Home Crystal structure of fac-tricarbonyl-(nitrato-k1O)-bis(pyridine-κN)-rhenium, C13H10O6N3Re
Article Open Access

Crystal structure of fac-tricarbonyl-(nitrato-k1O)-bis(pyridine-κN)-rhenium, C13H10O6N3Re

  • Francois J. F. Jacobs ORCID logo EMAIL logo and Alice Brink
Published/Copyright: November 19, 2020

Abstract

C13H10O6N3Re, monoclinic, P21/c (no. 14), a = 7.9325(9) Å, b = 13.811(2) Å, c = 13.458(2) Å, β = 92.637(4)°, V = 1472.83(4) Å3, Z = 4, Rgt(F) = 0.0249, wRref(F2) = 0.0568, T = 100(2) K. CCDC no.: 2024932

The molecular structure is shown in the Figure. Table 1 contains crystallographic data, and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal:Yellow cuboid
Size:0.12 × 0.10 × 0.09 mm
Wavelength:Mo Kα radiation (0.71073 Å)
μ:8.29 mm−1
Diffractometer, scan mode:Bruker D8 Quest Photon II, φ and ω
θmax, completeness:28.0°, >99%
N(hkl)measured, N(hkl)unique, Rint:22423, 3551, 0.059
Criterion for Iobs, N(hkl)gt:Iobs > 2 σ(Iobs), 3221
N(param)refined:208
Programs:Bruker [1], Mercury [2], Olex2 [3], SHELX [4], [5]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
Re10.82346 (2)0.60717 (2)0.23467 (2)0.01993 (6)
O10.9999 (4)0.7809 (2)0.3355 (3)0.0446 (8)
O20.8813 (4)0.7187 (3)0.0431 (2)0.0434 (8)
O31.1633 (4)0.5106 (2)0.2097 (3)0.0400 (8)
O40.5694 (3)0.65047 (19)0.2630 (2)0.0259 (6)
O50.5590 (4)0.7776 (2)0.1658 (2)0.0408 (8)
O60.3334 (4)0.7254 (3)0.2329 (3)0.0407 (8)
N10.6918 (4)0.4887 (2)0.1523 (2)0.0203 (6)
N20.7788 (4)0.5261 (2)0.3727 (2)0.0204 (6)
N30.4848 (4)0.7193 (2)0.2186 (3)0.0266 (7)
C10.9329 (5)0.7147 (3)0.3013 (3)0.0279 (9)
C20.8561 (5)0.6769 (3)0.1148 (3)0.0297 (9)
C31.0357 (5)0.5481 (3)0.2198 (3)0.0249 (8)
C40.7270 (6)0.5722 (3)0.4530 (3)0.0285 (9)
H40.7035360.6395080.4482060.034*
C50.7061 (6)0.5265 (3)0.5426 (3)0.0349 (10)
H50.6692900.5620430.5980250.042*
C60.7389 (6)0.4287 (3)0.5512 (3)0.0315 (9)
H60.7253320.3953320.6121000.038*
C70.7924 (6)0.3809 (3)0.4680 (4)0.0353 (10)
H70.8163550.3135770.4710640.042*
C80.8107 (5)0.4309 (3)0.3811 (3)0.0285 (9)
H80.8472680.3968690.3246350.034*
C90.5407 (5)0.4549 (3)0.1772 (3)0.0275 (8)
H90.4914070.4803340.2347450.033*
C100.4537 (6)0.3844 (3)0.1223 (3)0.0310 (9)
H100.3475290.3616270.1423560.037*
C110.5234 (6)0.3479 (3)0.0381 (3)0.0325 (10)
H110.4664120.299450−0.0006790.039*
C120.6782 (6)0.3833 (3)0.0111 (3)0.0330 (10)
H120.7287980.359978−0.0469070.040*
C130.7571 (5)0.4526 (3)0.0697 (3)0.0280 (9)
H130.8634750.4763230.0508790.034*

Source of material

The title compound was crystallised from the intermediate fac-[ReI(CO)3(HOCH3)3]NO3 in the presence of excess pyridine during the reaction indicated in literature [6]. The title compound was crystallized from the methanol filtrate in high purity. IR (ATR, cm−1): ν(CO) 2018, 1897, 1882.

Experimental details

In the structure, all H atoms were positioned geometrically and refined using a riding model, C–Haromatic = 0.95 Å. The H atom isotropic displacement parameters were fixed; Uiso(H) = 1.2 Ueq(C).

Comment

Rhenium and two of its isotopes, 186Re and 188Re, have found use in radiopharmacy as a therapeutic radionuclei. 186Re and 188Re are both beta emitters with half-lifes of 90 and 17 h, respectively. 186Re has beta emission energy of 1.08 MeV, and 188Re emits its beta particles with an energy of 2.12 MeV thus allowing for maximum tissue penetration depths of 5 and 11 mm, respectively [7], [8]. These emission properties together with the accessibility achieved from the utilization of the 188W/188Re generator, for 188Re, and cyclotron availability, for 186Re, has made rhenium an ideal candidate in clinical oncology [9], [10]. Several classes of rhenium based radiopharmaceuticals exists varying from small molecules, colloids, peptides to antibodies, each of which are coordinated or labelled differently with the rhenium metal centre and are distributed in various ways through the body to the potential disease site, whether it is cancer, arthritis, etc. all of which speaks to the versatility of rhenium-based radiopharmaceuticals [11], [12]. Aside from the direct use of the radioactive isotope, the non-radioactive rhenium can be used as a chemical analogue to the short-lived isotope of technetium namely, 99mTc, which is widely used in the medicinal world today [13]. When used in conjunction both rhenium and technetium, if the appropriate isotopes are used, can form part of a theranostic treatment regime [14]. Additionally 188Re, when used together with a luminescent probe bound as a ligand system, has been demonstrated to be a potential theranostic agent utilizing the therapeutic nature of the beta particles emitted and diagnostic potential of the luminescent ligand system [15], [16], [17].

The crystal structure exhibits the expected distorted octahedral geometry for rhenium-tricarbonyl based systems as indicated by the N1–Re1–N2 bond angle of 87.5(1)°. The Re1–C1–3 bond lengths are typical for rhenium-tricarbonyl complexes with an average bond distance of 1.905(7) Å. The nitrato O4–Re1 bond distance is 2.153(2) Å, and the dihedral angle generated by the planes of the two pyridine ligands is 65.4(1)°. Currently, there are four neutral bis-pyridine based rhenium-tricarbonyl structures known and available in the Cambridge Structural Database (CSD) [18] each varying in what ligand is coordinated in the 6th position on the rhenium metal centre. These are bromido (LODMUN) [19], trifluoromethanesulfonato (PAXLUW) [20], chlorido (PUVHIX) [21] and phenylacetylenyl (VIJWAM) complexes [22]. A pattern of inverse correlation can be observed when comparing the dihedral angle, made by the two planes of the two pyridine ligands, with the Re–Br/Cl/O/C bond distance between the five structures. As the bond distance between the metal and 6th ligand increases for VIJWAM (Re1–C4 2.108(9) Å), this title compound (Re1–O4 2.153(2) Å), PAXLUW (Re1–O1 2.194(4) Å), PUVHIX (Re1–Cl1 2.447(4) Å) and LODMUN (Re1–Br1 2.560(2) Å); the dihedral angle decreases (69.9(3)°, 65.4(1)°, 61.8(3)°, 54.3(1)° and 53.5(1)°). This suggests that the relative position of freely rotating ligands bound equatorially around the metal can be directly affected by changing the 6th axially coordinated ligand (and the bond distance thereof), either by influencing the electron donation ability or the steric influence of the 6th ligand thus providing a means of fine tuning the geometric parameters of a potential radiopharmaceutical.


Corresponding author: Francois J. F. Jacobs, Department of Chemistry, University of the Free State, P. O. Box 339, Bloemfontein, 9300, South Africa, E-mail:

Funding source: University of the Free State (UFS)

Funding source: SASOL

Funding source: South African National Research Foundation (SA-NRF)

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: Financial assistance from the University of the Free State (UFS), SASOL, the South African National Research Foundation (SA-NRF) is gratefully acknowledged, part of this material is based on work supported by the SA-NRF (Grant No.: UID 99139).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Bruker. APEX3 and SAINT; Bruker AXS Inc.: Madison, WI, USA, 2016.Search in Google Scholar

2. MacRae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M., Wood, P. A. Mercury 4.0: from visualization to analysis, design and prediction. J. Appl. Crystallogr. 2020, 53, 226–235; https://doi.org/10.1107/s1600576719014092.Search in Google Scholar PubMed PubMed Central

3. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

4. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

5. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

6. Brink, A., Visser, H. G., Roodt, A. Novel imino rhenium (I) tricarbonyl complexes of salicylidene-derived ligands: synthesis, X-ray crystallographic studies, spectroscopic characterization and DFT calculations. Polyhedron 2013, 52, 416–423; https://doi.org/10.1016/j.poly.2012.08.059.Search in Google Scholar

7. Baglin, C. M., Berkeley, L. Nuclear data sheets for A = 186. Nucl. Data Sheets 2003, 99, 1–196; https://doi.org/10.1006/ndsh.2003.0007.Search in Google Scholar

8. Singh, B. Nuclear data sheets for A = 188. Nucl. Data Sheets 2002, 95, 387–542; https://doi.org/10.1006/ndsh.2002.0005.Search in Google Scholar

9. Alberto, R. Application of technetium and rhenium in nuclear medicine. COSMOS 2012, 08, 83–101; https://doi.org/10.1142/s0219607712300019.Search in Google Scholar

10. Theobald, A. E., Theobald, T. Sampson’s Textbook of Radiopharmacy; Pharmaceutical Press: London, 2011.Search in Google Scholar

11. Lepareur, N., Lacoeuille, F., Bouvry, C., Hindré, F., Garcion, E., Chérel, M., Noiret, N., Garin, E., Russ Knapp, F. F. Rhenium-188 labeled radiopharmaceuticals: current clinical applications in oncology and promising perspectives. Front. Med. 2019, 6, 1–19; https://doi.org/10.3389/fmed.2019.00132.Search in Google Scholar PubMed PubMed Central

12. Majumder, S., Borah, B. P., Bhuyan, J. Rhenium in the core of porphyrin and rhenium bound to the periphery of porphyrin: synthesis and applications. Dalton Trans. 2020, 49, 8419–8432; https://doi.org/10.1039/d0dt00813c.Search in Google Scholar PubMed

13. Alberto, R. From oxo to carbonyl and arene complexes: a journey through technetium chemistry. J. Organomet. Chem. 2018, 869, 264–269; https://doi.org/10.1016/j.jorganchem.2018.01.013.Search in Google Scholar

14. Frei, A., Mokolokolo, P. P., Bolliger, R., Braband, H., Tsosane, M. S., Brink, A., Roodt, A., Alberto, R. Self-assembled multinuclear complexes incorporating 99mTc. Chem. Eur. J. 2018, 24, 10397–10402; https://doi.org/10.1002/chem.201800600.Search in Google Scholar PubMed

15. Yang, J., Cao, Q., Zhang, H., Hao, L., Zhou, D., Gan, Z., Li, Z., Tong, Y. X., Ji, L. N., Mao, Z. W. Targeted reversal and phosphorescence lifetime imaging of cancer cell metabolism via a theranostic rhenium(I)–DCA conjugate. Biomaterials 2018, 176, 94–105; https://doi.org/10.1016/j.biomaterials.2018.05.040.Search in Google Scholar PubMed

16. Stephenson, K. A., Banerjee, S. R., Besanger, T., Sogbein, O. O., Levadala, M. K., McFarlane, N., Lemon, J. A., Boreham, D. R., Maresca, K. P., Brennan, J. D., Babich, J. W., Zubieta, J., Valliant, J. F. Bridging the gap between in vitro and in vivo imaging: isostructural Re and 99mTc complexes for correlating fluorescence and radioimaging studies. J. Am. Chem. Soc. 2004, 126, 8598–8599; https://doi.org/10.1021/ja047751b.Search in Google Scholar PubMed

17. Yoshimura, T., Nagata, K., Shiroyama, T., Kino, Y., Takayama, T., Sekine, T., Shinohara, A. A luminescent dicyanidonitridotechnetium(v) core with tridentate ligand coordination sites. Dalton Trans. 2018, 47, 16027–16030; https://doi.org/10.1039/c8dt02935k.Search in Google Scholar PubMed

18. Groom, C. R., Bruno, I. J., Lightfoot, M. P., Ward, S. C. The Cambridge structural database. Acta Crystallogr. 2016, B72, 171–179; https://doi.org/10.1107/s2052520616003954.Search in Google Scholar

19. Franklin, B. R., Herrick, R. S., Ziegler, C. J., Çetin, A., Barone, N., Condon, L. R. Reactions of the Re(CO)3(H2O)3+ synthon with monodentate ligands under aqueous conditions. Inorg. Chem. 2008, 47, 5902–5909; https://doi.org/10.1021/ic800363w.Search in Google Scholar PubMed

20. Ouh, L. L., Müller, T. E., Yan, Y. K. Intramolecular hydroamination of 6-aminohex-1-yne catalyzed by Lewis acidic rhenium(I) carbonyl complexes. J. Organomet. Chem. 2005, 690, 3774–3782; https://doi.org/10.1016/j.jorganchem.2005.05.011.Search in Google Scholar

21. Bélanger, S., Hupp, J. T., Stern, C. L. fac-Tricarbonylchlorobis(pyridine-N)rhenium and fac-tricarbonylchlorobis(4,4′-bipyridine-N)rhenium. Acta Crystallogr. 1998, C54, 1596–1600; https://doi.org/10.1107/s0108270198006398.Search in Google Scholar

22. Artamkina, G. A., Kovalenko, S. V., Beletskaya, I. P., Reutov, O. A. Introduction of a carbon-carbon bond into electron-deficient aromatic compounds. Russ. Chem. Rev. 1990, 59, 750–777; https://doi.org/10.1070/rc1990v059n08abeh003553.Search in Google Scholar

Received: 2020-09-15
Accepted: 2020-10-13
Published Online: 2020-11-19
Published in Print: 2021-01-26

© 2020 Francois J. F. Jacobs and Alice Brink, published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. The crystal structure of 3-oxo-urs-12-en-28-oic acid, C30H46O3·1/6H2O
  4. The crystal structure of (3S,12R,20R,24R)-3,12-diacetyl-20,24-epoxy-dammarane-3,12,25–triol–ethyl acetate (4/1), C34H56O6⋅ 0.25(C4H8O2)
  5. A new polymorph of tetrakis(dimethylammonium) catena-poly[tetrakis(μ2-sulfato-κ2O:O′)dizinc(II)], Zn2C8H32N4O16S4
  6. Crystal structure of 10-oxysophoridine, C15H22N2O2
  7. The crystal structure of (5R,8R,9R,10R,12R,13R,14R)-12-hydroxy-4,4,8,10,14-pentamethyl-17-((R)-2,6,6-trimethyltetrahydro-2H-pyran-2-yl)tetradecahydro-3H-cyclopenta[a]phenanthrene-3,6(2H)-dione, C30H48O4
  8. Synthesis, crystal structure and optical property of 1,6-bis(p-tolylthio)pyrene, C30H22S2
  9. The crystal structure of hexakis(2-(pyridin-2-ylamino)pyridin-1-ium) decavanadate(V) dihydrate, C60H64N18O30V10
  10. Preparation and crystal structure of a cationic olefin polymerization precatalyst: (1,7-bis(2,6–dichlorophenyl)-1,7-di-aza-4-oxo-heptan-1,4,7-triyl)dimethyl zirconium(IV), C18H20Cl4N2OZr
  11. The crystal structure of fac-tricarbonyl(4,4-dimethyl-2,2-dipyridyl-κ2N,N′)- (pyrazole-κN)rhenium(I) nitrate, C18H16O3N4Re
  12. Synthesis and crystal structure of hexaaquacopper(II) 2,5-dicarboxyterephthalate, C10H16O14Cu
  13. The crystal structure of (8R,10R,12R,14R)- 12-hydroxy-16-(5-(2-hydroxypropan-2-yl)-2-methyltetrahydrofuran-2-yl)- 4,4,8,10,14-pentamethyltetradecahydro-3H- cyclopenta[a]phenanthrene-3,6(2H)-dione, C30H48O5
  14. Structure of the mixed crystal (S)-(6-(bromo/chloro)-2-methoxy-2,6-dihydroquinolin-3-yl)(phenyl)methanol, C17H14Br0.5Cl0.5NO2
  15. The crystal structure of trans-tetraaqua-bis(4-acetylphenoxyacetato-κ1O)manganese(II), C20H26O12Mn
  16. Crystal structure of (E)-2-(4-fluoro-3-(trifluoromethyl)benzylidene)-7-methoxy-3,4-dihydronaphthalen-1(2H)-one, C19H14F4O2
  17. Crystal structure of DL-α-(methylaminomethyl)benzyl alcohol, C9H13NO
  18. The crystal structure of dipentaerthritol hexanitrate, C10H16N6O19
  19. Crystal structure of N,N-diphenylformamide, C13H11NO
  20. Crystal structure of (E)-2-(3,5-bis(trifluoromethyl)benzylidene)-7-methoxy-3,4-dihydronaphthalen- 1(2H)-one, C20H14F6O2
  21. Crystal structure of ortho-methoxy benzaldehyde, C8H8O2 – a second polymorph and deposition of 3D coordinates
  22. Crystal structure of catena-poly[diaqua-bis(μ2-2-(4-(2,4,4-trimethylpentan-2-yl)phenoxy)propanoato-κ2O:O')-(2-(4-(2,4,4-trimethylpentan-2-yl)phenoxy)propanoato-κ2O,O')yttrium(III)], C51H79O11Y
  23. Crystal structure of benzylthiouronium chloride, C8H11ClN2S
  24. Synthesis and crystal structure of tert-butyl (2′R,3R,3′R,4aR,9aS)-1-acetyl-5-chloro-3″-methyl-2,5″,9′-trioxo-1″-phenyl-1″,4a′,5″,9a′-tetrahydro-1′H,3′H,9′H-dispiro[indoline-3,4′-xanthene-2′,4″-pyrazole]-3′-carboxylate, C36H32ClN3O7
  25. Crystal structure of 2-hydroxy-4-methoxy benzaldehyde, C8H8O3
  26. Crystal structure of poly[diaqua-(m3-3′,5′-dicarboxy-[1,1′-biphenyl]-3,4-dicarboxylato-K4O,O′:O″:O‴) cadmium(II)], C16H11O10Cd
  27. Crystal structure of {tetraaqua-bis(1-(4-hydroxy-2-oxotetrahydrofuran-3-yl)-2-((4aS,6R,8aS)-6-hydroxy-5-(hydroxymethyl)-5,8a-dimethyl-2-methylenedecahydronaphthalen-1-yl)ethane-1-sulfonato-k2O,O') calcium(II)}-{triaqua-bis(1-(4-hydroxy-2-oxotetrahydrofuran-3-yl)-2-((4aS,6R,8aS)-6-hydroxy-5-(hydroxymethyl)-5,8a-dimethyl-2-methylenedecahydronaphthalen-1-yl)ethane-1-sulfonato-k2O,O') calcium(II)} – water – acetone (1/1/8/2)
  28. Synthesis and crystal structure of bis{2-bromo-6-((E)-((4-((E)-1-(methoxy-imino)ethyl)phenyl)imino)methyl)phenolato- κ2N,O}zinc(II)-methanol(1/2), C65H60Br4N8O9Zn2
  29. Crystal structure of benzenesulphonic acid
  30. Crystal structure of N-benzyl-N-nicotinoyl-nicotine amide C19H15N3O2
  31. Crystal structure of poly[aqua(μ3-2,4-diamino-benzenesulfonato-κ4N:N′,O:O′)silver(I)], C12H18O8N4S2Ag2
  32. Crystal structure of 1,4-bis(methylpyridinium benzene) bis(1,2-dicyanoethene-1,2-dithiolato-κ2S:S)nickel(II), C26H18N6NiS4
  33. Crystal structure of the Cu(II) complex chlorido-(6-oxo-2-phenyl-1,6-dihydropyrimidine-4-carboxylato-k2N,O)-(phenanthroline-k2N,N')copper(II), C23H15ClCuN4O3
  34. Crystal structure of phenarsazine chloride acetic acid solvate, C14H13AsClNO2
  35. Crystal structure of poly[aqua-(μ2-3,3′,4,5′-biphenyl tetracarboxylate- κ3O,O′:O′′) -(μ2-4,4′-bis(pyrid-4-yl)biphenyl-κ2N:N′)zinc(II)], C27H18NO9Zn
  36. Crystal structure of catena-poly[(μ2-3-amino-benzenedisulfonato-κ2N:O)-bis (3-methyl-isoquinoline-κN)silver(I)], C26H24N3O3SAg
  37. Crystal structure of 2-((4-Aminophenyl)thio)acetic acid, C8H9NO2S
  38. Crystal structure of phenarsazine chloride dimethylsulfoxide solvate, C14H15AsClNOS
  39. Synthesis and crystal structure of 2-azido-N-phenylacetamide, C8H8N4O
  40. Crystal structure of chlorido{hydridotris[3-phenyl-5-methylpyrazol-1-yl-κN3]borato}copper(II), C30H28BClCuN6
  41. Crystal structure of benzanthrone – a redetermination for correct molecular geometry and localization of hydrogen atoms
  42. Crystal structure of 4-bromobenzaldehyde – complete redetermination at 200 K, C7H5BrO
  43. Crystal structure and spectroscopic properties of chlorido{hydridotris[3-,5-dimethylpyrazol-1-yl-κN3]borato}(3-,5-dimethylpyrazol-1-yl-κN)copper(II), C20H30BClCuN8
  44. The crystal structure of 4-((2-hydroxynaphthalen-1-yl)(pyrrolidin-1-yl)methyl)benzonitrile, C22H20N2O
  45. Crystal structure of 4-ethyl-3-phenylisoquinolin-1(2H)-one, C17H15NO
  46. Crystal structure of (tricyclohexylphosphane-κP)-[(Z)-N-(3-fluorophenyl)-O-methylthiocarbamato-k1S]gold(I), C26H40AuFNOPS
  47. Crystal structure of (3S,8R,10R,12R,14R)-12-hydroxy-4,4,8,10,14-pentamethyl-17-((R)-2,6,6-trimethyltetrahydro-2H-pyran-2-yl) hexadecahydro-1H-cyclopenta[a]phenanthren-3-yl acetate, C32H54O4
  48. The crystal structure of 2-[(S)-1-(naphthalen-1-yl)ethyl]-2,3,7,7a- tetrahydro-3a,6-epoxyisoindol-1(6H)-one, C19H20NO2
  49. Crystal structure of {hydridotris[3-(t-butyl)-5-isopropylpyrazol-1-yl-κN3]borato}thallium(I), C30H52BN6Tl
  50. Synthesis and crystal structure of 1-octyl-3-phenylquinoxalin-2(1H)-one, C22H26N2O
  51. The crystal structure of 2,6-difluorophenol, C6H4F2O
  52. 4-(9H-Fluoren-9-yl)-4-methylmorpholin-4-ium bromide, C18H20BrNO
  53. The crystal structure of 2,4-dimethylimidazole monohydrate, C5H10N2O
  54. The crystal structure of 1,2-dimethylimidazole, C5H8N2
  55. The crystal structure of 3-ammonio-4-aminobenzoate, C7H8N2O2 – a second polymorph
  56. The crystal structure of 4-hydroxy-2,5-bis(1-methyl-1H-imidazol-3-ium-2-ylthio)-3,6-dioxocyclohexa-1,4-dienolate chloride monohydrate, C14H15N4O5S2Cl
  57. The crystal structure of butyrylferrocene, C14H16FeO
  58. The crystal structure of bi-1,1′-cyclopentane-1,1′-diol, C10H18O2
  59. The crystal structure of 2-iso-propylimidazole, C6H10N2
  60. The crystal structure of aqua-tris (1,3-diphenylpropane-1,3-dionato-κ2O,O′)-lanthanum(III), C45H35LaO7
  61. Crystal structure of (3E,5E)-3,5-bis-4-methoxy-3-(trifluoromethyl)benzylidene)-1-methylpiperidin-4-one, C24H21F6NO3
  62. The crystal structure of 3,5-dichloro-6-diazo-2,4-dinitrocyclohexa-2,4-dien-1-one, C6Cl2N4O5
  63. Crystal structure of carbonyl(2-methylquinolin-8-olato-κ2N,O)(triphenylarsine-κAs)rhodium(I), C29H23AsNO2Rh
  64. Crystal structure of (1aS,1a1S,2S)-4a-butoxy-1a,1a1,2,4a,5,6-hexahydro-1H-cyclobuta[de]naphthalen-2-yl-4-nitrobenzoate, C22H25NO5
  65. Crystal structure of carbonyl(2-oxopyridin-1(2H)-olato-k2O,O′)(triphenylarsine-κAs)rhodium(I), C24H19AsNO3Rh
  66. Crystal structure of catena-poly[triqua-bis(μ2-4-carboxy-2-(1H-tetrazol-1-yl)-1H-imidazole-5-carboxylato-k3N,O:O′)barium(II)] tetrahydrate, C14H14BaN12O15
  67. Crystal structure of (E)-3′,6′-bis(ethylamino)-2-((quinoxalin-2-ylmethylene)amino)spiro[isoindoline-1,9′-xanthen]-3-one, C35H32N6O2
  68. Crystal structure of diaqua-bis(μ2-5-chloro-salicylato-κ3O,O′:O′)-bis(5-chloro-salicylato-κ2O,O′)-bis(1,10-phenanthroline-κ2N,N′) dilead(II) – water (1/2), C52H36C14N4O14Pb2·2(H2O)
  69. Crystal structure of (E)-2-(4-ethoxycarbonyl-3,5-dimethyl-2-(pyrrole-2-ylmethyleneamino)-3′,6′-dihydroxylspiro[isoindoline-1,9′-xanthen]-3-one-methanol (1/1), C31H29N3O7
  70. The crystal structure of 5H-dibenzo[b,e]azepine-6,11-dione, C14H9NO2
  71. Crystal structure of (E)-2-(4-fluoro-2-(trifluoromethyl)benzylidene)-7-methoxy-3,4-dihydronaphthalen-1(2H)-one, C19H14F4O2
  72. The crystal structure of N-(2-methoxy-4,5-bis[phenylselanyl]phenyl)picolinamide, C25H20N2O2Se2
  73. The crystal structure of (E)-2-(5-bromo-2-hydroxybenzylidene)-N-phenylhydrazine-1- carboxamide monohydrate, C14H14BrN3O3
  74. Crystal structure of fac-tricarbonyl-(nitrato-k1O)-bis(pyridine-κN)-rhenium, C13H10O6N3Re
  75. Crystal structure of (E)-2-(((1H-pyrrol-2-yl)methylene)amino)-3′,6′-dihydroxyspiro[isoindoline-1,9′-xanthen]-3-one — methanol (1/2), C27H25N3O6
  76. The crystal structure of 4-amino-N′-(4-aminobenzoyl)benzohydrazide monohydrate, C14H16N4O3
  77. Crystal structure of bis(amino(carbamothioylamino)methaniminium) 5-hydroxyisophthalate monohydrate, C12H20N8O6S2
  78. The crystal structure of 2-(chloromethyl)pyridine, C6H6ClN
  79. The crystal structure of 1-bromo-4-iodo-benzene, C6H4BrI
  80. The crystal structure of 2,6-dimethyl-4-nitro-phenol, C8H9NO3
  81. The crystal structure of 3-chloropropionic acid, C3H5ClO2
  82. The crystal structure of 2-(2-methoxyphenyl)acetic acid, C9H10O3
Downloaded on 6.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2020-0475/html
Scroll to top button