Home Crystal structure of (3S,8R,10R,12R,14R)-12-hydroxy-4,4,8,10,14-pentamethyl-17-((R)-2,6,6-trimethyltetrahydro-2H-pyran-2-yl) hexadecahydro-1H-cyclopenta[a]phenanthren-3-yl acetate, C32H54O4
Article Open Access

Crystal structure of (3S,8R,10R,12R,14R)-12-hydroxy-4,4,8,10,14-pentamethyl-17-((R)-2,6,6-trimethyltetrahydro-2H-pyran-2-yl) hexadecahydro-1H-cyclopenta[a]phenanthren-3-yl acetate, C32H54O4

  • Ying Ma ORCID logo , Hui-Yun Wang , Xiao-Fan Zhang , Feng-Lan Zhao and Qing-Guo Meng EMAIL logo
Published/Copyright: October 12, 2020

Abstract

C32H54O4, monoclinic, P21 (no. 4), a = 7.8727(1) Å, b = 19.9173(2) Å, c = 19.1801(2) Å, β = 94.539(1)°, V = 2998.06(6) Å3, Z = 4, Rgt(F) = 0.0370, wRref(F2) = 0.0983, T = 293 K.

CCDC no.: 1858883

Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal:Colourless block
Size:0.13 × 0.10 × 0.10 mm
Wavelength:Cu Kα radiation (1.54178 Å)
μ:0.55 mm−1
Diffractometer, scan modeXcalibur
θmax, completeness:66.5°, >99%
N(hkl)measured, N(hkl)unique, Rint:43,442, 10,562, 0.029
Criterion for Iobs, N(hkl)gt:Iobs > 2 σ(Iobs), 9800
N(param)refined:669
Programs:CrysAlisPRO [1], Olex2 [2], SHELX [3], SUPERFLIP [4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
C10.1680 (3)0.06139 (12)1.00958 (12)0.0476 (5)
H1A0.1139290.1046851.0010420.057*
H1B0.1284130.0316850.9716450.057*
C20.1130 (3)0.03301 (14)1.07813 (13)0.0548 (6)
H2A0.1448630.0638531.1160690.066*
H2B−0.0098250.0276751.0750410.066*
C30.1977 (3)−0.03412 (14)1.09272 (12)0.0527 (6)
H30.164856−0.0638831.0532500.063*
C40.3925 (3)−0.03125 (14)1.10138 (13)0.0528 (5)
C50.4468 (3)0.00180 (12)1.03268 (12)0.0450 (5)
H50.407261−0.0298440.9957720.054*
C60.6404 (3)0.00520 (14)1.02797 (14)0.0562 (6)
H6A0.6873060.0417411.0568640.067*
H6B0.692225−0.0362981.0454890.067*
C70.6818 (3)0.01612 (14)0.95263 (14)0.0561 (6)
H7A0.644159−0.0228010.9251990.067*
H7B0.8044910.0194100.9514000.067*
C80.5995 (3)0.07922 (12)0.91843 (12)0.0446 (5)
C90.4061 (2)0.08137 (11)0.93185 (11)0.0405 (4)
H90.3562500.0426790.9061480.049*
C100.3620 (2)0.06991 (11)1.00917 (11)0.0406 (4)
C110.3197 (3)0.14259 (13)0.89570 (13)0.0493 (5)
H11A0.1990580.1412600.9026910.059*
H11B0.3663600.1829580.9180980.059*
C120.3404 (3)0.14725 (13)0.81729 (13)0.0523 (6)
H120.2764630.1106860.7931880.063*
C130.5277 (3)0.14166 (12)0.80294 (12)0.0471 (5)
H130.5864370.1799020.8262150.057*
C140.6088 (3)0.07720 (12)0.83671 (12)0.0477 (5)
C150.7886 (4)0.08003 (18)0.81006 (16)0.0702 (7)
H15A0.8634480.1078850.8404790.084*
H15B0.8372350.0353530.8085280.084*
C160.7659 (4)0.10999 (16)0.73718 (16)0.0668 (7)
H16A0.7806260.0756110.7023400.080*
H16B0.8497560.1449600.7320010.080*
C170.5829 (3)0.13972 (13)0.72739 (13)0.0536 (6)
H170.5112390.1062270.7018170.064*
C180.5734 (3)0.20449 (13)0.68316 (13)0.0554 (6)
C190.6497 (4)0.19132 (18)0.61326 (16)0.0734 (8)
H19A0.7729650.1909650.6208060.088*
H19B0.6136370.1473680.5960530.088*
C200.5960 (5)0.2440 (2)0.55813 (17)0.0897 (11)
H20A0.6399330.2875720.5732340.108*
H20B0.6434670.2327780.5144530.108*
C210.4042 (5)0.2470 (3)0.54697 (17)0.0940 (11)
H21A0.3618280.2045450.5278560.113*
H21B0.3719140.2818610.5131750.113*
C220.3219 (4)0.2613 (2)0.61478 (15)0.0772 (9)
C230.0015 (3)−0.10468 (13)1.14579 (13)0.0539 (6)
C24−0.0582 (4)−0.12987 (18)1.21271 (16)0.0732 (8)
H24A−0.135615−0.0979741.2303490.110*
H24B0.037755−0.1358021.2462350.110*
H24C−0.115384−0.1720731.2047150.110*
C250.4579 (4)0.00528 (18)1.16905 (14)0.0695 (8)
H25A0.4051040.0486411.1705550.104*
H25B0.5792800.0105791.1699550.104*
H25C0.430186−0.0206281.2088000.104*
C260.4579 (4)−0.10434 (17)1.10499 (19)0.0763 (8)
H26A0.405298−0.1279761.1412220.114*
H26B0.579307−0.1043821.1150810.114*
H26C0.429813−0.1260971.0609260.114*
C270.4149 (3)0.12945 (13)1.05750 (13)0.0546 (6)
H27A0.3997060.1706951.0318570.082*
H27B0.5324600.1247321.0742710.082*
H27C0.3454930.1299981.0964470.082*
C280.6985 (3)0.14067 (14)0.94981 (14)0.0581 (6)
H28A0.7252680.1337500.9989810.087*
H28B0.6296170.1802390.9427870.087*
H28C0.8020050.1461550.9271190.087*
C290.5223 (4)0.01358 (13)0.80307 (14)0.0618 (6)
H29A0.5294150.0147960.7533570.093*
H29B0.4047570.0124550.8131270.093*
H29C0.579145−0.0258080.8219700.093*
C300.6610 (4)0.26291 (16)0.72245 (17)0.0732 (8)
H30A0.6784000.2987780.6903390.110*
H30B0.7691080.2483590.7438990.110*
H30C0.5909570.2784410.7578860.110*
C310.3453 (6)0.3348 (2)0.6367 (2)0.0997 (12)
H31A0.3083540.3407970.6827910.149*
H31B0.2788100.3629430.6043370.149*
H31C0.4634050.3467810.6366730.149*
C320.1343 (5)0.2444 (3)0.6084 (2)0.1093 (15)
H32A0.1198540.1975730.5975840.164*
H32B0.0773940.2708030.5717930.164*
H32C0.0865200.2539810.6518480.164*
C330.3862 (3)0.02020 (12)0.43299 (13)0.0492 (5)
H33A0.4323250.0148250.3879020.059*
H33B0.4220590.0637060.4515090.059*
C340.4589 (3)−0.03468 (13)0.48254 (14)0.0549 (6)
H34A0.430258−0.0783580.4625620.066*
H34B0.582097−0.0309490.4877850.066*
C350.3899 (3)−0.02922 (12)0.55297 (14)0.0510 (5)
H350.4286080.0134450.5741500.061*
C360.1955 (3)−0.03220 (13)0.55253 (14)0.0530 (6)
C370.1224 (3)0.02019 (12)0.49728 (12)0.0447 (5)
H370.1600480.0637500.5165710.054*
C38−0.0716 (3)0.02421 (16)0.49193 (14)0.0603 (7)
H38A−0.118791−0.0137250.4652220.072*
H38B−0.1118950.0219890.5383800.072*
C39−0.1325 (3)0.08930 (15)0.45654 (14)0.0575 (6)
H39A−0.0931940.1267960.4857960.069*
H39B−0.2561260.0899810.4528740.069*
C40−0.0701 (3)0.09896 (11)0.38303 (12)0.0437 (5)
C410.1267 (2)0.08521 (10)0.38582 (11)0.0377 (4)
H410.1777040.1209850.4156640.045*
C420.1901 (3)0.01832 (11)0.42290 (12)0.0416 (4)
C430.1949 (3)0.09742 (11)0.31429 (12)0.0464 (5)
H43A0.3173380.0906690.3183950.056*
H43B0.1455230.0643940.2814950.056*
C440.1566 (3)0.16761 (12)0.28471 (12)0.0456 (5)
H440.2209930.2006950.3139510.055*
C45−0.0326 (3)0.18342 (10)0.28441 (11)0.0397 (4)
H45−0.0931080.1507620.2533260.048*
C46−0.0968 (3)0.17357 (12)0.35823 (12)0.0434 (5)
C47−0.2832 (3)0.19727 (16)0.34474 (15)0.0638 (7)
H47A−0.3535300.1621760.3224400.077*
H47B−0.3298900.2099310.3881570.077*
C48−0.2737 (3)0.25804 (14)0.29629 (14)0.0565 (6)
H48A−0.2800460.2993210.3227800.068*
H48B−0.3677960.2572090.2604710.068*
C49−0.1011 (3)0.25420 (11)0.26218 (11)0.0440 (5)
H49−0.0247150.2873040.2859360.053*
C50−0.1189 (3)0.27284 (11)0.18404 (12)0.0463 (5)
C51−0.2034 (4)0.34220 (13)0.17510 (15)0.0596 (6)
H51A−0.3247390.3375120.1793560.072*
H51B−0.1577510.3713880.2125060.072*
C52−0.1761 (4)0.37490 (15)0.10539 (16)0.0697 (8)
H52A−0.2331270.3488030.0677850.084*
H52B−0.2250170.4196200.1039460.084*
C530.0128 (4)0.37919 (13)0.09525 (16)0.0646 (7)
H53A0.0671410.4089660.1302900.078*
H53B0.0278310.3982700.0496120.078*
C540.0993 (4)0.31055 (12)0.10086 (13)0.0549 (6)
C550.6127 (3)−0.07488 (15)0.63096 (13)0.0574 (6)
C560.6691 (5)−0.1358 (2)0.6713 (2)0.0979 (12)
H56A0.781282−0.1285630.6933960.147*
H56B0.671024−0.1735030.6401430.147*
H56C0.591403−0.1446990.7062920.147*
C570.1288 (4)−0.10390 (15)0.53810 (19)0.0766 (9)
H57A0.170814−0.1329920.5754810.115*
H57B0.167566−0.1197400.4948190.115*
H57C0.006524−0.1036980.5349850.115*
C580.1476 (4)−0.0111 (2)0.62530 (16)0.0775 (9)
H58A0.205933−0.0392680.6600580.116*
H58B0.026754−0.0156850.6276750.116*
H58C0.1799440.0348180.6337460.116*
C590.1394 (4)−0.04407 (12)0.37884 (15)0.0614 (7)
H59A0.148762−0.0343230.3302750.092*
H59B0.024004−0.0561830.3858830.092*
H59C0.213848−0.0806540.3928590.092*
C60−0.1722 (3)0.05077 (14)0.33225 (16)0.0620 (7)
H60A−0.1790080.0073810.3536450.093*
H60B−0.1159990.0468070.2898160.093*
H60C−0.2850230.0682180.3217820.093*
C61−0.0090 (4)0.22401 (13)0.41058 (13)0.0560 (6)
H61A0.1094680.2127280.4187910.084*
H61B−0.0621720.2221020.4538780.084*
H61C−0.0196680.2685480.3916050.084*
C62−0.2182 (4)0.21914 (14)0.14080 (14)0.0622 (7)
H62A−0.2584950.2375750.0962850.093*
H62B−0.3134760.2045240.1651840.093*
H62C−0.1449440.1816070.1337960.093*
C630.0535 (5)0.26695 (15)0.03698 (15)0.0712 (8)
H63A0.0909750.2217590.0464360.107*
H63B0.1083670.284225−0.0022140.107*
H63C−0.0677470.2673570.0264280.107*
C640.2907 (4)0.31845 (16)0.11139 (17)0.0711 (8)
H64A0.3193440.3447710.1525770.107*
H64B0.3314180.3406000.0715000.107*
H64C0.3428100.2749870.1167740.107*
O10.1343 (2)−0.06352 (10)1.15541 (9)0.0622 (5)
O20.2658 (3)0.20991 (12)0.79560 (11)0.0815 (7)
H20.2861740.2176220.7551020.122*
O30.3913 (2)0.21650 (10)0.66925 (9)0.0604 (4)
O4−0.0686 (3)−0.11719 (12)1.08954 (10)0.0750 (6)
O50.4589 (2)−0.08384 (9)0.59764 (10)0.0630 (5)
O60.2184 (3)0.16755 (11)0.21699 (10)0.0745 (6)
H60.1845320.2012800.1956750.112*
O70.0558 (2)0.27785 (8)0.16543 (8)0.0471 (3)
O80.6930 (3)−0.02449 (13)0.62787 (11)0.0752 (6)

Source of material

A solution of 20(R)-panoxadiol and acetic anhydride in pyridine was stirred for 11 h at room temperature. After evaporation under reduced pressure, the residue was dissolved in ethyl acetate and washed successively by water and brine, and dried over anhydrous sodium sulfate. After filtration, the ethyl acetate was removed in vacuo to yield a white solid, which was purified by silica-gel column chromatography (petroleum ether:ethyl acetate = 1:2 v/v). Suitable crystals were obtained by slow evaporation in ethyl acetate.

Experimental details

All H atoms were included in calculated positions and refined as riding atoms, with C–H = 0.96–0.98 Å and with O–C = 1.190–1.448 Å. The absolute configuration was derived from the synthesis and the configuration of the educts.

Comment

20(R)–Panoxadiol which was achieved by acid degradation from leaves and stems of ginseng can inhibit the release of inflammatory cytokine interleukin-6 and increase the release of anti-inflammatory mediator interleukin-10 [5], [6]. It has been reported to possess anti-inflammatory effect [7], [8]. It is a potent approach to modify the structures of natural products and preparing a variety of derivatives for the search of new lead compound. Therefore 20(R)-panoxadiol and its derivatives have attracted much attention.

There are two molecules in the asymmetric unit of the title structure. One of the two molecules is shown in the figure. Bond lengths and angles are very similar to those given in the literature for protopanaxadiol [9], [10], [11], [12], [13].

As shown in the figure, the structure of the title compound and panoxadiol are equivalent except for the substituents at O(1). The title compound contains a classical intramolecular O–H⋯O hydrogen bond. All these bond lengths and angles are in the expected ranges. And it would be more interesting to compare the two crystallographically independent molecules in this structure.


Corresponding author: Qing-Guo Meng, School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, PR China, E-mail:

Award Identifier / Grant number: 81473104, 81773563

Acknowledgments

X-ray data were collected at Institute of Medical Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, Peoples Republic of China.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Funding information: This work was supported by the National Natural Science Foundation of China (No. 81473104, 81773563).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Rigaku Oxford Diffracion. CrysAlisPRO software system, version 1.171.39.32a; Rigaku Corporation: Oxford, UK, 2017.Search in Google Scholar

2. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

3. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

4. Palatinus, L., Chapuis, G. SUPERFLIP: a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J. Appl. Cryst. 2007, 40, 786–790; https://doi.org/10.1107/s0021889807029238.Search in Google Scholar

5. Liu, J., Xu, Y. R., Yang, J. J., Wang, W. Z., Zhang, J. Q., Zhang, R. M., Meng, Q. G. Discovery, semisynthesis, biological activities, and metabolism of ocotillol-type saponins. J. Ginseng Res. 2017, 41, 373–378; https://doi.org/10.1016/j.jgr.2017.01.001.Search in Google Scholar

6. Zhang, J. Q., Zhang, Q., Xu, Y. R., Li, H. X., Zhao, F. L., Wang, C. M., Liu, Z., Liu, P., Liu, Y. N., Meng, Q. G., Zhao, F. Synthesis and in vitro anti-inflammatory activity of C20 epimeric ocotillol-type triterpenes and protopanaxadiol. Planta Med. 2018, 23, 292–301; https://doi.org/10.1055/a-0770-0994.Search in Google Scholar

7. Zhang, S. N., Zhao, Y. Q. Crystallization separation of anti-tumor constituent 20(R) 25-OCH3-PPD. Chin. Tradit. Herbal Drugs 2014, 45, 770–773.Search in Google Scholar

8. Yang, Y. Y., Lee, J. S., Rhee, M. H., Yu, T., Baek, K. S., Sung, N. Y., Kim, Y., Yoon, K., Kim, J. H., Kwak, Y. S., Hong, S., Kim, J. H., Cho, J. Y. Molecular mechanism of protopanaxadiol saponin fraction-mediated anti-inflammatory actions. J. Ginseng Res. 2015, 39, 61–68; https://doi.org/10.1016/j.jgr.2014.06.002.Search in Google Scholar

9. Puff, H., Friedrichs, E., Habscheid, M., Quante, G. Panaxadiol and panaxatriol-monohydrat. Acta Crystallogr. 1986, C42, 576–579; https://doi.org/10.1107/s0108270186095343.Search in Google Scholar

10. Liu, Z., Xu, Y. R., An, X. S., Yang, J. J., Meng, Q. G., Hou, G. G. Synthesis and crystal structure of ocotillol-type metabolites derived from (20R)-protopanaxadiol. J. Chem. Res. 2017, 41, 216–220; https://doi.org/10.3184/174751917x14894997017612.Search in Google Scholar

11. Xu, Y. R., Yang, J. J., Liu, J., Hou, G. G., Meng, Q. G. Synthesis and crystal structures of C24-epimeric 20(R)-ocotillol-type saponins. Acta Crystallogr. 2016, C72, 498–503; https://doi.org/10.1107/s2053229616007270.Search in Google Scholar

12. Liu, J., Wang, W. Z., Wang, J. Z., Hou, G. G., Meng, Q. G. Synthesis and crystal structures of 3,6-diacetylated C24 epimeric 20(R)-ocotillol-type saponins. J. Chem. Soc. Pak. 2019, 41, 452–457; https://doi.org/10.3184/174751917x14894997017612.Search in Google Scholar

13. Deng, J.-Q., Mu, X.-D., Zhao, R.-L., Liu, Z., Tang, H.-J., He, M., Meng, Q.-G. Crystal structure of (20R)-20,25-epoxy-dammaran-3,12-dione, C30H48O3. Z. Kristallogr. NCS 2019, 234, 145–147.10.1515/ncrs-2018-0237Search in Google Scholar

Received: 2020-06-24
Accepted: 2020-09-03
Published Online: 2020-10-12
Published in Print: 2021-01-26

© 2020 Ying Ma et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. The crystal structure of 3-oxo-urs-12-en-28-oic acid, C30H46O3·1/6H2O
  4. The crystal structure of (3S,12R,20R,24R)-3,12-diacetyl-20,24-epoxy-dammarane-3,12,25–triol–ethyl acetate (4/1), C34H56O6⋅ 0.25(C4H8O2)
  5. A new polymorph of tetrakis(dimethylammonium) catena-poly[tetrakis(μ2-sulfato-κ2O:O′)dizinc(II)], Zn2C8H32N4O16S4
  6. Crystal structure of 10-oxysophoridine, C15H22N2O2
  7. The crystal structure of (5R,8R,9R,10R,12R,13R,14R)-12-hydroxy-4,4,8,10,14-pentamethyl-17-((R)-2,6,6-trimethyltetrahydro-2H-pyran-2-yl)tetradecahydro-3H-cyclopenta[a]phenanthrene-3,6(2H)-dione, C30H48O4
  8. Synthesis, crystal structure and optical property of 1,6-bis(p-tolylthio)pyrene, C30H22S2
  9. The crystal structure of hexakis(2-(pyridin-2-ylamino)pyridin-1-ium) decavanadate(V) dihydrate, C60H64N18O30V10
  10. Preparation and crystal structure of a cationic olefin polymerization precatalyst: (1,7-bis(2,6–dichlorophenyl)-1,7-di-aza-4-oxo-heptan-1,4,7-triyl)dimethyl zirconium(IV), C18H20Cl4N2OZr
  11. The crystal structure of fac-tricarbonyl(4,4-dimethyl-2,2-dipyridyl-κ2N,N′)- (pyrazole-κN)rhenium(I) nitrate, C18H16O3N4Re
  12. Synthesis and crystal structure of hexaaquacopper(II) 2,5-dicarboxyterephthalate, C10H16O14Cu
  13. The crystal structure of (8R,10R,12R,14R)- 12-hydroxy-16-(5-(2-hydroxypropan-2-yl)-2-methyltetrahydrofuran-2-yl)- 4,4,8,10,14-pentamethyltetradecahydro-3H- cyclopenta[a]phenanthrene-3,6(2H)-dione, C30H48O5
  14. Structure of the mixed crystal (S)-(6-(bromo/chloro)-2-methoxy-2,6-dihydroquinolin-3-yl)(phenyl)methanol, C17H14Br0.5Cl0.5NO2
  15. The crystal structure of trans-tetraaqua-bis(4-acetylphenoxyacetato-κ1O)manganese(II), C20H26O12Mn
  16. Crystal structure of (E)-2-(4-fluoro-3-(trifluoromethyl)benzylidene)-7-methoxy-3,4-dihydronaphthalen-1(2H)-one, C19H14F4O2
  17. Crystal structure of DL-α-(methylaminomethyl)benzyl alcohol, C9H13NO
  18. The crystal structure of dipentaerthritol hexanitrate, C10H16N6O19
  19. Crystal structure of N,N-diphenylformamide, C13H11NO
  20. Crystal structure of (E)-2-(3,5-bis(trifluoromethyl)benzylidene)-7-methoxy-3,4-dihydronaphthalen- 1(2H)-one, C20H14F6O2
  21. Crystal structure of ortho-methoxy benzaldehyde, C8H8O2 – a second polymorph and deposition of 3D coordinates
  22. Crystal structure of catena-poly[diaqua-bis(μ2-2-(4-(2,4,4-trimethylpentan-2-yl)phenoxy)propanoato-κ2O:O')-(2-(4-(2,4,4-trimethylpentan-2-yl)phenoxy)propanoato-κ2O,O')yttrium(III)], C51H79O11Y
  23. Crystal structure of benzylthiouronium chloride, C8H11ClN2S
  24. Synthesis and crystal structure of tert-butyl (2′R,3R,3′R,4aR,9aS)-1-acetyl-5-chloro-3″-methyl-2,5″,9′-trioxo-1″-phenyl-1″,4a′,5″,9a′-tetrahydro-1′H,3′H,9′H-dispiro[indoline-3,4′-xanthene-2′,4″-pyrazole]-3′-carboxylate, C36H32ClN3O7
  25. Crystal structure of 2-hydroxy-4-methoxy benzaldehyde, C8H8O3
  26. Crystal structure of poly[diaqua-(m3-3′,5′-dicarboxy-[1,1′-biphenyl]-3,4-dicarboxylato-K4O,O′:O″:O‴) cadmium(II)], C16H11O10Cd
  27. Crystal structure of {tetraaqua-bis(1-(4-hydroxy-2-oxotetrahydrofuran-3-yl)-2-((4aS,6R,8aS)-6-hydroxy-5-(hydroxymethyl)-5,8a-dimethyl-2-methylenedecahydronaphthalen-1-yl)ethane-1-sulfonato-k2O,O') calcium(II)}-{triaqua-bis(1-(4-hydroxy-2-oxotetrahydrofuran-3-yl)-2-((4aS,6R,8aS)-6-hydroxy-5-(hydroxymethyl)-5,8a-dimethyl-2-methylenedecahydronaphthalen-1-yl)ethane-1-sulfonato-k2O,O') calcium(II)} – water – acetone (1/1/8/2)
  28. Synthesis and crystal structure of bis{2-bromo-6-((E)-((4-((E)-1-(methoxy-imino)ethyl)phenyl)imino)methyl)phenolato- κ2N,O}zinc(II)-methanol(1/2), C65H60Br4N8O9Zn2
  29. Crystal structure of benzenesulphonic acid
  30. Crystal structure of N-benzyl-N-nicotinoyl-nicotine amide C19H15N3O2
  31. Crystal structure of poly[aqua(μ3-2,4-diamino-benzenesulfonato-κ4N:N′,O:O′)silver(I)], C12H18O8N4S2Ag2
  32. Crystal structure of 1,4-bis(methylpyridinium benzene) bis(1,2-dicyanoethene-1,2-dithiolato-κ2S:S)nickel(II), C26H18N6NiS4
  33. Crystal structure of the Cu(II) complex chlorido-(6-oxo-2-phenyl-1,6-dihydropyrimidine-4-carboxylato-k2N,O)-(phenanthroline-k2N,N')copper(II), C23H15ClCuN4O3
  34. Crystal structure of phenarsazine chloride acetic acid solvate, C14H13AsClNO2
  35. Crystal structure of poly[aqua-(μ2-3,3′,4,5′-biphenyl tetracarboxylate- κ3O,O′:O′′) -(μ2-4,4′-bis(pyrid-4-yl)biphenyl-κ2N:N′)zinc(II)], C27H18NO9Zn
  36. Crystal structure of catena-poly[(μ2-3-amino-benzenedisulfonato-κ2N:O)-bis (3-methyl-isoquinoline-κN)silver(I)], C26H24N3O3SAg
  37. Crystal structure of 2-((4-Aminophenyl)thio)acetic acid, C8H9NO2S
  38. Crystal structure of phenarsazine chloride dimethylsulfoxide solvate, C14H15AsClNOS
  39. Synthesis and crystal structure of 2-azido-N-phenylacetamide, C8H8N4O
  40. Crystal structure of chlorido{hydridotris[3-phenyl-5-methylpyrazol-1-yl-κN3]borato}copper(II), C30H28BClCuN6
  41. Crystal structure of benzanthrone – a redetermination for correct molecular geometry and localization of hydrogen atoms
  42. Crystal structure of 4-bromobenzaldehyde – complete redetermination at 200 K, C7H5BrO
  43. Crystal structure and spectroscopic properties of chlorido{hydridotris[3-,5-dimethylpyrazol-1-yl-κN3]borato}(3-,5-dimethylpyrazol-1-yl-κN)copper(II), C20H30BClCuN8
  44. The crystal structure of 4-((2-hydroxynaphthalen-1-yl)(pyrrolidin-1-yl)methyl)benzonitrile, C22H20N2O
  45. Crystal structure of 4-ethyl-3-phenylisoquinolin-1(2H)-one, C17H15NO
  46. Crystal structure of (tricyclohexylphosphane-κP)-[(Z)-N-(3-fluorophenyl)-O-methylthiocarbamato-k1S]gold(I), C26H40AuFNOPS
  47. Crystal structure of (3S,8R,10R,12R,14R)-12-hydroxy-4,4,8,10,14-pentamethyl-17-((R)-2,6,6-trimethyltetrahydro-2H-pyran-2-yl) hexadecahydro-1H-cyclopenta[a]phenanthren-3-yl acetate, C32H54O4
  48. The crystal structure of 2-[(S)-1-(naphthalen-1-yl)ethyl]-2,3,7,7a- tetrahydro-3a,6-epoxyisoindol-1(6H)-one, C19H20NO2
  49. Crystal structure of {hydridotris[3-(t-butyl)-5-isopropylpyrazol-1-yl-κN3]borato}thallium(I), C30H52BN6Tl
  50. Synthesis and crystal structure of 1-octyl-3-phenylquinoxalin-2(1H)-one, C22H26N2O
  51. The crystal structure of 2,6-difluorophenol, C6H4F2O
  52. 4-(9H-Fluoren-9-yl)-4-methylmorpholin-4-ium bromide, C18H20BrNO
  53. The crystal structure of 2,4-dimethylimidazole monohydrate, C5H10N2O
  54. The crystal structure of 1,2-dimethylimidazole, C5H8N2
  55. The crystal structure of 3-ammonio-4-aminobenzoate, C7H8N2O2 – a second polymorph
  56. The crystal structure of 4-hydroxy-2,5-bis(1-methyl-1H-imidazol-3-ium-2-ylthio)-3,6-dioxocyclohexa-1,4-dienolate chloride monohydrate, C14H15N4O5S2Cl
  57. The crystal structure of butyrylferrocene, C14H16FeO
  58. The crystal structure of bi-1,1′-cyclopentane-1,1′-diol, C10H18O2
  59. The crystal structure of 2-iso-propylimidazole, C6H10N2
  60. The crystal structure of aqua-tris (1,3-diphenylpropane-1,3-dionato-κ2O,O′)-lanthanum(III), C45H35LaO7
  61. Crystal structure of (3E,5E)-3,5-bis-4-methoxy-3-(trifluoromethyl)benzylidene)-1-methylpiperidin-4-one, C24H21F6NO3
  62. The crystal structure of 3,5-dichloro-6-diazo-2,4-dinitrocyclohexa-2,4-dien-1-one, C6Cl2N4O5
  63. Crystal structure of carbonyl(2-methylquinolin-8-olato-κ2N,O)(triphenylarsine-κAs)rhodium(I), C29H23AsNO2Rh
  64. Crystal structure of (1aS,1a1S,2S)-4a-butoxy-1a,1a1,2,4a,5,6-hexahydro-1H-cyclobuta[de]naphthalen-2-yl-4-nitrobenzoate, C22H25NO5
  65. Crystal structure of carbonyl(2-oxopyridin-1(2H)-olato-k2O,O′)(triphenylarsine-κAs)rhodium(I), C24H19AsNO3Rh
  66. Crystal structure of catena-poly[triqua-bis(μ2-4-carboxy-2-(1H-tetrazol-1-yl)-1H-imidazole-5-carboxylato-k3N,O:O′)barium(II)] tetrahydrate, C14H14BaN12O15
  67. Crystal structure of (E)-3′,6′-bis(ethylamino)-2-((quinoxalin-2-ylmethylene)amino)spiro[isoindoline-1,9′-xanthen]-3-one, C35H32N6O2
  68. Crystal structure of diaqua-bis(μ2-5-chloro-salicylato-κ3O,O′:O′)-bis(5-chloro-salicylato-κ2O,O′)-bis(1,10-phenanthroline-κ2N,N′) dilead(II) – water (1/2), C52H36C14N4O14Pb2·2(H2O)
  69. Crystal structure of (E)-2-(4-ethoxycarbonyl-3,5-dimethyl-2-(pyrrole-2-ylmethyleneamino)-3′,6′-dihydroxylspiro[isoindoline-1,9′-xanthen]-3-one-methanol (1/1), C31H29N3O7
  70. The crystal structure of 5H-dibenzo[b,e]azepine-6,11-dione, C14H9NO2
  71. Crystal structure of (E)-2-(4-fluoro-2-(trifluoromethyl)benzylidene)-7-methoxy-3,4-dihydronaphthalen-1(2H)-one, C19H14F4O2
  72. The crystal structure of N-(2-methoxy-4,5-bis[phenylselanyl]phenyl)picolinamide, C25H20N2O2Se2
  73. The crystal structure of (E)-2-(5-bromo-2-hydroxybenzylidene)-N-phenylhydrazine-1- carboxamide monohydrate, C14H14BrN3O3
  74. Crystal structure of fac-tricarbonyl-(nitrato-k1O)-bis(pyridine-κN)-rhenium, C13H10O6N3Re
  75. Crystal structure of (E)-2-(((1H-pyrrol-2-yl)methylene)amino)-3′,6′-dihydroxyspiro[isoindoline-1,9′-xanthen]-3-one — methanol (1/2), C27H25N3O6
  76. The crystal structure of 4-amino-N′-(4-aminobenzoyl)benzohydrazide monohydrate, C14H16N4O3
  77. Crystal structure of bis(amino(carbamothioylamino)methaniminium) 5-hydroxyisophthalate monohydrate, C12H20N8O6S2
  78. The crystal structure of 2-(chloromethyl)pyridine, C6H6ClN
  79. The crystal structure of 1-bromo-4-iodo-benzene, C6H4BrI
  80. The crystal structure of 2,6-dimethyl-4-nitro-phenol, C8H9NO3
  81. The crystal structure of 3-chloropropionic acid, C3H5ClO2
  82. The crystal structure of 2-(2-methoxyphenyl)acetic acid, C9H10O3
Downloaded on 7.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2020-0311/html
Scroll to top button