as for 1H NMR) δ: 23.5 [CH(CH3)2], 26.4 [C(CH3)3], 32.3 [CH(CH3)2], 32.5 [C(CH3)3], 98.2 (pyrazole-4C), 155.5 (pyrazole-3C), 161.8 (pyrazol-5C).

Experimental details

The C-bound H atoms were geometrically placed (C–H = 0.95–1.00 Å & B–H = 1.00 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C) and 1.2Ueq(B).

Comment

Hydridotris(pyrazolyl)borate ligands, {HB(3‐R-5‐R′)3}, for R, R′ = H, alkyl and aryl, are very effective, anionic tripod-type nitrogen-containing ligands and their coordination chemistry has provided many fascinating examples of unusual geometries and reactivities [6], [7]. The steric bulk of these ligands can be readily modified by the introduction of an appropriate alkyl and/or aryl substituent at the 3- and 5-positions of the pyrazolyl rings. For example, by using a less hindered ligand, [HB(3,5-(iPr)2pz)3], binuclear copper(II) complexes such as the μ-η22-peroxido copper(II) complex, [{Cu[HB(3,5-(iPr)2pz)3]}2(μ-O2)], and the μ-hydroxido copper(II) complex, [{Cu[HB(3,5-(iPr)2pz]}2(μ-OH)2], were obtained [8]. On the other hand, in the case of the highly hindered ligand, [HB(3-tBu-5-iPrpz)3], the mononuclear, side-on superoxido copper(II) complex, [Cu(O2){HB(3-tBu-5-iPrpz)3}] [9], and the mononuclear hydroxido copper(II) complex, [Cu(OH){HB(3-tBu-5-iPrpz)3}] [10], are selectively formed. Even more hindered adamantyl substituted ligands were prepared in order to ensure exclusive mononuclear complex formation [11], [12]. Attention has also been directed to evaluating the influence of systematic changes in the steric profiles in these ligands in thallium(I) complexes, especially with “super-hindered” ligands [13], [14]. In continuation of these studies, this report details the synthesis of a thallium(I) complex with a highly hindered ligand, i.e. [Tl{HB(3-tBu-5-iPrpz}3], (I), along with spectroscopic characterization and X-ray crystal structure determination.

The molecular structure of (I) is illustrated in the figure (50% displacement ellipsoids) and shows the thallium(I) centre to be tri-coordinated by three nitrogen atoms of the {HB(3-tBu-5-iPrpz)3} anion. The Tl—N11 [2.5352(14) Å], Tl—N21 [2.5363(15) Å] and Tl—N31 [2.5307(15) Å] bond lengths are experimentally equivalent. The resulting N3 donor set defines a trigonal-pyramidal geometry with the N11—Tl—N21 [74.88(5)°], N11—Tl—N31 [81.87(5)°] and N21—Tl—N31 [74.74(5)°] angles spanning a range of about 7°. The molecule approximates 3-fold symmetry when viewed down the spine and the Tl-bound lone-pair of electrons is projected to occupy a position along the extension of this axis.

The same substitution pattern in the pyrazolyl ligand of (I) is found in a related structure but, containing only two pyrazolyl residues, i.e. [Tl{H2B(3-tBu-5-iPrpz)2}] [15]. Here, the thallium(I) centre is bi-coordinated by two pyrazolyl‐N atoms with the Tl—N bond lengths [2.628(11) and 2.664(10) Å] being longer than those in (I), an observation explained in terms of the presence of an intramolecular Tl…HB interaction as well as two close, intermolecular Tl(lone-pair)…π(pyrazolyl) contacts; see ref. [16] for a discussion of related intermolecular Tl…π(arene) interactions. In another structure related to (I) where the t-butyl groups are replaced with adamantanyl substituents, i.e. [Tl{H2B(3-Ad-5-iPrpz)2}] [14], a disparity arises in the Tl—N bond lengths with one bond, i.e. 2.498(3) Å, being significantly shorter than the other two Tl—N bonds, i.e. 2.530(4) and 2.538(3) Å. The N—Tl—N angles span a narrower range in the literature structure, i.e. 74.4(1) to 78.2(1)°, compared with (I). From the foregoing, it is apparent that no systematic variations in geometric parameters are evident that can be related to the presence of t-butyl or adamantanyl substituents in the 3-position of the pyrazolyl groups in these thallium(I) structures.

In the molecular packing, following the distance criteria assumed in PLATON [17], there are no directional interactions between complexes of (I). Thus, an analysis of the calculated Hirshfeld surfaces and of the full and delineated two-dimensional fingerprint plots was conducted using Crystal Explorer 17 [18] and literature methods [19]. Reflecting the lack of directional interactions in the crystal, H…H contacts account for 88.4% of all contacts. The only other contributions to the calculated Hirshfeld surface are from H…C/C…H [5.9%], H…N/N…H [4.8%] and H…Tl/Tl…H [0.9%].


Corresponding authors: Kiyoshi Fujisawa, Department of Chemistry, Ibaraki University, Mito, Ibaraki 310-8512, Japan, E-mail: ; and Edward R. T. Tiekink, Department of Chemistry, Ibaraki University, Mito, Ibaraki 310-8512, Japan, and Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500Bandar Sunway, Selangor Darul Ehsan, Malaysia, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: KF is grateful for support from the joint usage/research programme “Artificial Photosynthesis” based at Osaka City University. Sunway University Sdn Bhd is thanked for financial support of this work through Grant No. STR-RCTR-RCCM-001–2019.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Rigaku Corporation. NUMABS; Rigaku Corporation: Tokyo, Japan, 1999.Suche in Google Scholar

2. Rigaku Corporation. CrystalClear-SM Expert; Rigaku Corporation: Tokyo, Japan, 2019.Suche in Google Scholar

3. Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. Crystal structure determination and refinement via SIR2014. J. Appl. Cryst. 2015, 48, 306–309; https://doi.org/10.1107/s1600576715001132.Suche in Google Scholar

4. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Suche in Google Scholar

5. Farrugia, L. J. WinGX and ORTEP for Windows: an update. J. Appl. Cryst. 2012, 45, 849–854; https://doi.org/10.1107/s0021889812029111.Suche in Google Scholar

6. Trofimenko, S. In Scorpionates: The Coordination Chemistry of Polypyrazolyborate Ligands; Imperial College Press: London, 1999.10.1142/p148Suche in Google Scholar

7. Pettinari, C. In Scorpionates II: Chelating Borate Ligands; Imperial College Press: London, 2008.10.1142/p527Suche in Google Scholar

8. Kitajima, N., Fujisawa, K., Fujimoto, C., Moro-oka, Y., Hashimoto, S., Kitagawa, T., Toriumi, K., Tatsumi, K., Nakamura, A. A new model for dioxygen binding in hemocyanin. Synthesis, characterization, and molecular structure of the μ-η2:η2 peroxo dinuclear copper(II) complexes, [Cu(HB(3,5-R2pz)3)]2(O2) (R = i-Pr and Ph). J. Am. Chem. Soc. 1992, 114, 1277–1291; https://doi.org/10.1021/ja00030a025.Suche in Google Scholar

9. Fujisawa, K., Tanaka, M., Moro-oka, Y., Kitajima, N. A monomeric side-on superoxocopper(II) complex Cu(O2)(HB(3-tBu-5-iPrpz)3). J. Am. Chem. Soc. 1994, 116, 12079–12080; https://doi.org/10.1021/ja00105a069.Suche in Google Scholar

10. Fujisawa, K., Kobayashi, T., Fujita, K., Kitajima, N., Moro-oka, Y., Miyashita, Y., Yamada, Y., Okamoto, K. Mononuclear copper(II) hydroxo complex: structural effect of a 3-position of tris(pyrazolyl)borates. Bull. Chem. Soc. Jpn. 2000, 73, 1797–1804; https://doi.org/10.1246/bcsj.73.1797.Suche in Google Scholar

11. Chen, P., Root, D. E., Campochiaro, C., Fujisawa, K., Solomon, E. I. Spectroscopic and electronic structure studies of the diamagnetic side-on CuII-superoxo complex Cu(O2)[HB{3-R-5-iPrpz)3]: antiferromagnetic coupling versus covalent delocalization. J. Am. Chem. Soc. 2003, 125, 466–474; https://doi.org/10.1021/ja020969i.Suche in Google Scholar PubMed

12. Fujisawa, K., Tada, N., Ishikawa, Y., Higashimura, H., Miyashita, Y., Okamoto, K. The most hindered hydrotris(pyrazolyl)borate ligand, X-ray structures of chlorocopper(II) complexes: [Cu(Cl){HB(3-Ad-5-Pripz)3}] as compared with [Cu(Cl){HB(3-But-5-Pripz)3}]. Inorg. Chem. Commun. 2004, 7, 209–212; https://doi.org/10.1016/j.inoche.2003.10.030.Suche in Google Scholar

13. Rheingold, A. L., Liable‐Sands, L. M., Yap, G. P. A., Trofimenko, S. Hydrotris(7-tert-butylindazol-2-yl)borate: a super-hindered homoscorpionate ligand. Chem. Commun. 1996, 1233–1234.10.1039/cc9960001233Suche in Google Scholar

14. Fujisawa, K., Takisawa, H. {Tris[3-(adamantan-1-yl)-5-isopropylpyrazol-1-yl-κN2] hydroborato} thallium(I): the scorpionate with the most bulk? Acta Crystallogr. 2013, C69, 986–989; https://doi.org/10.1107/s0108270113021677.Suche in Google Scholar

15. Dowling, C., Ghosh, P., Parkin, G. Structural characterization of bis(pyrazolyl)hydroborato thallium complexes: monomeric “two-coordinate” thallium derivatives supplemented by [Tl…H‐B] interactions. Polyhedron 1997, 16, 3469–3473; https://doi.org/10.1016/s0277-5387(97)00120-4.Suche in Google Scholar

16. Caracelli, I., Haiduc, I., Zukerman‐Schpector, J., Tiekink, E. R. T. M…π(arene) interactions for M = gallium, indium and thallium: influence upon supramolecular self-assembly and prevalence in some proteins. Coord. Chem. Rev. 2014, 281, 50–63; https://doi.org/10.1016/j.ccr.2014.09.001.Suche in Google Scholar

17. Spek, A. L. CheckCIF validation ALERTS: what they mean and how to respond. Acta Crystallogr. 2020, E76, 1–11; https://doi.org/10.1107/s2056989019016244.Suche in Google Scholar

18. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D., Spackman, M. A. Crystal Explorer v17; The University of Western Australia: Australia, 2017.Suche in Google Scholar

19. Tan, S. L., Jotani, M. M., Tiekink, E. R. T. Utilizing Hirshfeld surface calculations, non-covalent interaction (NCI) plots and the calculation of interaction energies in the analysis of molecular packing. Acta Crystallogr. 2019, E75, 308–318; https://doi.org/10.1107/s2056989019001129.Suche in Google Scholar

Received: 2020-07-26
Accepted: 2020-09-03
Published Online: 2020-10-02
Published in Print: 2021-01-26

© 2020 Kiyoshi Fujisawa et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Artikel in diesem Heft

  1. Frontmatter
  2. New Crystal Structures
  3. The crystal structure of 3-oxo-urs-12-en-28-oic acid, C30H46O3·1/6H2O
  4. The crystal structure of (3S,12R,20R,24R)-3,12-diacetyl-20,24-epoxy-dammarane-3,12,25–triol–ethyl acetate (4/1), C34H56O6⋅ 0.25(C4H8O2)
  5. A new polymorph of tetrakis(dimethylammonium) catena-poly[tetrakis(μ2-sulfato-κ2O:O′)dizinc(II)], Zn2C8H32N4O16S4
  6. Crystal structure of 10-oxysophoridine, C15H22N2O2
  7. The crystal structure of (5R,8R,9R,10R,12R,13R,14R)-12-hydroxy-4,4,8,10,14-pentamethyl-17-((R)-2,6,6-trimethyltetrahydro-2H-pyran-2-yl)tetradecahydro-3H-cyclopenta[a]phenanthrene-3,6(2H)-dione, C30H48O4
  8. Synthesis, crystal structure and optical property of 1,6-bis(p-tolylthio)pyrene, C30H22S2
  9. The crystal structure of hexakis(2-(pyridin-2-ylamino)pyridin-1-ium) decavanadate(V) dihydrate, C60H64N18O30V10
  10. Preparation and crystal structure of a cationic olefin polymerization precatalyst: (1,7-bis(2,6–dichlorophenyl)-1,7-di-aza-4-oxo-heptan-1,4,7-triyl)dimethyl zirconium(IV), C18H20Cl4N2OZr
  11. The crystal structure of fac-tricarbonyl(4,4-dimethyl-2,2-dipyridyl-κ2N,N′)- (pyrazole-κN)rhenium(I) nitrate, C18H16O3N4Re
  12. Synthesis and crystal structure of hexaaquacopper(II) 2,5-dicarboxyterephthalate, C10H16O14Cu
  13. The crystal structure of (8R,10R,12R,14R)- 12-hydroxy-16-(5-(2-hydroxypropan-2-yl)-2-methyltetrahydrofuran-2-yl)- 4,4,8,10,14-pentamethyltetradecahydro-3H- cyclopenta[a]phenanthrene-3,6(2H)-dione, C30H48O5
  14. Structure of the mixed crystal (S)-(6-(bromo/chloro)-2-methoxy-2,6-dihydroquinolin-3-yl)(phenyl)methanol, C17H14Br0.5Cl0.5NO2
  15. The crystal structure of trans-tetraaqua-bis(4-acetylphenoxyacetato-κ1O)manganese(II), C20H26O12Mn
  16. Crystal structure of (E)-2-(4-fluoro-3-(trifluoromethyl)benzylidene)-7-methoxy-3,4-dihydronaphthalen-1(2H)-one, C19H14F4O2
  17. Crystal structure of DL-α-(methylaminomethyl)benzyl alcohol, C9H13NO
  18. The crystal structure of dipentaerthritol hexanitrate, C10H16N6O19
  19. Crystal structure of N,N-diphenylformamide, C13H11NO
  20. Crystal structure of (E)-2-(3,5-bis(trifluoromethyl)benzylidene)-7-methoxy-3,4-dihydronaphthalen- 1(2H)-one, C20H14F6O2
  21. Crystal structure of ortho-methoxy benzaldehyde, C8H8O2 – a second polymorph and deposition of 3D coordinates
  22. Crystal structure of catena-poly[diaqua-bis(μ2-2-(4-(2,4,4-trimethylpentan-2-yl)phenoxy)propanoato-κ2O:O')-(2-(4-(2,4,4-trimethylpentan-2-yl)phenoxy)propanoato-κ2O,O')yttrium(III)], C51H79O11Y
  23. Crystal structure of benzylthiouronium chloride, C8H11ClN2S
  24. Synthesis and crystal structure of tert-butyl (2′R,3R,3′R,4aR,9aS)-1-acetyl-5-chloro-3″-methyl-2,5″,9′-trioxo-1″-phenyl-1″,4a′,5″,9a′-tetrahydro-1′H,3′H,9′H-dispiro[indoline-3,4′-xanthene-2′,4″-pyrazole]-3′-carboxylate, C36H32ClN3O7
  25. Crystal structure of 2-hydroxy-4-methoxy benzaldehyde, C8H8O3
  26. Crystal structure of poly[diaqua-(m3-3′,5′-dicarboxy-[1,1′-biphenyl]-3,4-dicarboxylato-K4O,O′:O″:O‴) cadmium(II)], C16H11O10Cd
  27. Crystal structure of {tetraaqua-bis(1-(4-hydroxy-2-oxotetrahydrofuran-3-yl)-2-((4aS,6R,8aS)-6-hydroxy-5-(hydroxymethyl)-5,8a-dimethyl-2-methylenedecahydronaphthalen-1-yl)ethane-1-sulfonato-k2O,O') calcium(II)}-{triaqua-bis(1-(4-hydroxy-2-oxotetrahydrofuran-3-yl)-2-((4aS,6R,8aS)-6-hydroxy-5-(hydroxymethyl)-5,8a-dimethyl-2-methylenedecahydronaphthalen-1-yl)ethane-1-sulfonato-k2O,O') calcium(II)} – water – acetone (1/1/8/2)
  28. Synthesis and crystal structure of bis{2-bromo-6-((E)-((4-((E)-1-(methoxy-imino)ethyl)phenyl)imino)methyl)phenolato- κ2N,O}zinc(II)-methanol(1/2), C65H60Br4N8O9Zn2
  29. Crystal structure of benzenesulphonic acid
  30. Crystal structure of N-benzyl-N-nicotinoyl-nicotine amide C19H15N3O2
  31. Crystal structure of poly[aqua(μ3-2,4-diamino-benzenesulfonato-κ4N:N′,O:O′)silver(I)], C12H18O8N4S2Ag2
  32. Crystal structure of 1,4-bis(methylpyridinium benzene) bis(1,2-dicyanoethene-1,2-dithiolato-κ2S:S)nickel(II), C26H18N6NiS4
  33. Crystal structure of the Cu(II) complex chlorido-(6-oxo-2-phenyl-1,6-dihydropyrimidine-4-carboxylato-k2N,O)-(phenanthroline-k2N,N')copper(II), C23H15ClCuN4O3
  34. Crystal structure of phenarsazine chloride acetic acid solvate, C14H13AsClNO2
  35. Crystal structure of poly[aqua-(μ2-3,3′,4,5′-biphenyl tetracarboxylate- κ3O,O′:O′′) -(μ2-4,4′-bis(pyrid-4-yl)biphenyl-κ2N:N′)zinc(II)], C27H18NO9Zn
  36. Crystal structure of catena-poly[(μ2-3-amino-benzenedisulfonato-κ2N:O)-bis (3-methyl-isoquinoline-κN)silver(I)], C26H24N3O3SAg
  37. Crystal structure of 2-((4-Aminophenyl)thio)acetic acid, C8H9NO2S
  38. Crystal structure of phenarsazine chloride dimethylsulfoxide solvate, C14H15AsClNOS
  39. Synthesis and crystal structure of 2-azido-N-phenylacetamide, C8H8N4O
  40. Crystal structure of chlorido{hydridotris[3-phenyl-5-methylpyrazol-1-yl-κN3]borato}copper(II), C30H28BClCuN6
  41. Crystal structure of benzanthrone – a redetermination for correct molecular geometry and localization of hydrogen atoms
  42. Crystal structure of 4-bromobenzaldehyde – complete redetermination at 200 K, C7H5BrO
  43. Crystal structure and spectroscopic properties of chlorido{hydridotris[3-,5-dimethylpyrazol-1-yl-κN3]borato}(3-,5-dimethylpyrazol-1-yl-κN)copper(II), C20H30BClCuN8
  44. The crystal structure of 4-((2-hydroxynaphthalen-1-yl)(pyrrolidin-1-yl)methyl)benzonitrile, C22H20N2O
  45. Crystal structure of 4-ethyl-3-phenylisoquinolin-1(2H)-one, C17H15NO
  46. Crystal structure of (tricyclohexylphosphane-κP)-[(Z)-N-(3-fluorophenyl)-O-methylthiocarbamato-k1S]gold(I), C26H40AuFNOPS
  47. Crystal structure of (3S,8R,10R,12R,14R)-12-hydroxy-4,4,8,10,14-pentamethyl-17-((R)-2,6,6-trimethyltetrahydro-2H-pyran-2-yl) hexadecahydro-1H-cyclopenta[a]phenanthren-3-yl acetate, C32H54O4
  48. The crystal structure of 2-[(S)-1-(naphthalen-1-yl)ethyl]-2,3,7,7a- tetrahydro-3a,6-epoxyisoindol-1(6H)-one, C19H20NO2
  49. Crystal structure of {hydridotris[3-(t-butyl)-5-isopropylpyrazol-1-yl-κN3]borato}thallium(I), C30H52BN6Tl
  50. Synthesis and crystal structure of 1-octyl-3-phenylquinoxalin-2(1H)-one, C22H26N2O
  51. The crystal structure of 2,6-difluorophenol, C6H4F2O
  52. 4-(9H-Fluoren-9-yl)-4-methylmorpholin-4-ium bromide, C18H20BrNO
  53. The crystal structure of 2,4-dimethylimidazole monohydrate, C5H10N2O
  54. The crystal structure of 1,2-dimethylimidazole, C5H8N2
  55. The crystal structure of 3-ammonio-4-aminobenzoate, C7H8N2O2 – a second polymorph
  56. The crystal structure of 4-hydroxy-2,5-bis(1-methyl-1H-imidazol-3-ium-2-ylthio)-3,6-dioxocyclohexa-1,4-dienolate chloride monohydrate, C14H15N4O5S2Cl
  57. The crystal structure of butyrylferrocene, C14H16FeO
  58. The crystal structure of bi-1,1′-cyclopentane-1,1′-diol, C10H18O2
  59. The crystal structure of 2-iso-propylimidazole, C6H10N2
  60. The crystal structure of aqua-tris (1,3-diphenylpropane-1,3-dionato-κ2O,O′)-lanthanum(III), C45H35LaO7
  61. Crystal structure of (3E,5E)-3,5-bis-4-methoxy-3-(trifluoromethyl)benzylidene)-1-methylpiperidin-4-one, C24H21F6NO3
  62. The crystal structure of 3,5-dichloro-6-diazo-2,4-dinitrocyclohexa-2,4-dien-1-one, C6Cl2N4O5
  63. Crystal structure of carbonyl(2-methylquinolin-8-olato-κ2N,O)(triphenylarsine-κAs)rhodium(I), C29H23AsNO2Rh
  64. Crystal structure of (1aS,1a1S,2S)-4a-butoxy-1a,1a1,2,4a,5,6-hexahydro-1H-cyclobuta[de]naphthalen-2-yl-4-nitrobenzoate, C22H25NO5
  65. Crystal structure of carbonyl(2-oxopyridin-1(2H)-olato-k2O,O′)(triphenylarsine-κAs)rhodium(I), C24H19AsNO3Rh
  66. Crystal structure of catena-poly[triqua-bis(μ2-4-carboxy-2-(1H-tetrazol-1-yl)-1H-imidazole-5-carboxylato-k3N,O:O′)barium(II)] tetrahydrate, C14H14BaN12O15
  67. Crystal structure of (E)-3′,6′-bis(ethylamino)-2-((quinoxalin-2-ylmethylene)amino)spiro[isoindoline-1,9′-xanthen]-3-one, C35H32N6O2
  68. Crystal structure of diaqua-bis(μ2-5-chloro-salicylato-κ3O,O′:O′)-bis(5-chloro-salicylato-κ2O,O′)-bis(1,10-phenanthroline-κ2N,N′) dilead(II) – water (1/2), C52H36C14N4O14Pb2·2(H2O)
  69. Crystal structure of (E)-2-(4-ethoxycarbonyl-3,5-dimethyl-2-(pyrrole-2-ylmethyleneamino)-3′,6′-dihydroxylspiro[isoindoline-1,9′-xanthen]-3-one-methanol (1/1), C31H29N3O7
  70. The crystal structure of 5H-dibenzo[b,e]azepine-6,11-dione, C14H9NO2
  71. Crystal structure of (E)-2-(4-fluoro-2-(trifluoromethyl)benzylidene)-7-methoxy-3,4-dihydronaphthalen-1(2H)-one, C19H14F4O2
  72. The crystal structure of N-(2-methoxy-4,5-bis[phenylselanyl]phenyl)picolinamide, C25H20N2O2Se2
  73. The crystal structure of (E)-2-(5-bromo-2-hydroxybenzylidene)-N-phenylhydrazine-1- carboxamide monohydrate, C14H14BrN3O3
  74. Crystal structure of fac-tricarbonyl-(nitrato-k1O)-bis(pyridine-κN)-rhenium, C13H10O6N3Re
  75. Crystal structure of (E)-2-(((1H-pyrrol-2-yl)methylene)amino)-3′,6′-dihydroxyspiro[isoindoline-1,9′-xanthen]-3-one — methanol (1/2), C27H25N3O6
  76. The crystal structure of 4-amino-N′-(4-aminobenzoyl)benzohydrazide monohydrate, C14H16N4O3
  77. Crystal structure of bis(amino(carbamothioylamino)methaniminium) 5-hydroxyisophthalate monohydrate, C12H20N8O6S2
  78. The crystal structure of 2-(chloromethyl)pyridine, C6H6ClN
  79. The crystal structure of 1-bromo-4-iodo-benzene, C6H4BrI
  80. The crystal structure of 2,6-dimethyl-4-nitro-phenol, C8H9NO3
  81. The crystal structure of 3-chloropropionic acid, C3H5ClO2
  82. The crystal structure of 2-(2-methoxyphenyl)acetic acid, C9H10O3
Heruntergeladen am 18.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2020-0405/html
Button zum nach oben scrollen