Home Crystal structure and spectroscopic properties of chlorido{hydridotris[3-,5-dimethylpyrazol-1-yl-κN3]borato}(3-,5-dimethylpyrazol-1-yl-κN)copper(II), C20H30BClCuN8
Article Open Access

Crystal structure and spectroscopic properties of chlorido{hydridotris[3-,5-dimethylpyrazol-1-yl-κN3]borato}(3-,5-dimethylpyrazol-1-yl-κN)copper(II), C20H30BClCuN8

  • Kiyoshi Fujisawa ORCID logo EMAIL logo and Edward R. T. Tiekink ORCID logo EMAIL logo
Published/Copyright: October 5, 2020

Abstract

C20H30BClCuN8, monoclinic, P21/c (no. 14), a = 17.1345(7) Å, b = 7.8207(2) Å, c = 19.0213(8) Å, β = 108.268(1)°, V = 2420.46(16) Å3, Z = 4, Rgt(F) = 0.0322, wRref(F2) = 0.0876, T = 184 K.

CCDC no.: 2027354

The molecular structure is shown in the Figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal:Green needle
Size:0.25 × 0.05 × 0.05 mm
Wavelength:Mo Kα radiation (0.71073 Å)
μ:1.04 mm-1
Diffractometer, scan mode:Rigaku Mercury70, ω
θmax, completeness:27.5°, 99%
N(hkl)measured, N(hkl)unique, Rint:18647, 5501, 0.022
Criterion for Iobs, N(hkl)gt:Iobs > 2 σ(Iobs), 5223
N(param)refined:291
Programs:REQAB [1], CrystalClear [2], SIR2014 [3], SHELX [4], WinGX/ORTEP [5]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
Cu0.26204 (2)0.12884 (2)0.19167 (2)0.01650 (7)
Cl0.23805 (3)−0.01354 (6)0.28935 (3)0.03204 (12)
N110.37327 (8)0.02157 (17)0.20311 (8)0.0185 (3)
N120.39609 (8)0.02229 (17)0.13957 (8)0.0185 (3)
N210.21502 (8)−0.00725 (18)0.08711 (8)0.0194 (3)
N220.25958 (9)0.01586 (17)0.03908 (8)0.0193 (3)
N310.30330 (9)0.33060 (18)0.14730 (8)0.0191 (3)
N320.32879 (8)0.29815 (18)0.08695 (8)0.0188 (3)
N410.15275 (9)0.25600 (18)0.17602 (8)0.0221 (3)
N420.12066 (10)0.2654 (2)0.23280 (9)0.0273 (3)
H42N0.1445 (13)0.203 (3)0.2717 (9)0.033*
C110.43654 (12)−0.0759 (3)0.33436 (11)0.0339 (4)
H11A0.4237300.0338810.3530690.051*
H11B0.491504−0.1131690.3643260.051*
H11C0.395926−0.1614610.3373320.051*
C120.43421 (10)−0.0558 (2)0.25567 (10)0.0222 (3)
C130.49568 (11)−0.1068 (2)0.22598 (11)0.0267 (4)
H130.545249−0.1650180.2511110.032*
C140.46997 (10)−0.0560 (2)0.15341 (10)0.0240 (3)
C150.51228 (13)−0.0791 (3)0.09596 (12)0.0361 (5)
H15A0.477457−0.1476120.0549390.054*
H15B0.564828−0.1377430.1180320.054*
H15C0.5222160.0330350.0773740.054*
C210.08398 (13)−0.1345 (3)0.08674 (13)0.0352 (5)
H21A0.107531−0.1165020.1402230.053*
H21B0.067897−0.2546520.0770430.053*
H21C0.035546−0.0614170.0672280.053*
C220.14649 (11)−0.0904 (2)0.04968 (10)0.0246 (3)
C230.14640 (13)−0.1214 (3)−0.02276 (11)0.0325 (4)
H230.104976−0.178056−0.0608360.039*
C240.21882 (12)−0.0527 (2)−0.02769 (10)0.0278 (4)
C250.25174 (16)−0.0501 (4)−0.09226 (12)0.0451 (6)
H25A0.2558060.068475−0.1074510.068*
H25B0.214560−0.113889−0.1336480.068*
H25C0.306310−0.103057−0.0777570.068*
C310.27966 (14)0.5805 (3)0.21757 (13)0.0364 (5)
H31A0.2203710.6024360.2018850.055*
H31B0.3094250.6886420.2314130.055*
H31C0.2943770.5031180.2602440.055*
C320.30219 (11)0.5004 (2)0.15545 (10)0.0232 (3)
C330.32633 (12)0.5789 (2)0.09957 (11)0.0282 (4)
H330.3307120.6981510.0921410.034*
C340.34252 (11)0.4483 (2)0.05736 (10)0.0241 (3)
C350.37099 (14)0.4584 (3)−0.00928 (12)0.0358 (4)
H35A0.4238830.3995170.0009870.054*
H35B0.3773890.578533−0.0210430.054*
H35C0.3303620.403687−0.0514170.054*
C410.11463 (13)0.3682 (3)0.04744 (11)0.0332 (4)
H41A0.1479080.4709500.0490660.050*
H41B0.0615190.3811480.0087240.050*
H41C0.1434110.2683850.0365190.050*
C420.10100 (11)0.3442 (2)0.12042 (11)0.0259 (4)
C430.03564 (12)0.4065 (3)0.14299 (14)0.0356 (5)
H43−0.0096780.4723290.1141160.043*
C440.04986 (13)0.3539 (3)0.21465 (14)0.0357 (5)
C450.00349 (18)0.3768 (3)0.26903 (19)0.0577 (8)
H45A0.0110810.2756400.3008670.087*
H45B−0.0550940.3917420.2422390.087*
H45C0.0241910.4780730.2995390.087*
B10.34288 (12)0.1108 (2)0.06774 (10)0.0187 (3)
H10.3717060.1077420.0294640.022*

Source of material

A solution of Na{HB(3,5-Me2pz)3} (100.5 mg, 0.313 mmol) [6] in dichloromethane (13 mL) was added slowly to a solution of CuCl2⋅2H2O (61.0 mg, 0.358 mmol) in acetone (13 mL). In addition, one equivalent of 3,5-Me2pzH (30.1 mg, 0.313 mmol) in dichloromethane (13 mL) was dropped carefully into this solution. After the mixture was stirred overnight, the solvent was evaporated under vacuum. The resulting solid was extracted with dichloromethane (20 mL). The filtrate was evaporated under vacuum, and a green powder was obtained. Green crystals were obtained by slow evaporation of a saturated dichloromethane/n-octane solution at room temperature. Yield: 62% (95.8 mg, 0.195 mmol). Anal. Calcd. for C20H30BClCuN8. C, 48.79; H, 6.14; N, 22.76%. Found: C; 48.48, H; 6.02, N; 22.54%. IR (JASCO FT/IR-550 spectrophotometer, KBr; cm−1): 3211 (m) ν(N–H), 2927 (m) ν(C–H), 2511 (m) ν(B–H), 1567 (m) ν(C=N), 1542 (s) ν(C=N). UV–Vis (JASCO V-570 at 298 K in dichloromethane); λmax, nm (ε, mol−1 cm−1) 341 (1100), 430 (shoulder, 230), 730 (100). ESR Bruker EMX-T, 5 mm φ quartz tube, dichloromethane: 1,2-dichloroethane = 1:1, 124 K: g, 2.32 (A, 159 G); g(⊥), 2.07.

Experimental details

The C- and B-bound H atoms were geometrically placed (C–H = 0.95–0.98 Å & B–H = 1.00 Å) and refined as riding with Uiso(H) = 1.2–1.5 Ueq(C) and 1.2 Ueq(B). The N-bound H atom was refined with N–H = 0.88 ± 0.01 Å, and with Uiso(H) = 1.2 Ueq(N).

Comment

Boron-substituted poly(1-pyrazolyl)borates occupy a prominent position in current coordination chemistry [6]. Among this class of ligand, the methyl substituted hydridotris(3,5-dimethyl-pyrazolyl-1-yl]borato-κN3 anion is very common. It has been designated as “Tp*” [7–10] and also named “homoscorpionates-first generation” [7, 10]. The Tp* ligand is relatively sterically unhindered so it can readily form coordinatively saturated six-coordinate, bis-chelate complexes, formulated as [M(Tp*)2]. For copper(II), the structure of [Cu(Tp*)2] has been reported [11]. To avoid the formation of this bis-chelate complex, the synthetic methodology needs to be carefully modified: the solution containing the Tp* ligand needs to be added slowly to a solution containing a small amount of excess metal salt [12]. This work reports the crystal structure and some properties of a five-coordinate copper(II) complex with the first generation Tp* ligand, also containing a coordinated 3,5-dimethylpyrazol-1-yl molecule, i.e. [Cu(Cl)(3,5-Me2pzH){HB(3,5-Me2pz)3}], (I).

It is well-known that four-coordinate copper(II) geometries are not so common in coordination chemistry [13]. In particular, the tetrahedral geometry is very unstable for less sterically hindered ligands such as Tp*. Indeed, the slow reaction of a copper(II) salt, such as CuCl2, with Tp* yielded a mixture of four- (red) and five-coordinate (green) complexes. To ensure the formation of a five-coordinate complex, one equivalent of pyrazole was also added to the reaction mixture. In the IR spectrum of (I), the ν (C=N) signals were split, with absorptions at 1567 and 1542 cm−1, reflecting the presence of two kinds of pyrazole ligands. The IR also provides evidence for hydrogen bonding by the pzH–N–H residue with a very sharp absorption noted at 3211 cm−1. The ground state of (I) is dx2−y2, as confirmed by ESR [14]. This ground state is also supported by UV–Vis spectroscopy. For (I), the d–d transition occurs at 730 nm (100 M−1 cm−1) which is shifted by approximately 200 nm to higher energy compared with that of 996 nm (150 M−1 cm−1) for [Cu(Cl){HB(3,5-iPr2pz)3}] [15] and 906 nm (180 M−1 cm−1) for [Cu(Cl){HB(3-Ph-5-Mepz)3}] [13].

The molecular structure determined by X-ray diffraction of (I) is shown in figure (50% probably displacement ellipsoids). The Cu atom is coordinated by a Cl, three pyrazolyl-N11, N21 and N31 atoms of the tripodal ligand and a pyrazolyl-N41 atom derived from a neutral 3,5-dimethylpyrazol-1-yl molecule. The Cu–Cl bond length in (I) of 2.3107(5) Å is slightly longer than the equivalent Cu–Cl bonds in other five-coordinated chlorido copper(II) complexes, viz. 2.260(2) Å in [Cu(Cl)(dmf){HB(3,5-iPr2pz)3}] [15] and 2.2833(8) Å in [Cu(Cl)(3-Ph-5-MepzH){HB(3-Ph-5-Mepz)3}] [16]. These bond lengths are approximately 0.1 Å longer compared with the Cu–Cl bond lengths in four-coordinate, chlorido copper(II) complexes [13].

Each of the four Cu–N bond lengths in (I) is experimentally distinct from the others. The Cu–N11 [2.0305(14) Å] and Cu–N31 [2.0189(14) Å] bond lengths are different and significantly shorter than the Cu–N21 [2.1756(14) Å] separation. The Cu–N41 bond length [2.0579(14) Å] is intermediate between the extreme Cu–N values formed by the tripodal ligand. The ClN4 donor set defines, to a first approximation a distorted square-pyramidal geometry, with the less tightly bound pyrazolyl-N21 atom occupying the axial position with the N11 and N31 atoms approximately trans to the N41 [N11–Cu–N41 = 174.93(6)°] and Cl [N31–Cu–Cl = 152.45(4)°] atoms. The distortion in the coordination geometry is quantified by the value of τ = 0.37 which compares with values of 0.0 and 1.0 for ideal square-pyramidal and trigonal-bipyramidal geometries, respectively [17]. The orientation of the 3-phenyl-5-methylpyrazol-1-yl ligand is to place the amine-N42–H group in close proximity with the Cl atom which enables the formation of an intramolecular N–H···Cl [N42–H42n···Cl: H42n···Cl = 2.28(2) Å, N42···Cl = 2.9335(17) Å with angle at H42n = 131.3(17)°] hydrogen bond.

In the molecular packing, the only directional contact is a long pyrazolyl-C–H···π(pyrazolyl) [C33–H33···Cg(N21, N22, C22–C24)i: H33···Cg(N21, N22, C22–C24)i = 2.98 Å with angle at H33 = 129° for symmetry operation (i): x, 1 + y, z] contact. The result is the formation of a linear, supramolecular chain parallel to the b-axis. To investigate the molecular packing further, with the aid of Crystal Explorer 17 [18] and following literature methods [19], the Hirshfeld surface along with the full and delineated two-dimensional fingerprint plots were calculated. Consistent with the lack of evident directional interactions in the crystal of (I), the major contribution to the surface comes from H···H contacts, at 73.9%. After this are H···C/C···H [10.9%], H···N/N···H [8.0%] and H···C/C···H [6.8%] contacts.


Corresponding author: Kiyoshi Fujisawa, Department of Chemistry, Ibaraki University, Mito, Ibaraki 310-8512, Japan, E-mail: ; and Edward R. T. Tiekink, Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500Bandar Sunway, Selangor Darul Ehsan, Malaysia, E-mail:

Funding source: Osaka City University

Funding source: Sunway University

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: KF is grateful for support from the joint usage/research programme “Artificial Photosynthesis” based at Osaka City University. Sunway University Sdn Bhd is thanked for financial support of this work through Grant No. STR-RCTR-RCCM-001-2019.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. REQAB; Rigaku Corporation: Tokyo, Japan, 1998.Search in Google Scholar

2. CrystalClear–SM Expert; Rigaku Corporation: Tokyo, Japan, 2019.Search in Google Scholar

3. Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. Crystal structure determination and refinement via SIR2014. J. Appl. Cryst. 2015, 48, 306–309; https://doi.org/10.1107/s1600576715001132.Search in Google Scholar

4. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

5. Farrugia, L. J. WinGX and ORTEP for Windows: an update. J. Appl. Cryst. 2012, 45, 849–854; https://doi.org/10.1107/s0021889812029111.Search in Google Scholar

6. Trofimenko, S. Boron-pyrazole chemistry. IV. Carbon- and boron-substituted poly(1-pyrazolyl)borates. J. Am. Chem. Soc. 1967, 89, 6288–6294; https://doi.org/10.1021/ja01000a053.Search in Google Scholar

7. Trofimenko, S. In Scorpionates: The Coordination Chemistry of Polypyrazolyborate Ligands; Imperial College Press: London, 1999.10.1142/p148Search in Google Scholar

8. Trofimenko, S. Polypyrazolylborates: scorpionates. J. Chem. Educ. 2005, 82, 1715–1720; https://doi.org/10.1021/ed082p1715.Search in Google Scholar

9. Trofimenko, S. Scorpionates: genesis, milestones, prognosis. Polyhedron 2004, 23, 197–203; https://doi.org/10.1016/j.poly.2003.11.013.Search in Google Scholar

10. Pettinari, C. In Scorpionates II: Chelating Borate Ligands; Imperial College Press: London, 2008.10.1142/p527Search in Google Scholar

11. Marsh, R. E. Bis[hydrotris(3,5-dimethyl-1-pyrazolyl)borato]copper(II). Corrigendum. Acta Crystallogr. 1989, C45, 1269–1270; https://doi.org/10.1107/s010827018900288x.Search in Google Scholar

12. Kitajima, N., Koda, T., Hashimoto, S., Kitagawa, T., Moro-oka, Y. Synthesis and characterization of the dinuclear copper(II) complexes [Cu(HB(3,5-Me2pz)3)]2X (X = O2‐, (OH)22‐, CO32‐, O22‐). J. Am. Chem. Soc. 1991, 113, 5664–5671; https://doi.org/10.1021/ja00015a021.Search in Google Scholar

13. Fujisawa, K., Shimizu, M., Tiekink, E. R. T. Crystal structure of chlorido{hydridotris[3-phenyl-5-methylpyrazol-1-yl-κN3]borato}copper(II), C30H28BClCuN6. Z. Kristallogr. NCS 2020, 235. NCRS-2020-0410.10.1515/ncrs-2020-0372Search in Google Scholar

14. Solomon, E. I., Heppner, D. E., Johnston, E. M., Ginsbach, J. W., Cirera, J., Qayyum, M., Kieber-Emmons, M. T., Kjaergaard, C. H., Hadt, R. G., Tian, L. Copper active sites in biology. Chem. Rev. 2014, 114, 3659–3853; https://doi.org/10.1021/cr400327t.Search in Google Scholar

15. Kitajima, N., Fujisawa, K., Moro-oka, Y. Tetrahedral copper(II) complexes supported by a hindered pyrazolylborate. Formation of the thiolato complex, which closely mimics the spectroscopic characteristics of blue copper proteins. J. Am. Chem. Soc. 1990, 112, 3210–3212; https://doi.org/10.1021/ja00164a052.Search in Google Scholar

16. Lupidi, G., Marchetti, F., Masciocchi, N., Reger, D. L., Tabassum, S., Astolfi, P., Damiani, E., Pettinari, C. Synthesis, structural and spectroscopic characterization and biomimetic properties of new copper, manganese, zinc complexes: identification of possible superoxide-dismutase mimics bearing hydroxyl radical generating/scavenging abilities. J. Inorg. Biochem. 2010, 104, 820–830; https://doi.org/10.1016/j.jinorgbio.2010.03.013.Search in Google Scholar

17. Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J., Verschoor, G. C. Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen-sulphur donor ligands; the crystal and molecular structure of aqua[1,7-bis(N-methylbenzimidazol-2′-yl)-2,6-dithiaheptane]copper(II) perchlorate. J. Chem. Soc. Dalton Trans. 1984, 1349–1356.10.1039/DT9840001349Search in Google Scholar

18. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D., Spackman, M. A. Crystal Explorer v17; The University of Western Australia: Australia, 2017.Search in Google Scholar

19. Tan, S. L., Jotani, M. M., Tiekink, E. R. T. Utilizing Hirshfeld surface calculations, non-covalent interaction (NCI) plots and the calculation of interaction energies in the analysis of molecular packing. Acta Crystallogr. 2019, E75, 308–318; https://doi.org/10.1107/s2056989019001129.Search in Google Scholar

Received: 2020-07-28
Accepted: 2020-09-08
Published Online: 2020-10-05
Published in Print: 2021-01-26

© 2020 Kiyoshi Fujisawa and Edward R. T. Tiekink, published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. The crystal structure of 3-oxo-urs-12-en-28-oic acid, C30H46O3·1/6H2O
  4. The crystal structure of (3S,12R,20R,24R)-3,12-diacetyl-20,24-epoxy-dammarane-3,12,25–triol–ethyl acetate (4/1), C34H56O6⋅ 0.25(C4H8O2)
  5. A new polymorph of tetrakis(dimethylammonium) catena-poly[tetrakis(μ2-sulfato-κ2O:O′)dizinc(II)], Zn2C8H32N4O16S4
  6. Crystal structure of 10-oxysophoridine, C15H22N2O2
  7. The crystal structure of (5R,8R,9R,10R,12R,13R,14R)-12-hydroxy-4,4,8,10,14-pentamethyl-17-((R)-2,6,6-trimethyltetrahydro-2H-pyran-2-yl)tetradecahydro-3H-cyclopenta[a]phenanthrene-3,6(2H)-dione, C30H48O4
  8. Synthesis, crystal structure and optical property of 1,6-bis(p-tolylthio)pyrene, C30H22S2
  9. The crystal structure of hexakis(2-(pyridin-2-ylamino)pyridin-1-ium) decavanadate(V) dihydrate, C60H64N18O30V10
  10. Preparation and crystal structure of a cationic olefin polymerization precatalyst: (1,7-bis(2,6–dichlorophenyl)-1,7-di-aza-4-oxo-heptan-1,4,7-triyl)dimethyl zirconium(IV), C18H20Cl4N2OZr
  11. The crystal structure of fac-tricarbonyl(4,4-dimethyl-2,2-dipyridyl-κ2N,N′)- (pyrazole-κN)rhenium(I) nitrate, C18H16O3N4Re
  12. Synthesis and crystal structure of hexaaquacopper(II) 2,5-dicarboxyterephthalate, C10H16O14Cu
  13. The crystal structure of (8R,10R,12R,14R)- 12-hydroxy-16-(5-(2-hydroxypropan-2-yl)-2-methyltetrahydrofuran-2-yl)- 4,4,8,10,14-pentamethyltetradecahydro-3H- cyclopenta[a]phenanthrene-3,6(2H)-dione, C30H48O5
  14. Structure of the mixed crystal (S)-(6-(bromo/chloro)-2-methoxy-2,6-dihydroquinolin-3-yl)(phenyl)methanol, C17H14Br0.5Cl0.5NO2
  15. The crystal structure of trans-tetraaqua-bis(4-acetylphenoxyacetato-κ1O)manganese(II), C20H26O12Mn
  16. Crystal structure of (E)-2-(4-fluoro-3-(trifluoromethyl)benzylidene)-7-methoxy-3,4-dihydronaphthalen-1(2H)-one, C19H14F4O2
  17. Crystal structure of DL-α-(methylaminomethyl)benzyl alcohol, C9H13NO
  18. The crystal structure of dipentaerthritol hexanitrate, C10H16N6O19
  19. Crystal structure of N,N-diphenylformamide, C13H11NO
  20. Crystal structure of (E)-2-(3,5-bis(trifluoromethyl)benzylidene)-7-methoxy-3,4-dihydronaphthalen- 1(2H)-one, C20H14F6O2
  21. Crystal structure of ortho-methoxy benzaldehyde, C8H8O2 – a second polymorph and deposition of 3D coordinates
  22. Crystal structure of catena-poly[diaqua-bis(μ2-2-(4-(2,4,4-trimethylpentan-2-yl)phenoxy)propanoato-κ2O:O')-(2-(4-(2,4,4-trimethylpentan-2-yl)phenoxy)propanoato-κ2O,O')yttrium(III)], C51H79O11Y
  23. Crystal structure of benzylthiouronium chloride, C8H11ClN2S
  24. Synthesis and crystal structure of tert-butyl (2′R,3R,3′R,4aR,9aS)-1-acetyl-5-chloro-3″-methyl-2,5″,9′-trioxo-1″-phenyl-1″,4a′,5″,9a′-tetrahydro-1′H,3′H,9′H-dispiro[indoline-3,4′-xanthene-2′,4″-pyrazole]-3′-carboxylate, C36H32ClN3O7
  25. Crystal structure of 2-hydroxy-4-methoxy benzaldehyde, C8H8O3
  26. Crystal structure of poly[diaqua-(m3-3′,5′-dicarboxy-[1,1′-biphenyl]-3,4-dicarboxylato-K4O,O′:O″:O‴) cadmium(II)], C16H11O10Cd
  27. Crystal structure of {tetraaqua-bis(1-(4-hydroxy-2-oxotetrahydrofuran-3-yl)-2-((4aS,6R,8aS)-6-hydroxy-5-(hydroxymethyl)-5,8a-dimethyl-2-methylenedecahydronaphthalen-1-yl)ethane-1-sulfonato-k2O,O') calcium(II)}-{triaqua-bis(1-(4-hydroxy-2-oxotetrahydrofuran-3-yl)-2-((4aS,6R,8aS)-6-hydroxy-5-(hydroxymethyl)-5,8a-dimethyl-2-methylenedecahydronaphthalen-1-yl)ethane-1-sulfonato-k2O,O') calcium(II)} – water – acetone (1/1/8/2)
  28. Synthesis and crystal structure of bis{2-bromo-6-((E)-((4-((E)-1-(methoxy-imino)ethyl)phenyl)imino)methyl)phenolato- κ2N,O}zinc(II)-methanol(1/2), C65H60Br4N8O9Zn2
  29. Crystal structure of benzenesulphonic acid
  30. Crystal structure of N-benzyl-N-nicotinoyl-nicotine amide C19H15N3O2
  31. Crystal structure of poly[aqua(μ3-2,4-diamino-benzenesulfonato-κ4N:N′,O:O′)silver(I)], C12H18O8N4S2Ag2
  32. Crystal structure of 1,4-bis(methylpyridinium benzene) bis(1,2-dicyanoethene-1,2-dithiolato-κ2S:S)nickel(II), C26H18N6NiS4
  33. Crystal structure of the Cu(II) complex chlorido-(6-oxo-2-phenyl-1,6-dihydropyrimidine-4-carboxylato-k2N,O)-(phenanthroline-k2N,N')copper(II), C23H15ClCuN4O3
  34. Crystal structure of phenarsazine chloride acetic acid solvate, C14H13AsClNO2
  35. Crystal structure of poly[aqua-(μ2-3,3′,4,5′-biphenyl tetracarboxylate- κ3O,O′:O′′) -(μ2-4,4′-bis(pyrid-4-yl)biphenyl-κ2N:N′)zinc(II)], C27H18NO9Zn
  36. Crystal structure of catena-poly[(μ2-3-amino-benzenedisulfonato-κ2N:O)-bis (3-methyl-isoquinoline-κN)silver(I)], C26H24N3O3SAg
  37. Crystal structure of 2-((4-Aminophenyl)thio)acetic acid, C8H9NO2S
  38. Crystal structure of phenarsazine chloride dimethylsulfoxide solvate, C14H15AsClNOS
  39. Synthesis and crystal structure of 2-azido-N-phenylacetamide, C8H8N4O
  40. Crystal structure of chlorido{hydridotris[3-phenyl-5-methylpyrazol-1-yl-κN3]borato}copper(II), C30H28BClCuN6
  41. Crystal structure of benzanthrone – a redetermination for correct molecular geometry and localization of hydrogen atoms
  42. Crystal structure of 4-bromobenzaldehyde – complete redetermination at 200 K, C7H5BrO
  43. Crystal structure and spectroscopic properties of chlorido{hydridotris[3-,5-dimethylpyrazol-1-yl-κN3]borato}(3-,5-dimethylpyrazol-1-yl-κN)copper(II), C20H30BClCuN8
  44. The crystal structure of 4-((2-hydroxynaphthalen-1-yl)(pyrrolidin-1-yl)methyl)benzonitrile, C22H20N2O
  45. Crystal structure of 4-ethyl-3-phenylisoquinolin-1(2H)-one, C17H15NO
  46. Crystal structure of (tricyclohexylphosphane-κP)-[(Z)-N-(3-fluorophenyl)-O-methylthiocarbamato-k1S]gold(I), C26H40AuFNOPS
  47. Crystal structure of (3S,8R,10R,12R,14R)-12-hydroxy-4,4,8,10,14-pentamethyl-17-((R)-2,6,6-trimethyltetrahydro-2H-pyran-2-yl) hexadecahydro-1H-cyclopenta[a]phenanthren-3-yl acetate, C32H54O4
  48. The crystal structure of 2-[(S)-1-(naphthalen-1-yl)ethyl]-2,3,7,7a- tetrahydro-3a,6-epoxyisoindol-1(6H)-one, C19H20NO2
  49. Crystal structure of {hydridotris[3-(t-butyl)-5-isopropylpyrazol-1-yl-κN3]borato}thallium(I), C30H52BN6Tl
  50. Synthesis and crystal structure of 1-octyl-3-phenylquinoxalin-2(1H)-one, C22H26N2O
  51. The crystal structure of 2,6-difluorophenol, C6H4F2O
  52. 4-(9H-Fluoren-9-yl)-4-methylmorpholin-4-ium bromide, C18H20BrNO
  53. The crystal structure of 2,4-dimethylimidazole monohydrate, C5H10N2O
  54. The crystal structure of 1,2-dimethylimidazole, C5H8N2
  55. The crystal structure of 3-ammonio-4-aminobenzoate, C7H8N2O2 – a second polymorph
  56. The crystal structure of 4-hydroxy-2,5-bis(1-methyl-1H-imidazol-3-ium-2-ylthio)-3,6-dioxocyclohexa-1,4-dienolate chloride monohydrate, C14H15N4O5S2Cl
  57. The crystal structure of butyrylferrocene, C14H16FeO
  58. The crystal structure of bi-1,1′-cyclopentane-1,1′-diol, C10H18O2
  59. The crystal structure of 2-iso-propylimidazole, C6H10N2
  60. The crystal structure of aqua-tris (1,3-diphenylpropane-1,3-dionato-κ2O,O′)-lanthanum(III), C45H35LaO7
  61. Crystal structure of (3E,5E)-3,5-bis-4-methoxy-3-(trifluoromethyl)benzylidene)-1-methylpiperidin-4-one, C24H21F6NO3
  62. The crystal structure of 3,5-dichloro-6-diazo-2,4-dinitrocyclohexa-2,4-dien-1-one, C6Cl2N4O5
  63. Crystal structure of carbonyl(2-methylquinolin-8-olato-κ2N,O)(triphenylarsine-κAs)rhodium(I), C29H23AsNO2Rh
  64. Crystal structure of (1aS,1a1S,2S)-4a-butoxy-1a,1a1,2,4a,5,6-hexahydro-1H-cyclobuta[de]naphthalen-2-yl-4-nitrobenzoate, C22H25NO5
  65. Crystal structure of carbonyl(2-oxopyridin-1(2H)-olato-k2O,O′)(triphenylarsine-κAs)rhodium(I), C24H19AsNO3Rh
  66. Crystal structure of catena-poly[triqua-bis(μ2-4-carboxy-2-(1H-tetrazol-1-yl)-1H-imidazole-5-carboxylato-k3N,O:O′)barium(II)] tetrahydrate, C14H14BaN12O15
  67. Crystal structure of (E)-3′,6′-bis(ethylamino)-2-((quinoxalin-2-ylmethylene)amino)spiro[isoindoline-1,9′-xanthen]-3-one, C35H32N6O2
  68. Crystal structure of diaqua-bis(μ2-5-chloro-salicylato-κ3O,O′:O′)-bis(5-chloro-salicylato-κ2O,O′)-bis(1,10-phenanthroline-κ2N,N′) dilead(II) – water (1/2), C52H36C14N4O14Pb2·2(H2O)
  69. Crystal structure of (E)-2-(4-ethoxycarbonyl-3,5-dimethyl-2-(pyrrole-2-ylmethyleneamino)-3′,6′-dihydroxylspiro[isoindoline-1,9′-xanthen]-3-one-methanol (1/1), C31H29N3O7
  70. The crystal structure of 5H-dibenzo[b,e]azepine-6,11-dione, C14H9NO2
  71. Crystal structure of (E)-2-(4-fluoro-2-(trifluoromethyl)benzylidene)-7-methoxy-3,4-dihydronaphthalen-1(2H)-one, C19H14F4O2
  72. The crystal structure of N-(2-methoxy-4,5-bis[phenylselanyl]phenyl)picolinamide, C25H20N2O2Se2
  73. The crystal structure of (E)-2-(5-bromo-2-hydroxybenzylidene)-N-phenylhydrazine-1- carboxamide monohydrate, C14H14BrN3O3
  74. Crystal structure of fac-tricarbonyl-(nitrato-k1O)-bis(pyridine-κN)-rhenium, C13H10O6N3Re
  75. Crystal structure of (E)-2-(((1H-pyrrol-2-yl)methylene)amino)-3′,6′-dihydroxyspiro[isoindoline-1,9′-xanthen]-3-one — methanol (1/2), C27H25N3O6
  76. The crystal structure of 4-amino-N′-(4-aminobenzoyl)benzohydrazide monohydrate, C14H16N4O3
  77. Crystal structure of bis(amino(carbamothioylamino)methaniminium) 5-hydroxyisophthalate monohydrate, C12H20N8O6S2
  78. The crystal structure of 2-(chloromethyl)pyridine, C6H6ClN
  79. The crystal structure of 1-bromo-4-iodo-benzene, C6H4BrI
  80. The crystal structure of 2,6-dimethyl-4-nitro-phenol, C8H9NO3
  81. The crystal structure of 3-chloropropionic acid, C3H5ClO2
  82. The crystal structure of 2-(2-methoxyphenyl)acetic acid, C9H10O3
Downloaded on 6.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2020-0412/html
Scroll to top button