Home Physical Sciences The crystal structure of hexakis(2-(pyridin-2-ylamino)pyridin-1-ium) decavanadate(V) dihydrate, C60H64N18O30V10
Article Open Access

The crystal structure of hexakis(2-(pyridin-2-ylamino)pyridin-1-ium) decavanadate(V) dihydrate, C60H64N18O30V10

  • Chuansheng Cui ORCID logo EMAIL logo , Sen Liu and Wenli Zhao
Published/Copyright: October 30, 2020

Abstract

C60H64N18O30V10, orthorhombic, Pbca (no. 61), a = 21.1781(19) Å, b = 14.4198(13) Å, c = 24.543(2) Å, V = 7495.2(12) Å3, Z = 4, Rgt(F) = 0.0538, wRref(F2) = 0.1482, T = 298 K.

CCDC no.: 2036248

Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal:Orange block
Size:0.21 × 0.20 × 0.18 mm
Wavelength:Mo Kα radiation (0.71073 Å)
μ:1.28 mm−1
Diffractometer, scan mode:Bruker SMART APEX II, φ and ω
θmax, completeness:25.0°, >99%
N(hkl)measured, N(hkl)unique, Rint:36474, 6612, 0.100
Criterion for Iobs, N(hkl)gt:Iobs > 2 σ(Iobs), 3700
N(param)refined:532
Programs:Bruker [1], SHELX [2]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
V10.52679 (4)0.53877 (6)0.55746 (3)0.0288 (2)
V20.52096 (4)0.31753 (6)0.52849 (3)0.0312 (2)
V30.39234 (4)0.42508 (6)0.54553 (3)0.0314 (2)
V40.64689 (4)0.42315 (7)0.53863 (4)0.0375 (3)
V50.39827 (4)0.63499 (7)0.57529 (4)0.0373 (3)
N10.6719 (4)0.7049 (5)0.7444 (3)0.0944 (18)
H10.6935390.7253740.7714960.113*
N20.6706 (4)0.6739 (4)0.6542 (3)0.0869 (17)
H20.6316760.6586810.6584400.104*
N30.5788 (4)0.6500 (4)0.7172 (3)0.0801 (16)
N40.3933 (2)0.4446 (4)0.70445 (19)0.0505 (14)
H40.3939080.4603370.6706570.061*
N50.4949 (2)0.4052 (3)0.68603 (18)0.0432 (13)
H50.4861810.4170760.6525180.052*
N60.3290 (3)0.4363 (4)0.7820 (2)0.0637 (16)
N70.4607 (2)0.9031 (3)0.56359 (18)0.0433 (12)
H70.4554840.8440830.5610120.052*
N80.5331 (2)1.0230 (3)0.56975 (19)0.0436 (13)
N90.4109 (2)1.0467 (4)0.56521 (19)0.0470 (13)
H90.4472021.0732630.5665220.056*
O10.48319 (15)0.4183 (2)0.57893 (12)0.0270 (8)
O20.55522 (15)0.6341 (2)0.51112 (12)0.0297 (8)
O30.59535 (15)0.5104 (2)0.58771 (13)0.0319 (9)
O40.59482 (16)0.3299 (3)0.56519 (13)0.0376 (9)
O50.66384 (16)0.3593 (3)0.47582 (15)0.0410 (10)
O60.70892 (17)0.4112 (3)0.57418 (15)0.0495 (11)
O70.48929 (17)0.2266 (2)0.55512 (14)0.0403 (9)
O80.55496 (17)0.2757 (3)0.46677 (13)0.0368 (9)
O90.33504 (15)0.4624 (3)0.49910 (14)0.0375 (9)
O100.36195 (17)0.3366 (3)0.57587 (14)0.0446 (10)
O110.44704 (14)0.5451 (2)0.50725 (12)0.0264 (8)
O120.37769 (16)0.5175 (3)0.59634 (13)0.0357 (9)
O130.3725 (2)0.6978 (3)0.62410 (15)0.0536 (11)
O140.48669 (17)0.6031 (2)0.60323 (12)0.0347 (9)
O150.2441 (4)0.7544 (5)0.6625 (3)0.150 (3)
H15A0.2815920.7607960.6742940.181*
H15B0.2585680.7254150.6350630.181*
C10.7073 (5)0.7022 (5)0.6969 (4)0.0784 (18)
C20.7695 (5)0.7259 (6)0.6924 (5)0.098 (3)
H2A0.7930830.7428890.7227770.118*
C30.7954 (5)0.7239 (6)0.6421 (5)0.104 (3)
H30.8373770.7411180.6376590.125*
C40.7613 (5)0.6971 (6)0.5980 (4)0.092 (3)
H4A0.7797530.6963300.5636430.110*
C50.6993 (4)0.6713 (5)0.6044 (3)0.081 (2)
H5A0.6764430.6515070.5742280.097*
C60.6111 (4)0.6834 (5)0.7593 (3)0.0735 (17)
C70.5858 (5)0.6944 (5)0.8105 (3)0.085 (3)
H7A0.6096920.7188490.8388670.102*
C80.5242 (5)0.6680 (6)0.8185 (3)0.083 (3)
H80.5058090.6736640.8527940.100*
C90.4904 (4)0.6338 (5)0.7762 (3)0.080 (2)
H9A0.4485480.6160120.7811040.096*
C100.5180 (4)0.6257 (5)0.7266 (3)0.072 (2)
H100.4942750.6023780.6978260.087*
C110.4494 (3)0.4131 (4)0.7238 (2)0.0427 (15)
C120.4630 (3)0.3896 (5)0.7781 (2)0.0580 (19)
H120.4318920.3929150.8047130.070*
C130.5231 (3)0.3617 (5)0.7911 (3)0.064 (2)
H130.5326730.3459970.8268830.077*
C140.5688 (3)0.3568 (5)0.7524 (3)0.066 (2)
H140.6096610.3387620.7613180.079*
C150.5532 (3)0.3793 (5)0.6995 (3)0.0571 (18)
H150.5840090.3762850.6725490.068*
C160.3349 (3)0.4558 (4)0.7297 (2)0.0459 (16)
C170.2850 (3)0.4863 (5)0.6980 (3)0.063 (2)
H170.2909820.4998510.6613500.075*
C180.2265 (3)0.4962 (5)0.7217 (3)0.067 (2)
H180.1922240.5161560.7011020.081*
C190.2195 (3)0.4763 (5)0.7757 (3)0.062 (2)
H190.1804380.4816590.7927070.075*
C200.2713 (4)0.4485 (5)0.8038 (3)0.068 (2)
H200.2665430.4368910.8408020.081*
C210.5233 (3)0.9323 (4)0.5670 (2)0.0383 (14)
C220.5713 (3)0.8675 (4)0.5673 (2)0.0442 (15)
H220.5625750.8043660.5653410.053*
C230.6325 (3)0.8993 (5)0.5706 (3)0.0531 (17)
H230.6660370.8577000.5711600.064*
C240.6434 (3)0.9925 (5)0.5730 (3)0.0552 (17)
H240.6843561.0153430.5750340.066*
C250.5926 (3)1.0519 (5)0.5723 (2)0.0509 (17)
H250.6002451.1153340.5736830.061*
C260.4080 (3)0.9530 (5)0.5637 (2)0.0391 (14)
C270.3478 (3)0.9109 (5)0.5618 (3)0.0552 (18)
H270.3438310.8467190.5606100.066*
C280.2961 (3)0.9659 (6)0.5617 (3)0.063 (2)
H280.2562900.9387610.5602920.076*
C290.3010 (3)1.0613 (6)0.5637 (3)0.066 (2)
H290.2649411.0980920.5642360.079*
C300.3581 (3)1.0997 (5)0.5647 (3)0.0540 (17)
H300.3618921.1639920.5651150.065*

Source of material

In a 50 ml round-bottom flask, dipyridylamine (0.513 g; 3 mmol), vanadium pentoxide (0.730 g; 4 mmol) and tetramethylammonium hydroxide 25% in solution (1.461 g; 4 mmol) were added successively to 20 ml water and acetic acid. The mixture was stirred for 24 h and then heated to 60 °C for 1 h, resulting in an orange coloured solution. The resulting mixture was filtrated and the filtrate stood for seven days. Crystals of the title compound suited for X-ray diffraction were obtained.

Yield: 38%, and elemental analysis: calc. for C60H64N18O30V10: C 35.56, H 3.18, N 12.44; found: C 35.52, H 3.23, N 12.36. The elemental analyses were performed with PERKIN ELMER MODEL 2400 SERIES II.

Experimental details

In the title compound all non-hydrogen atoms were refined anisotropically. Hydrogen atoms were assigned with common isotropic displacement factors Uiso(H) = 1.2 times Ueq (C, pyridine ring; O, water molecule; N, pyridine ring and secondary amine). All the H atoms were refined as riding on their parent atom.

Comment

Polyoxovanadates, as an outstanding large important branch of anionic metal-oxo clusters, have led to a rapid growth due to their structural features and promising applications in diverse areas, such as catalysis, electricity, medicine and functional materials [3], [4], [5], [6]. The design and synthesis of new polyoxovanadates architectures with well-defined structures expand the range of polyoxovanadates-inspired hybrid materials [7], [8]. Thus, a lot of hybrid polyoxovanadates have been presented [9]. In addition, as a class of versatile tridentate N-ligands, dipyridylamine (dpa) can be used in the synthesis of metal complexes, and some of them have been reported [10], [11]. Nevertheless, to the best of our knowledge, examples of dpa-based polyoxovanadates are still rare.

The structure of title hybrid dipyridylamine-polyoxovanadates is shown in the figure. Single crystal diffraction analysis of the title compound revealed that it consists of six protonated dipyridylamine ligands, one decavanadate ployanion cluster and two free lattice water molecules, formulated as (Hdpa)6V10O28·2H2O. For the polyanion, the decavanadate cluster is composed of ten analogous VO6 units, which briged by edge- and corner-sharing oxygen atoms and each vanadium atom of VO6 subunit exhibited the distorted octahedral geometry, located around a center of inversion. There are four distinct types of oxygen coordination, namely terminal Ot, bridging μ6-O, μ3-O and μ2-O oxygen atoms. The bond lengths and angles found in the decavanadate anion are as expected for those in the previously reported decavanadate structures [12], [13], [14]. Each dpa ligand has a protonated hydrogen atom on the nitrogen of pyridinyl moiety. The C–N bond average distance in the pyridine ring of dpa ligands is 1.351 Å, which is larger than that of the unprotonated pyridine.

In addition, the supramolecular structure of the title structure was stabilized by intermolecular electrostatic interactions and strong hydrogen-bonding interactions between V10O286, Hdpa+ subunits and water molecules. All subunits are connected to the adjacent ones through various intermolecular C–H···O, N–H···O and O–H···O hydrogen-bonding interaction, thus leading to a three-dimensional network.


Corresponding author: Chuansheng Cui, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng252000, Shandong, China, E-mail: .

Funding source: Liaocheng University

Award Identifier / Grant number: 38622170214

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: We gratefully acknowledge support by the Research on Experimental Technology of Liaocheng University (38622170214).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Bruker. APEX2, SAINT and SADABS; Bruker AXS Inc.: Madison, Wisconsin, USA, 2004.Search in Google Scholar

2. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8. https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

3. Zhang, M., Zhang, A. M., Chen, Y., Xie, J., Xin, Z. F., Chen, Y. J., Kan, Y. H., Li, S. L., Lan, Y. Q., Zhang, Q. Polyoxovanadate-polymer hybrid electrolyte in solid state batteries. Energy Storage Mater. 2020, 29, 172–181. https://doi.org/10.1016/j.ensm.2020.04.017.Search in Google Scholar

4. Petel, B. E., Meyer, R. L., Maiola, M. L., Brennessel, W. W., Müller, A. M., Matson, E. M. Site-selective halogenation of polyoxovanadate clusters: atomically precise models for electronic effects of anion soping in VO2. J. Am. Chem. Soc. 2020, 142, 1049–1056. https://doi.org/10.1021/jacs.9b11874.Search in Google Scholar

5. Dong, J., Hu, J., Chi, Y., Lin, Z., Zou, B., Yang, S., Hill, C. L., Hu, C. A polyoxoniobate-polyoxovanadate double-anion catalyst for simultaneous oxidative and hydrolytic decontamination of chemical warfare agent simulants. Angew. Chem. Int. Ed. 2017, 56, 4473–4477. https://doi.org/10.1002/anie.201700159.Search in Google Scholar

6. Cao, J. P., Xue, Y. S., Li, N. F., Gong, J. J., Kang, R. K., Xu, Y. Lewis acid dominant windmill-shaped V8 clusters: a bifunctional heterogeneous catalyst for CO2 cycloaddition and oxidation of sulfides. J. Am. Chem. Soc. 2019, 141, 19487–19497. https://doi.org/10.1021/jacs.9b11146.Search in Google Scholar

7. Li, C., Zhong, D., Huang, X., Shen, G., Li, Q., Du, J., Li, Q., Wang, S., Li, J., Dou, J. Two organic–inorganic hybrid polyoxovanadates as reusable catalysts for Knoevenagel condensation. New J. Chem. 2019, 43, 5813–5819. https://doi.org/10.1039/c8nj06460a.Search in Google Scholar

8. Huang, X., Li, J., Shen, G., Xin, N., Lin, Z., Chi, Y., Dou, J., Li, D., Hu, C. Three Pd-decavanadates with a controllable molar ratio of Pd to decavanadate and their heterogeneous aerobic oxidation of benzylic C–H bonds. Dalton Trans. 2018, 47, 726–733. https://doi.org/10.1039/c7dt03898d.Search in Google Scholar

9. VanGelder, L. E., Forrestel, P. L., Brennessel, W. W., Matson, E. M. Site-selectivity in the halogenation of titanium-functionalized polyoxovanadate-alkoxide clusters. Chem. Commun. 2018, 54, 6839–6842. https://doi.org/10.1039/c8cc01517a.Search in Google Scholar

10. Yan, B., Xu, Y., Bu, X., Goh, N. K., Chia, L. S., Stucky, G. D. Hydrothermal syntheses and structures of three one-dimensional heteropolytungstates formed by Dawson or Keggin cluster units. J. Chem. Soc. Dalton Trans. 2001, 2009–2014. https://doi.org/10.1039/b103024h.Search in Google Scholar

11. Zianna, A., Psomas, G., Hatzidimitriou, A., Lalia-Kantouri, M. Synthesis, structural, thermal characterization and interaction with calf-thymus DNA and albumins of cationic Ni(II) complexes with dipyridylamine and salicylaldehydes. Polyhedron 2017, 124, 104–116. https://doi.org/10.1016/j.poly.2016.12.023.Search in Google Scholar

12. Huang, X., Qi, Y., Gu, Y., Gong, S., Shen, G., Li, Q., Li, J. Imidazole-directed fabrication of three polyoxovanadates-based copper frameworks as efficient catalysts for constructing of C–N bonds. Dalton Trans. 2020, 49, 10970–10976. https://doi.org/10.1039/d0dt02162h.Search in Google Scholar

13. An, H., Zhang, J., Chang, S., Hou, Y., Zhu, Q. 2D hybrid architectures constructed from two kinds of polyoxovanadates as efficient heterogeneous catalysts for cyanosilylation and Knoevenagel condensation. Inorg. Chem. 2020, 59, 10578–10590. https://doi.org/10.1021/acs.inorgchem.0c00999.Search in Google Scholar

14. Kiyota, Y., Taira, M., Otobe, S., Hanyuda, K., Naruke, H., Ito, T. Compositional introduction of lithium ions into conductive polyoxovanadate-surfactant hybrid crystals. CrystEngComm 2017, 19, 3037–3043. https://doi.org/10.1039/c7ce00595d.Search in Google Scholar

Received: 2020-09-03
Accepted: 2020-10-12
Published Online: 2020-10-30
Published in Print: 2021-01-26

© 2020 Chuansheng Cui et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. The crystal structure of 3-oxo-urs-12-en-28-oic acid, C30H46O3·1/6H2O
  4. The crystal structure of (3S,12R,20R,24R)-3,12-diacetyl-20,24-epoxy-dammarane-3,12,25–triol–ethyl acetate (4/1), C34H56O6⋅ 0.25(C4H8O2)
  5. A new polymorph of tetrakis(dimethylammonium) catena-poly[tetrakis(μ2-sulfato-κ2O:O′)dizinc(II)], Zn2C8H32N4O16S4
  6. Crystal structure of 10-oxysophoridine, C15H22N2O2
  7. The crystal structure of (5R,8R,9R,10R,12R,13R,14R)-12-hydroxy-4,4,8,10,14-pentamethyl-17-((R)-2,6,6-trimethyltetrahydro-2H-pyran-2-yl)tetradecahydro-3H-cyclopenta[a]phenanthrene-3,6(2H)-dione, C30H48O4
  8. Synthesis, crystal structure and optical property of 1,6-bis(p-tolylthio)pyrene, C30H22S2
  9. The crystal structure of hexakis(2-(pyridin-2-ylamino)pyridin-1-ium) decavanadate(V) dihydrate, C60H64N18O30V10
  10. Preparation and crystal structure of a cationic olefin polymerization precatalyst: (1,7-bis(2,6–dichlorophenyl)-1,7-di-aza-4-oxo-heptan-1,4,7-triyl)dimethyl zirconium(IV), C18H20Cl4N2OZr
  11. The crystal structure of fac-tricarbonyl(4,4-dimethyl-2,2-dipyridyl-κ2N,N′)- (pyrazole-κN)rhenium(I) nitrate, C18H16O3N4Re
  12. Synthesis and crystal structure of hexaaquacopper(II) 2,5-dicarboxyterephthalate, C10H16O14Cu
  13. The crystal structure of (8R,10R,12R,14R)- 12-hydroxy-16-(5-(2-hydroxypropan-2-yl)-2-methyltetrahydrofuran-2-yl)- 4,4,8,10,14-pentamethyltetradecahydro-3H- cyclopenta[a]phenanthrene-3,6(2H)-dione, C30H48O5
  14. Structure of the mixed crystal (S)-(6-(bromo/chloro)-2-methoxy-2,6-dihydroquinolin-3-yl)(phenyl)methanol, C17H14Br0.5Cl0.5NO2
  15. The crystal structure of trans-tetraaqua-bis(4-acetylphenoxyacetato-κ1O)manganese(II), C20H26O12Mn
  16. Crystal structure of (E)-2-(4-fluoro-3-(trifluoromethyl)benzylidene)-7-methoxy-3,4-dihydronaphthalen-1(2H)-one, C19H14F4O2
  17. Crystal structure of DL-α-(methylaminomethyl)benzyl alcohol, C9H13NO
  18. The crystal structure of dipentaerthritol hexanitrate, C10H16N6O19
  19. Crystal structure of N,N-diphenylformamide, C13H11NO
  20. Crystal structure of (E)-2-(3,5-bis(trifluoromethyl)benzylidene)-7-methoxy-3,4-dihydronaphthalen- 1(2H)-one, C20H14F6O2
  21. Crystal structure of ortho-methoxy benzaldehyde, C8H8O2 – a second polymorph and deposition of 3D coordinates
  22. Crystal structure of catena-poly[diaqua-bis(μ2-2-(4-(2,4,4-trimethylpentan-2-yl)phenoxy)propanoato-κ2O:O')-(2-(4-(2,4,4-trimethylpentan-2-yl)phenoxy)propanoato-κ2O,O')yttrium(III)], C51H79O11Y
  23. Crystal structure of benzylthiouronium chloride, C8H11ClN2S
  24. Synthesis and crystal structure of tert-butyl (2′R,3R,3′R,4aR,9aS)-1-acetyl-5-chloro-3″-methyl-2,5″,9′-trioxo-1″-phenyl-1″,4a′,5″,9a′-tetrahydro-1′H,3′H,9′H-dispiro[indoline-3,4′-xanthene-2′,4″-pyrazole]-3′-carboxylate, C36H32ClN3O7
  25. Crystal structure of 2-hydroxy-4-methoxy benzaldehyde, C8H8O3
  26. Crystal structure of poly[diaqua-(m3-3′,5′-dicarboxy-[1,1′-biphenyl]-3,4-dicarboxylato-K4O,O′:O″:O‴) cadmium(II)], C16H11O10Cd
  27. Crystal structure of {tetraaqua-bis(1-(4-hydroxy-2-oxotetrahydrofuran-3-yl)-2-((4aS,6R,8aS)-6-hydroxy-5-(hydroxymethyl)-5,8a-dimethyl-2-methylenedecahydronaphthalen-1-yl)ethane-1-sulfonato-k2O,O') calcium(II)}-{triaqua-bis(1-(4-hydroxy-2-oxotetrahydrofuran-3-yl)-2-((4aS,6R,8aS)-6-hydroxy-5-(hydroxymethyl)-5,8a-dimethyl-2-methylenedecahydronaphthalen-1-yl)ethane-1-sulfonato-k2O,O') calcium(II)} – water – acetone (1/1/8/2)
  28. Synthesis and crystal structure of bis{2-bromo-6-((E)-((4-((E)-1-(methoxy-imino)ethyl)phenyl)imino)methyl)phenolato- κ2N,O}zinc(II)-methanol(1/2), C65H60Br4N8O9Zn2
  29. Crystal structure of benzenesulphonic acid
  30. Crystal structure of N-benzyl-N-nicotinoyl-nicotine amide C19H15N3O2
  31. Crystal structure of poly[aqua(μ3-2,4-diamino-benzenesulfonato-κ4N:N′,O:O′)silver(I)], C12H18O8N4S2Ag2
  32. Crystal structure of 1,4-bis(methylpyridinium benzene) bis(1,2-dicyanoethene-1,2-dithiolato-κ2S:S)nickel(II), C26H18N6NiS4
  33. Crystal structure of the Cu(II) complex chlorido-(6-oxo-2-phenyl-1,6-dihydropyrimidine-4-carboxylato-k2N,O)-(phenanthroline-k2N,N')copper(II), C23H15ClCuN4O3
  34. Crystal structure of phenarsazine chloride acetic acid solvate, C14H13AsClNO2
  35. Crystal structure of poly[aqua-(μ2-3,3′,4,5′-biphenyl tetracarboxylate- κ3O,O′:O′′) -(μ2-4,4′-bis(pyrid-4-yl)biphenyl-κ2N:N′)zinc(II)], C27H18NO9Zn
  36. Crystal structure of catena-poly[(μ2-3-amino-benzenedisulfonato-κ2N:O)-bis (3-methyl-isoquinoline-κN)silver(I)], C26H24N3O3SAg
  37. Crystal structure of 2-((4-Aminophenyl)thio)acetic acid, C8H9NO2S
  38. Crystal structure of phenarsazine chloride dimethylsulfoxide solvate, C14H15AsClNOS
  39. Synthesis and crystal structure of 2-azido-N-phenylacetamide, C8H8N4O
  40. Crystal structure of chlorido{hydridotris[3-phenyl-5-methylpyrazol-1-yl-κN3]borato}copper(II), C30H28BClCuN6
  41. Crystal structure of benzanthrone – a redetermination for correct molecular geometry and localization of hydrogen atoms
  42. Crystal structure of 4-bromobenzaldehyde – complete redetermination at 200 K, C7H5BrO
  43. Crystal structure and spectroscopic properties of chlorido{hydridotris[3-,5-dimethylpyrazol-1-yl-κN3]borato}(3-,5-dimethylpyrazol-1-yl-κN)copper(II), C20H30BClCuN8
  44. The crystal structure of 4-((2-hydroxynaphthalen-1-yl)(pyrrolidin-1-yl)methyl)benzonitrile, C22H20N2O
  45. Crystal structure of 4-ethyl-3-phenylisoquinolin-1(2H)-one, C17H15NO
  46. Crystal structure of (tricyclohexylphosphane-κP)-[(Z)-N-(3-fluorophenyl)-O-methylthiocarbamato-k1S]gold(I), C26H40AuFNOPS
  47. Crystal structure of (3S,8R,10R,12R,14R)-12-hydroxy-4,4,8,10,14-pentamethyl-17-((R)-2,6,6-trimethyltetrahydro-2H-pyran-2-yl) hexadecahydro-1H-cyclopenta[a]phenanthren-3-yl acetate, C32H54O4
  48. The crystal structure of 2-[(S)-1-(naphthalen-1-yl)ethyl]-2,3,7,7a- tetrahydro-3a,6-epoxyisoindol-1(6H)-one, C19H20NO2
  49. Crystal structure of {hydridotris[3-(t-butyl)-5-isopropylpyrazol-1-yl-κN3]borato}thallium(I), C30H52BN6Tl
  50. Synthesis and crystal structure of 1-octyl-3-phenylquinoxalin-2(1H)-one, C22H26N2O
  51. The crystal structure of 2,6-difluorophenol, C6H4F2O
  52. 4-(9H-Fluoren-9-yl)-4-methylmorpholin-4-ium bromide, C18H20BrNO
  53. The crystal structure of 2,4-dimethylimidazole monohydrate, C5H10N2O
  54. The crystal structure of 1,2-dimethylimidazole, C5H8N2
  55. The crystal structure of 3-ammonio-4-aminobenzoate, C7H8N2O2 – a second polymorph
  56. The crystal structure of 4-hydroxy-2,5-bis(1-methyl-1H-imidazol-3-ium-2-ylthio)-3,6-dioxocyclohexa-1,4-dienolate chloride monohydrate, C14H15N4O5S2Cl
  57. The crystal structure of butyrylferrocene, C14H16FeO
  58. The crystal structure of bi-1,1′-cyclopentane-1,1′-diol, C10H18O2
  59. The crystal structure of 2-iso-propylimidazole, C6H10N2
  60. The crystal structure of aqua-tris (1,3-diphenylpropane-1,3-dionato-κ2O,O′)-lanthanum(III), C45H35LaO7
  61. Crystal structure of (3E,5E)-3,5-bis-4-methoxy-3-(trifluoromethyl)benzylidene)-1-methylpiperidin-4-one, C24H21F6NO3
  62. The crystal structure of 3,5-dichloro-6-diazo-2,4-dinitrocyclohexa-2,4-dien-1-one, C6Cl2N4O5
  63. Crystal structure of carbonyl(2-methylquinolin-8-olato-κ2N,O)(triphenylarsine-κAs)rhodium(I), C29H23AsNO2Rh
  64. Crystal structure of (1aS,1a1S,2S)-4a-butoxy-1a,1a1,2,4a,5,6-hexahydro-1H-cyclobuta[de]naphthalen-2-yl-4-nitrobenzoate, C22H25NO5
  65. Crystal structure of carbonyl(2-oxopyridin-1(2H)-olato-k2O,O′)(triphenylarsine-κAs)rhodium(I), C24H19AsNO3Rh
  66. Crystal structure of catena-poly[triqua-bis(μ2-4-carboxy-2-(1H-tetrazol-1-yl)-1H-imidazole-5-carboxylato-k3N,O:O′)barium(II)] tetrahydrate, C14H14BaN12O15
  67. Crystal structure of (E)-3′,6′-bis(ethylamino)-2-((quinoxalin-2-ylmethylene)amino)spiro[isoindoline-1,9′-xanthen]-3-one, C35H32N6O2
  68. Crystal structure of diaqua-bis(μ2-5-chloro-salicylato-κ3O,O′:O′)-bis(5-chloro-salicylato-κ2O,O′)-bis(1,10-phenanthroline-κ2N,N′) dilead(II) – water (1/2), C52H36C14N4O14Pb2·2(H2O)
  69. Crystal structure of (E)-2-(4-ethoxycarbonyl-3,5-dimethyl-2-(pyrrole-2-ylmethyleneamino)-3′,6′-dihydroxylspiro[isoindoline-1,9′-xanthen]-3-one-methanol (1/1), C31H29N3O7
  70. The crystal structure of 5H-dibenzo[b,e]azepine-6,11-dione, C14H9NO2
  71. Crystal structure of (E)-2-(4-fluoro-2-(trifluoromethyl)benzylidene)-7-methoxy-3,4-dihydronaphthalen-1(2H)-one, C19H14F4O2
  72. The crystal structure of N-(2-methoxy-4,5-bis[phenylselanyl]phenyl)picolinamide, C25H20N2O2Se2
  73. The crystal structure of (E)-2-(5-bromo-2-hydroxybenzylidene)-N-phenylhydrazine-1- carboxamide monohydrate, C14H14BrN3O3
  74. Crystal structure of fac-tricarbonyl-(nitrato-k1O)-bis(pyridine-κN)-rhenium, C13H10O6N3Re
  75. Crystal structure of (E)-2-(((1H-pyrrol-2-yl)methylene)amino)-3′,6′-dihydroxyspiro[isoindoline-1,9′-xanthen]-3-one — methanol (1/2), C27H25N3O6
  76. The crystal structure of 4-amino-N′-(4-aminobenzoyl)benzohydrazide monohydrate, C14H16N4O3
  77. Crystal structure of bis(amino(carbamothioylamino)methaniminium) 5-hydroxyisophthalate monohydrate, C12H20N8O6S2
  78. The crystal structure of 2-(chloromethyl)pyridine, C6H6ClN
  79. The crystal structure of 1-bromo-4-iodo-benzene, C6H4BrI
  80. The crystal structure of 2,6-dimethyl-4-nitro-phenol, C8H9NO3
  81. The crystal structure of 3-chloropropionic acid, C3H5ClO2
  82. The crystal structure of 2-(2-methoxyphenyl)acetic acid, C9H10O3
Downloaded on 3.1.2026 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2020-0465/html
Scroll to top button