Home Judicious use of low-dosage corticosteroids for non-severe COVID-19: A case report
Article Open Access

Judicious use of low-dosage corticosteroids for non-severe COVID-19: A case report

  • Jian Zhang , Zigang Tian , Lina Feng , Zhongming Yang , Bo Zou , Kun Li , Yingliang Zhang , Yaguo Wang , Joy Fleming and Wenyu Cui EMAIL logo
Published/Copyright: March 19, 2021

Abstract

Inflammation-mediated lung injury in severe cases of infection with SARS-CoV-2, the aetiological agent of Coronavirus disease 2019 (COVID-19), can lead to respiratory failure and death, and therapies that block or ameliorate lung injury-associated inflammatory “cytokine storms” and progression to acute respiratory distress syndrome (ARDS) are urgently needed. Therapeutic use of corticosteroids for this purpose has been controversial because of conflicting reports on their efficacy and immunosuppressive behaviour. The WHO has strongly recommended treating critical COVID-19 patients with systemic corticosteroid therapy, but recommends against corticosteroid therapy in non-severe COVID-19 disease because of a lack of strong evidence on its efficacy. This retrospective case report describing the successful treatment of a non-severe COVID-19 case in Changchun, China, by judicious administration of corticosteroids using a personalized therapeutic approach was recorded to strengthen the evidence base showing how corticosteroid use in non-severe COVID-19 cases can be safe and efficacious. Alongside supportive care and lopinavir/ritonavir antiviral drugs, a low dosage of methylprednisolone was administered over a short period to attenuate lung inflammation. Regular chest CT scans guided dosage reduction in response to lesion absorption and improved lung condition. Judicious use of corticosteroids safely attenuated disease progression and facilitated rapid and complete recovery.

1 Introduction

The outbreak of COVID-19 that emerged in Wuhan, China, in December 2019, was declared a global pandemic by the WHO on 11 March 2020 [1]. To date (26 January 2021), there have been 99,363,697 confirmed cases worldwide and 2,135,959 associated deaths [2]. Clinical progression of COVID-19 generally begins with fever, fatigue, and a dry cough. The vast majority of cases are asymptomatic or resolve after only minimal symptoms, but in more severe cases, dyspnoea occurs about 1 week after disease onset and uncontrolled elevated levels of cytokine release, known as “cytokine storms,” can rapidly lead to disease progression, including acute respiratory distress syndrome (ARDS), septic shock, refractory metabolic acidosis, coagulation disorders, and ultimately death [3,4]. In the absence of standard effective treatments, therapy typically involves a combination of approaches, including administration of antiviral and immunomodulatory drugs, and treatments such as convalescent plasma, in addition to standard supportive patient care [5,6,7]. The development, optimization, and evaluation of more effective methods for the treatment of this acute respiratory infection are urgent.

Corticosteroid therapy has been used effectively to suppress the “cytokine storm” that contributes to the tissue injury associated with acute viral respiratory infections [8,9], but its use has been controversial because of its immunosuppressive action and other potential side-effects (hyperglycaemia, hypokalaemia, hypertension, gastrointestinal haemorrhage, avascular necrosis of bone, and nosocomial infections) [10,11,12,13]. Numerous clinical trials on the efficacy of corticosteroids in COVID-19 therapy have been initiated since the start of the COVID-19 pandemic. Positive results on the efficacy of dexamethasone for treating critically ill patients in the UK’s RECOVERY (Randomized Evaluation of COVID-19 Therapy) trial (involving 6,425 patients with severe COVID-19 randomized to 6 mg/day of dexamethasone or standard care) were reported in mid-June [14], halting enrolment in many other trials. Findings indicated that critically ill patients on ventilators receiving dexamethasone had a one-third lower risk of dying within 28 days than those who did not receive the drug, and the risk of dying was 20% lower in patients receiving oxygen therapy, but not on ventilators. Dexamethasone treatment, however, did not significantly alter 28-day mortality in patients receiving no respiratory support. A subsequent WHO prospective meta-analysis of data from seven clinical trials (including a total of 1,703 critically ill patients from five continents) supported the findings of the RECOVERY trial and concluded that efficacy could be attributed to corticosteroids as a group, not just dexamethasone [15]. The WHO issued two recommendations regarding corticosteroids in September 2020: a strong recommendation that systemic corticosteroids be used as a component of standard care for the treatment of patients with severe and critical COVID-19 (based on moderate certainty evidence), and a conditional recommendation based on low certainty evidence that corticosteroids not be used in the treatment of patients with non-severe COVID-19 because of the possibility of harm [16]. Further evidence of the efficacy of short-term low-dosage corticosteroid therapy in non-severe COVID-19 cases is sought, and indeed, some clinical trials have been completed and others are underway [17,18]. Here, to contribute to an evidence base on the safety and efficacy of corticosteroid therapy in non-severe COVID-19 cases, we provide a retrospective case report on the successful treatment of the index COVID-19 case in Changchun, Jilin province, China. Corticosteroid therapy was given to this moderate COVID-19 case using a personalized approach that involved regular monitoring and dosage adjustment according to treatment response. The patient experienced a rapid and complete recovery with no side-effects. Judicious use of corticosteroids in patients with non-severe infections and no underlying co-morbidities may significantly help to prevent disease progression.

2 Case report

A 41-year-old woman travelled from Wuhan, Hubei province, China, to Changchun, Jilin province, on 19 January 2020. She attended the fever clinic of Changchun Infectious Diseases Hospital on the afternoon of 19 January, presenting with an intermittent fever (highest temperature 38.2°C) and cough, chest tightness, and fatigue that had persisted for 8 days. She was admitted to hospital the following afternoon after throat swab specimens collected from the upper respiratory tract tested positive for SARS-CoV-2 nucleic acid by RT-PCR (reverse-transcriptase polymerase chain reaction) [3,19]. She presented results of laboratory tests performed at Tongji Hospital in Wuhan on 17 January: lymphocyte count (low): 0.89 × 109/L, neutrophils: 80.4%, serum CRP (C-reactive protein): 164.7 mg/L. Relevant multifunctional monitoring indicators on admission in our hospital were: transcutaneous oxygen saturation (SpO2): 93%, temperature: 37.4°C, respiratory rate: 20 breaths/min, pulse: 80 beats/min, blood pressure: 126/76 mm Hg. Auscultation of both lungs was unremarkable. Chest computed tomography (CT) showed consolidation in the right lung and peripheral ground-glass opacities in both lungs (Figure 1a and e). Her underlying health was good, and she had no known comorbidities. In line with relevant national guidelines in force at the time [20], she was diagnosed as a severe COVID-19 case and treated accordingly.

Figure 1 
               Chest CT images of a 41-year-old woman with SARS-CoV-2 infection. Chest CT images for a 41-year-old woman who presented at Changchun Infectious Diseases Hospital with fever and cough. (a–d) Images showing lesions in the posterior segment of the inferior lobe of the right lung. (a) Image taken at admission before the onset of treatment showing consolidated opacities in the right lung. (b and c) Images obtained on days 4 and 7 showing marked absorption of pulmonary consolidations. (d) Image taken on day 10 showing stripe-like opacities indicating recovery of the lung from infection. (e–h) Images of the lower lobe of the lung taken, (e), at the onset of treatment, (f), on day 4, (g), on day 7, and (h), on day 10, showing the infection and progressive treatment efficacy. Ground-glass opacities in the pulmonary pleural can be seen to reduce in the lower lobe of the lung from (e) to (h).
Figure 1

Chest CT images of a 41-year-old woman with SARS-CoV-2 infection. Chest CT images for a 41-year-old woman who presented at Changchun Infectious Diseases Hospital with fever and cough. (a–d) Images showing lesions in the posterior segment of the inferior lobe of the right lung. (a) Image taken at admission before the onset of treatment showing consolidated opacities in the right lung. (b and c) Images obtained on days 4 and 7 showing marked absorption of pulmonary consolidations. (d) Image taken on day 10 showing stripe-like opacities indicating recovery of the lung from infection. (e–h) Images of the lower lobe of the lung taken, (e), at the onset of treatment, (f), on day 4, (g), on day 7, and (h), on day 10, showing the infection and progressive treatment efficacy. Ground-glass opacities in the pulmonary pleural can be seen to reduce in the lower lobe of the lung from (e) to (h).

2.1 Treatment

2.1.1 Phase I (days 1–4)

Moxifloxacin (0.4 g, IV, od) was used to prevent secondary infections, methylprednisone (40 mg, IV, od) was used to decrease inflammatory exudates in the lungs, acetylcysteine (0.2 g, po, tid) was given to prevent lung fibrosis, and lopinavir–ritonavir (2 × 200 mg/50 mg, po, tid) was used as an antiviral treatment. A chest CT scan performed on day 4 was compared to that taken at admission to assess treatment efficacy (Figure 1a, b, e, and f); evidence suggested absorption of pulmonary lesions in both lungs and of the inflammatory consolidation in the right lung. The patient’s temperature had returned to normal, and her cough, chest tightness, and fatigue were alleviated to some extent. Transcutaneous oxygen saturation (SpO2) increased to 97%. Laboratory tests were performed as required, beginning the morning after admission to hospital (HD2; Table 1).

Table 1

Clinical laboratory results for four points during hospitalization, from admission to discharge

Time from onset of symptoms Day 9 Day 10 Day 16 Day 18
Time in hospitala HD2 HD3 HD9 HD11
Blood parameter 21/1b 22/1 28/1 30/1
White blood cells (×109/L) 8.9 11.4 12
Lymphocytes (×109/L) 0.63 0.9 1.7
Lymphocytes (%) 7 8.2 14.3
Platelets (×109/L) 362 466 446
Glucose (mmol/L) 4.5 5.41 5.19
Creatine (μmol/L) 32.6 46.4 43.05
Total bilirubin (μmol/L) 5.2 4.5 5.7
AST (U/L) 26 20 20
ALT (U/L) 37 31 27
LDH (U/L) 327 181 202
hs-Crp (mg/L) 14.3 13.7 3 1.32
PT (S) 11.2 10.9 12.6 13.4
APTT (S) 30.3 32.3 28.6 31.7
pH 7.42 7.35 7.28 7.38
PO2 mm Hg 90 94 95 95
  1. a

    Number of days from admission to hospital.

  2. b

    Calendar date.

2.1.2 Phase II (days 5–7)

Lopinavir–ritonavir treatment was discontinued because of the improvements observed above, and the dosage of intravenous acetylcysteine was adjusted to 50%. Other elements of the treatment described above were maintained. Comparison of chest CTs taken at the end of Phases I and II indicated further improvement, with ongoing absorption of pulmonary lesions (Figure 1b, c, f, and g).

2.1.3 Phase III (days 8–12)

Methylprednisone was replaced with prednisone because of the improvements observed, and the dosage was adjusted to 20 mg (IV, od). Comparison of chest CT scans from the end of phases II and III once again indicated steady absorption of pulmonary lesions in both lungs (Figure 1c, d, g, and h). By this point, the patient felt significantly recovered, and her cough, chest tightness, and fatigue were almost gone. Lymphocyte and CRP levels also returned to normal (Table 1). RT-PCR tests for SARS-CoV-2 nucleic acid were conducted on days 9 (27 January) and 11 (29 January) of hospitalization. Both tests returned negative results and the patient was discharged from hospital on completion of treatment on 30 January.

2.1.4 Phase IV

The patient continued to take prednisone (10 mg, po, od) for a further 5 days after discharge to consolidate recovery. Telephone follow-up of the patient 10 days after discharge (and after 6 months for review) indicated that she was in good health and had not experienced any side-effects or complications.

This study was approved by the Changchun Infectious Diseases Hospital Ethics Committee (2020-CCID-TA-002) and the patient gave permission to publish this case report.

3 Discussion

The uncontrolled upregulation of cytokines, known as a “cytokine storm,” is a key factor determining the severity of SARS-CoV-2 infections and can lead to rapid progression to ARDS, increasing morbidity. SARS-CoV-2 infection causes a rapid immune response involving the activation of a range of host immune cells, including Th1, Th2, and Th17 helper cells, macrophages, dendritic cells, and neutrophils [21]. Hyperactivation of the immune response, however, results in abnormally high levels of inflammatory cytokines and chemokines [22], and the further recruitment of other immune cells leading to sustained release of cytokines and an aggressive inflammatory response which can have severe respiratory complications [23]. Targeted and timely therapeutic management of cytokine storm-induced lung inflammation is thus an attractive approach for attenuating disease progression and enhancing patient survival.

While corticosteroids are not the only drugs available for managing lung inflammation, they are widely available therapeutics that have a long history of clinical use and are effective in reducing levels of the inflammatory mediators involved in cytokine storms. Their binding to cytoplasmic corticosteroid receptors results in their translocation to the nucleus where they downregulate the activity of pro-inflammatory transcription factors such as NF-kB [24]. Corticosteroid receptor activation also regulates the transcription of anti-inflammatory genes [24]. However, their use in treating viral infections, including COVID-19, has been controversial [10] because of their immunosuppressive behaviour. On the one hand, the administration of corticosteroids in MERS (Middle East respiratory syndrome) patients, for example, was reported to delay viral clearance and increase plasma viral load if administered before viral replication was controlled [25]. On the other hand, their use in critically ill SARS (severe acute respiratory syndrome) patients was reported to reduce mortality [8,9]. While, in view of the inconclusive evidence, the WHO initially recommended against treating COVID-19 patients with corticosteroids [26], in the face of urgent clinical needs, an expert panel from the Chinese Thoracic Society published a consensus statement on the use of corticosteroids for treating COVID-19, recommending judicious short-term (≤7 days) use of low to moderate doses (≤0.5 mg/kg/day methylprednisolone or equivalent) for the treatment of seriously ill patients [27]. Treatment guidelines from the National Health Commission of China released in the early stages of the COVID-19 outbreak in China likewise recommended use of corticosteroid therapy (1–2 mg/kg/day) for severe and critical cases of COVID-19 [20]. As mentioned in the introduction, in view of the evidence emerging from recent clinical trials, the WHO now strongly recommends that short-term treatment with low-dosage systemic corticosteroids should be a component of standard care for critically-ill COVID-19 patients [16], but while there is no sufficiently strong evidence of benefit, patients with non-severe disease should not be treated with corticosteroids because of the possibility of harm. Studies on the use of corticosteroids in non-severe COVID-19 disease are ongoing; for example, emerging results from a US study suggest that an early short course of methylprednisolone in patients with moderate to severe COVID-19 can reduce the escalation of care required and improve clinical outcomes [17], and data from a study in France suggest that an early short course of corticosteroids combined with furosemide reduces the risk of invasive mechanical ventilation and 28-day mortality in non-severe COVID-19 patients [18].

In line with Chinese National Health Commission guidelines at the time [20], the patient in this case was considered as a borderline severe case (chest tightness, shortness of breath, SpO2: 93%, CT scan showing evidence of bilateral lung lesions and differences in density in the upper, middle, and lower lung regions), and systemic low-dosage corticosteroids were administered to address lung inflammation. Under WHO guidelines, however, this patient would have been considered as a moderate COVID-19 case (fever, cough, dyspnoea, SpO2: ≥90%), and the use of corticosteroid therapy would not have been recommended [7]. All evidence in this case, however, points to the efficacy of the judicious low dosage of corticosteroids administered over a short duration to assist recovery of the lungs from inflammation induced by SARS-CoV-2 infection, and for reducing pulmonary exudate accumulation. The initial dosage of corticosteroid (methylprednisolone) administered was calculated according to the body weight of the patient (52 kg); during treatment phases I and II (days 1–5), the dosage given, 40 mg/day (0.77 mg/kg/day), was low to minimize any side-effects of this treatment. While the use of corticosteroids is appropriate for treating lung inflammation in acute respiratory viral infections, we recognized that a judicious approach was required. Here, we achieved a marked reduction in corticosteroid use and lung inflammation, along with good absorption of pulmonary consolidations by administering a low dosage of corticosteroids over a relatively short duration. Evaluation of treatment progress based on comparisons of chest CT scans taken at the end of each phase of treatment allowed us to steadily reduce the initial dosage of corticosteroids, thus minimizing use. None of the complications associated with corticosteroid use were observed here during the treatment period or over the following 6 months after recovery. It is nonetheless important to monitor patients given this treatment in the short-medium term.

As mentioned above, a major concern with respect to the application of corticosteroid therapy is that, as an immunosuppressant, corticosteroids may delay viral clearance if administered before viral replication has been controlled [25]. In this case, however, the patient tested negative for SARS-CoV-2 nucleic acid on days 7 and 9 of treatment, indicating that corticosteroid use did not delay viral clearance. This is consistent with findings in other COVID-19 centres [28]. Indeed, it is possible that earlier testing might have indicated that this treatment contributed to viral clearance at an even earlier stage.

4 Conclusion

Our recommendation is that judicious and monitored use of low doses of corticosteroids in patients with moderate acute COVID-19 infections, when the absence of underlying co-morbidities does not indicate otherwise, may be sufficient to prevent moderate infections turning into severe/critical cases that develop ARDS and organ failure. Further studies are needed to confirm that the safety and efficacy of corticosteroid use observed in this case apply more widely to their use in non-severe COVID-19 cases in different populations, including the elderly.

List of abbreviations

ARDS

acute respiratory distress syndrome

COVID-19

coronavirus disease 2019

CRP

C-reactive protein

CT

computed tomography

MERS

Middle East respiratory syndrome

RECOVERY

randomized evaluation of COVID-19 therapy

RT-PCR

reverse-transcriptase polymerase chain reaction

SARS

severe acute respiratory syndrome

SpO2

transcutaneous oxygen saturation

WHO

World Health Organization


tel: +86-13578979852

Acknowledgements

The authors express their thanks to the patient and her family for permission to publish this case, and to the medical staff at Changchun Infectious Diseases Hospital for providing dedicated medical care.

  1. Conflict of interest: The authors declare no conflicts of interest

  2. Data availability statement: All data generated or analysed in this study are included in this published article.

References

[1] WHO. Director-General’s opening remarks at the media briefing on COVID-19. Geneva: World Health Organization; 2020 [cited 2021 Jan 26]. Available from: https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020Search in Google Scholar

[2] WHO. Coronavirus disease (COVID-19) dashboard. Geneva World Health Organization; 2021 [cited 2021 Jan 26]. Available from: https://covid19.who.int/Search in Google Scholar

[3] Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020;323(11):1061–9. 10.1001/jama.2020.1585.Search in Google Scholar

[4] Zhang JJ, Dong X, Cao YY, Yuan YD, Yang YB, Yan YQ, et al. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy. 2020;75(7):1730–41. 10.1111/all.14238.Search in Google Scholar

[5] Du B, Qiu HB, Zhan X, Wang YS, Kang HYJ, Li XY, et al. Pharmacotherapeutics for the new coronavirus pneumonia. Chin J Tuberculosis Respir Dis. 2020;43:E012. 10.3760/cma.j.issn.1001-0939.2020.0012.Search in Google Scholar

[6] National Health Commission of China. Guidelines for the diagnosis and treatment of COVID-19 pneumonia version 8 [in Chinese]. National Health Commission of China; 2020 [cited 2021 Jan 26]. Available from: http://www.nhc.gov.cn/xcs/zhengcwj/202008/0a7bdf12bd4b46e5bd28ca7f9a7f5e5a/files/a449a3e2e2c94d9a856d5faea2ff0f94.pdfSearch in Google Scholar

[7] WHO. Clinical management of COVID-19. Geneva: World Health Organisation; 2020 [cited 2021 Jan 26]. Available from: https://www.who.int/publications/i/item/clinical-management-of-covid-19Search in Google Scholar

[8] Yu WC, Hui DS, Chan-Yeung M. Antiviral agents and corticosteroids in the treatment of severe acute respiratory syndrome (SARS). Thorax. 2004;59(8):643–5. 10.1136/thx.2003.017665.Search in Google Scholar

[9] Chen RC, Tang XP, Tan SY, Liang BL, Wan ZY, Fang JQ, et al. Treatment of severe acute respiratory syndrome with glucosteroids: the Guangzhou experience. Chest. 2006;129(6):1441–52. 10.1378/chest.129.6.1441.Search in Google Scholar

[10] Shang L, Zhao J, Hu Y, Du R, Cao B. On the use of corticosteroids for 2019-nCoV pneumonia. Lancet. 2020;395(10225):683–4. 10.1016/S0140-6736(20)30361-5.Search in Google Scholar

[11] Caplan A, Fett N, Rosenbach M, Werth VP, Micheletti RG. Prevention and management of glucocorticoid-induced side effects: a comprehensive review: a review of glucocorticoid pharmacology and bone health. J Am Acad Dermatol. 2017;76(1):1–9. 10.1016/j.jaad.2016.01.062.Search in Google Scholar PubMed

[12] Oray M, Abu Samra K, Ebrahimiadib N, Meese H, Foster CS. Long-term side effects of glucocorticoids. Expert Opin Drug Saf. 2016;15(4):457–65. 10.1517/14740338.2016.1140743.Search in Google Scholar PubMed

[13] Ni YN, Chen G, Sun J, Liang BM, Liang ZA. The effect of corticosteroids on mortality of patients with influenza pneumonia: a systematic review and meta-analysis. Crit Care. 2019;23(1):99. 10.1186/s13054-019-2395-8.Search in Google Scholar PubMed PubMed Central

[14] RECOVERY Collaborative Group, Horby P, Lim WS, Emberson JR, Mafham M, Bell JL, et al. Dexamethasone in hospitalized patients with covid-19. N Engl J Med. 2021;384(8):693–704. 10.1056/NEJMoa2021436.Search in Google Scholar PubMed PubMed Central

[15] The WHO Rapid Evidence Appraisal for COVID-19 Therapies (REACT) Working Group, Sterne JAC, Murthy S, Diaz JV, Slutsky AS, Villar J, et al. Association between administration of systemic corticosteroids and mortality among critically Ill patients with COVID-19: a meta-analysis. JAMA. 2020;324(13):1330–41. 10.1001/jama.2020.17023.Search in Google Scholar

[16] WHO. Corticosteroids for COVID-19. Geneva: World Health Organization; 2020 [cited 2021 Jan 26]. Available from: https://www.who.int/publications/i/item/WHO-2019-nCoV-Corticosteroids-2020.1Search in Google Scholar

[17] Fadel R, Morrison AR, Vahia A, Smith ZR, Chaudhry Z, Bhargava P, et al. Early short-course corticosteroids in hospitalized patients with COVID-19. Clin Infect Dis. 2020;71(16):2114–20. 10.1093/cid/ciaa601.Search in Google Scholar

[18] Kevorkian JP, Riveline JP, Vandiedonck C, Girard D, Galland J, Feron F, et al. Early short-course corticosteroids and furosemide combination to treat non-critically ill COVID-19 patients: An observational cohort study. J Infect. 2021;82(1):e22–4. 10.1016/j.jinf.2020.08.045.Search in Google Scholar

[19] Lan L, Xu D, Ye G, Xia C, Wang S, Li Y, et al. Positive RT-PCR test results in patients recovered from COVID-19. JAMA. 2020;323(15):1502–3. 10.1001/jama.2020.2783.Search in Google Scholar

[20] National Health Commission of China. Guidelines for the diagnosis and treatment of COVID-19 pneumonia version 2 [in Chinese]. National Health Commission of China; 2020 [cited 2021 Jan 26] Available from: http://www.gov.cn/xinwen/2020-01/23/content_5471768.htmSearch in Google Scholar

[21] Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506. 10.1016/S0140-6736(20)30183-5.Search in Google Scholar

[22] Channappanavar R, Fehr AR, Vijay R, Mack M, Zhao J, Meyerholz DK, et al. Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected mice. Cell Host Microbe. 2016;19(2):181–93. 10.1016/j.chom.2016.01.007.Search in Google Scholar

[23] Cameron MJ, Bermejo-Martin JF, Danesh A, Muller MP, Kelvin DJ. Human immunopathogenesis of severe acute respiratory syndrome (SARS). Virus Res. 2008;133(1):13–9. 10.1016/j.virusres.2007.02.014.Search in Google Scholar

[24] Abdin SM, Elgendy SM, Alyammahi SK, Alhamad DW, Omar HA. Tackling the cytokine storm in COVID-19, challenges and hopes. Life Sci. 2020;257:118054. 10.1016/j.lfs.2020.118054.Search in Google Scholar

[25] Hui DS. Systemic corticosteroid therapy may delay viral clearance in patients with Middle East respiratory syndrome coronavirus infection. Am J Resp Crit Care. 2018;197(6):700–1. 10.1164/rccm.201712-2371ED.Search in Google Scholar

[26] Russell CD, Millar JE, Baillie JK. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet. 2020;395(10223):473–5. 10.1016/S0140-6736(20)30317-2.Search in Google Scholar

[27] Zhao JP, Hu Y, Du RH, Chen ZS, Jin Y, Zhou M, et al. Expert consensus on the use of corticosteroid in patients with 2019-nCoV pneumonia. Chin J Tuberculosis Respir Dis. 2020;43(3):183–4. 10.3760/cma.j.issn.1001-0939.2020.03.008.Search in Google Scholar PubMed

[28] Fang X, Mei Q, Yang T, Li L, Wang Y, Tong F, et al. Low-dose corticosteroid therapy does not delay viral clearance in patients with COVID-19. J Infect. 2020;81(1):147–78. 10.1016/j.jinf.2020.03.039.Search in Google Scholar PubMed PubMed Central

Received: 2020-10-14
Revised: 2021-01-29
Accepted: 2021-02-18
Published Online: 2021-03-19

© 2021 Jian Zhang et al., published by De Gruyter

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Research Articles
  2. Identification of ZG16B as a prognostic biomarker in breast cancer
  3. Behçet’s disease with latent Mycobacterium tuberculosis infection
  4. Erratum
  5. Erratum to “Suffering from Cerebral Small Vessel Disease with and without Metabolic Syndrome”
  6. Research Articles
  7. GPR37 promotes the malignancy of lung adenocarcinoma via TGF-β/Smad pathway
  8. Expression and role of ABIN1 in sepsis: In vitro and in vivo studies
  9. Additional baricitinib loading dose improves clinical outcome in COVID-19
  10. The co-treatment of rosuvastatin with dapagliflozin synergistically inhibited apoptosis via activating the PI3K/AKt/mTOR signaling pathway in myocardial ischemia/reperfusion injury rats
  11. SLC12A8 plays a key role in bladder cancer progression and EMT
  12. LncRNA ATXN8OS enhances tamoxifen resistance in breast cancer
  13. Case Report
  14. Serratia marcescens as a cause of unfavorable outcome in the twin pregnancy
  15. Spleno-adrenal fusion mimicking an adrenal metastasis of a renal cell carcinoma: A case report and embryological background
  16. Research Articles
  17. TRIM25 contributes to the malignancy of acute myeloid leukemia and is negatively regulated by microRNA-137
  18. CircRNA circ_0004370 promotes cell proliferation, migration, and invasion and inhibits cell apoptosis of esophageal cancer via miR-1301-3p/COL1A1 axis
  19. LncRNA XIST regulates atherosclerosis progression in ox-LDL-induced HUVECs
  20. Potential role of IFN-γ and IL-5 in sepsis prediction of preterm neonates
  21. Rapid Communication
  22. COVID-19 vaccine: Call for employees in international transportation industries and international travelers as the first priority in global distribution
  23. Case Report
  24. Rare squamous cell carcinoma of the kidney with concurrent xanthogranulomatous pyelonephritis: A case report and review of the literature
  25. An infertile female delivered a baby after removal of primary renal carcinoid tumor
  26. Research Articles
  27. Hypertension, BMI, and cardiovascular and cerebrovascular diseases
  28. Case Report
  29. Coexistence of bilateral macular edema and pale optic disc in the patient with Cohen syndrome
  30. Research Articles
  31. Correlation between kinematic sagittal parameters of the cervical lordosis or head posture and disc degeneration in patients with posterior neck pain
  32. Review Articles
  33. Hepatoid adenocarcinoma of the lung: An analysis of the Surveillance, Epidemiology, and End Results (SEER) database
  34. Research Articles
  35. Thermography in the diagnosis of carpal tunnel syndrome
  36. Pemetrexed-based first-line chemotherapy had particularly prominent objective response rate for advanced NSCLC: A network meta-analysis
  37. Comparison of single and double autologous stem cell transplantation in multiple myeloma patients
  38. The influence of smoking in minimally invasive spinal fusion surgery
  39. Impact of body mass index on left atrial dimension in HOCM patients
  40. Expression and clinical significance of CMTM1 in hepatocellular carcinoma
  41. miR-142-5p promotes cervical cancer progression by targeting LMX1A through Wnt/β-catenin pathway
  42. Comparison of multiple flatfoot indicators in 5–8-year-old children
  43. Early MRI imaging and follow-up study in cerebral amyloid angiopathy
  44. Intestinal fatty acid-binding protein as a biomarker for the diagnosis of strangulated intestinal obstruction: A meta-analysis
  45. miR-128-3p inhibits apoptosis and inflammation in LPS-induced sepsis by targeting TGFBR2
  46. Dynamic perfusion CT – A promising tool to diagnose pancreatic ductal adenocarcinoma
  47. Biomechanical evaluation of self-cinching stitch techniques in rotator cuff repair: The single-loop and double-loop knot stitches
  48. Review Articles
  49. The ambiguous role of mannose-binding lectin (MBL) in human immunity
  50. Case Report
  51. Membranous nephropathy with pulmonary cryptococcosis with improved 1-year follow-up results: A case report
  52. Fertility problems in males carrying an inversion of chromosome 10
  53. Acute myeloid leukemia with leukemic pleural effusion and high levels of pleural adenosine deaminase: A case report and review of literature
  54. Metastatic renal Ewing’s sarcoma in adult woman: Case report and review of the literature
  55. Burkitt-like lymphoma with 11q aberration in a patient with AIDS and a patient without AIDS: Two cases reports and literature review
  56. Skull hemophilia pseudotumor: A case report
  57. Judicious use of low-dosage corticosteroids for non-severe COVID-19: A case report
  58. Adult-onset citrullinaemia type II with liver cirrhosis: A rare cause of hyperammonaemia
  59. Clinicopathologic features of Good’s syndrome: Two cases and literature review
  60. Fatal immune-related hepatitis with intrahepatic cholestasis and pneumonia associated with camrelizumab: A case report and literature review
  61. Research Articles
  62. Effects of hydroxyethyl starch and gelatin on the risk of acute kidney injury following orthotopic liver transplantation: A multicenter retrospective comparative clinical study
  63. Significance of nucleic acid positive anal swab in COVID-19 patients
  64. circAPLP2 promotes colorectal cancer progression by upregulating HELLS by targeting miR-335-5p
  65. Ratios between circulating myeloid cells and lymphocytes are associated with mortality in severe COVID-19 patients
  66. Risk factors of left atrial appendage thrombus in patients with non-valvular atrial fibrillation
  67. Clinical features of hypertensive patients with COVID-19 compared with a normotensive group: Single-center experience in China
  68. Surgical myocardial revascularization outcomes in Kawasaki disease: systematic review and meta-analysis
  69. Decreased chromobox homologue 7 expression is associated with epithelial–mesenchymal transition and poor prognosis in cervical cancer
  70. FGF16 regulated by miR-520b enhances the cell proliferation of lung cancer
  71. Platelet-rich fibrin: Basics of biological actions and protocol modifications
  72. Accurate diagnosis of prostate cancer using logistic regression
  73. miR-377 inhibition enhances the survival of trophoblast cells via upregulation of FNDC5 in gestational diabetes mellitus
  74. Prognostic significance of TRIM28 expression in patients with breast carcinoma
  75. Integrative bioinformatics analysis of KPNA2 in six major human cancers
  76. Exosomal-mediated transfer of OIP5-AS1 enhanced cell chemoresistance to trastuzumab in breast cancer via up-regulating HMGB3 by sponging miR-381-3p
  77. A four-lncRNA signature for predicting prognosis of recurrence patients with gastric cancer
  78. Knockdown of circ_0003204 alleviates oxidative low-density lipoprotein-induced human umbilical vein endothelial cells injury: Circulating RNAs could explain atherosclerosis disease progression
  79. Propofol postpones colorectal cancer development through circ_0026344/miR-645/Akt/mTOR signal pathway
  80. Knockdown of lncRNA TapSAKI alleviates LPS-induced injury in HK-2 cells through the miR-205/IRF3 pathway
  81. COVID-19 severity in relation to sociodemographics and vitamin D use
  82. Clinical analysis of 11 cases of nocardiosis
  83. Cis-regulatory elements in conserved non-coding sequences of nuclear receptor genes indicate for crosstalk between endocrine systems
  84. Four long noncoding RNAs act as biomarkers in lung adenocarcinoma
  85. Real-world evidence of cytomegalovirus reactivation in non-Hodgkin lymphomas treated with bendamustine-containing regimens
  86. Relation between IL-8 level and obstructive sleep apnea syndrome
  87. circAGFG1 sponges miR-28-5p to promote non-small-cell lung cancer progression through modulating HIF-1α level
  88. Nomogram prediction model for renal anaemia in IgA nephropathy patients
  89. Effect of antibiotic use on the efficacy of nivolumab in the treatment of advanced/metastatic non-small cell lung cancer: A meta-analysis
  90. NDRG2 inhibition facilitates angiogenesis of hepatocellular carcinoma
  91. A nomogram for predicting metabolic steatohepatitis: The combination of NAMPT, RALGDS, GADD45B, FOSL2, RTP3, and RASD1
  92. Clinical and prognostic features of MMP-2 and VEGF in AEG patients
  93. The value of miR-510 in the prognosis and development of colon cancer
  94. Functional implications of PABPC1 in the development of ovarian cancer
  95. Prognostic value of preoperative inflammation-based predictors in patients with bladder carcinoma after radical cystectomy
  96. Sublingual immunotherapy increases Treg/Th17 ratio in allergic rhinitis
  97. Prediction of improvement after anterior cruciate ligament reconstruction
  98. Effluent Osteopontin levels reflect the peritoneal solute transport rate
  99. circ_0038467 promotes PM2.5-induced bronchial epithelial cell dysfunction
  100. Significance of miR-141 and miR-340 in cervical squamous cell carcinoma
  101. Association between hair cortisol concentration and metabolic syndrome
  102. Microvessel density as a prognostic indicator of prostate cancer: A systematic review and meta-analysis
  103. Characteristics of BCR–ABL gene variants in patients of chronic myeloid leukemia
  104. Knee alterations in rheumatoid arthritis: Comparison of US and MRI
  105. Long non-coding RNA TUG1 aggravates cerebral ischemia and reperfusion injury by sponging miR-493-3p/miR-410-3p
  106. lncRNA MALAT1 regulated ATAD2 to facilitate retinoblastoma progression via miR-655-3p
  107. Development and validation of a nomogram for predicting severity in patients with hemorrhagic fever with renal syndrome: A retrospective study
  108. Analysis of COVID-19 outbreak origin in China in 2019 using differentiation method for unusual epidemiological events
  109. Laparoscopic versus open major liver resection for hepatocellular carcinoma: A case-matched analysis of short- and long-term outcomes
  110. Travelers’ vaccines and their adverse events in Nara, Japan
  111. Association between Tfh and PGA in children with Henoch–Schönlein purpura
  112. Can exchange transfusion be replaced by double-LED phototherapy?
  113. circ_0005962 functions as an oncogene to aggravate NSCLC progression
  114. Circular RNA VANGL1 knockdown suppressed viability, promoted apoptosis, and increased doxorubicin sensitivity through targeting miR-145-5p to regulate SOX4 in bladder cancer cells
  115. Serum intact fibroblast growth factor 23 in healthy paediatric population
  116. Algorithm of rational approach to reconstruction in Fournier’s disease
  117. A meta-analysis of exosome in the treatment of spinal cord injury
  118. Src-1 and SP2 promote the proliferation and epithelial–mesenchymal transition of nasopharyngeal carcinoma
  119. Dexmedetomidine may decrease the bupivacaine toxicity to heart
  120. Hypoxia stimulates the migration and invasion of osteosarcoma via up-regulating the NUSAP1 expression
  121. Long noncoding RNA XIST knockdown relieves the injury of microglia cells after spinal cord injury by sponging miR-219-5p
  122. External fixation via the anterior inferior iliac spine for proximal femoral fractures in young patients
  123. miR-128-3p reduced acute lung injury induced by sepsis via targeting PEL12
  124. HAGLR promotes neuron differentiation through the miR-130a-3p-MeCP2 axis
  125. Phosphoglycerate mutase 2 is elevated in serum of patients with heart failure and correlates with the disease severity and patient’s prognosis
  126. Cell population data in identifying active tuberculosis and community-acquired pneumonia
  127. Prognostic value of microRNA-4521 in non-small cell lung cancer and its regulatory effect on tumor progression
  128. Mean platelet volume and red blood cell distribution width is associated with prognosis in premature neonates with sepsis
  129. 3D-printed porous scaffold promotes osteogenic differentiation of hADMSCs
  130. Association of gene polymorphisms with women urinary incontinence
  131. Influence of COVID-19 pandemic on stress levels of urologic patients
  132. miR-496 inhibits proliferation via LYN and AKT pathway in gastric cancer
  133. miR-519d downregulates LEP expression to inhibit preeclampsia development
  134. Comparison of single- and triple-port VATS for lung cancer: A meta-analysis
  135. Fluorescent light energy modulates healing in skin grafted mouse model
  136. Silencing CDK6-AS1 inhibits LPS-induced inflammatory damage in HK-2 cells
  137. Predictive effect of DCE-MRI and DWI in brain metastases from NSCLC
  138. Severe postoperative hyperbilirubinemia in congenital heart disease
  139. Baicalin improves podocyte injury in rats with diabetic nephropathy by inhibiting PI3K/Akt/mTOR signaling pathway
  140. Clinical factors predicting ureteral stent failure in patients with external ureteral compression
  141. Novel H2S donor proglumide-ADT-OH protects HUVECs from ox-LDL-induced injury through NF-κB and JAK/SATA pathway
  142. Triple-Endobutton and clavicular hook: A propensity score matching analysis
  143. Long noncoding RNA MIAT inhibits the progression of diabetic nephropathy and the activation of NF-κB pathway in high glucose-treated renal tubular epithelial cells by the miR-182-5p/GPRC5A axis
  144. Serum exosomal miR-122-5p, GAS, and PGR in the non-invasive diagnosis of CAG
  145. miR-513b-5p inhibits the proliferation and promotes apoptosis of retinoblastoma cells by targeting TRIB1
  146. Fer exacerbates renal fibrosis and can be targeted by miR-29c-3p
  147. The diagnostic and prognostic value of miR-92a in gastric cancer: A systematic review and meta-analysis
  148. Prognostic value of α2δ1 in hypopharyngeal carcinoma: A retrospective study
  149. No significant benefit of moderate-dose vitamin C on severe COVID-19 cases
  150. circ_0000467 promotes the proliferation, metastasis, and angiogenesis in colorectal cancer cells through regulating KLF12 expression by sponging miR-4766-5p
  151. Downregulation of RAB7 and Caveolin-1 increases MMP-2 activity in renal tubular epithelial cells under hypoxic conditions
  152. Educational program for orthopedic surgeons’ influences for osteoporosis
  153. Expression and function analysis of CRABP2 and FABP5, and their ratio in esophageal squamous cell carcinoma
  154. GJA1 promotes hepatocellular carcinoma progression by mediating TGF-β-induced activation and the epithelial–mesenchymal transition of hepatic stellate cells
  155. lncRNA-ZFAS1 promotes the progression of endometrial carcinoma by targeting miR-34b to regulate VEGFA expression
  156. Anticoagulation is the answer in treating noncritical COVID-19 patients
  157. Effect of late-onset hemorrhagic cystitis on PFS after haplo-PBSCT
  158. Comparison of Dako HercepTest and Ventana PATHWAY anti-HER2 (4B5) tests and their correlation with silver in situ hybridization in lung adenocarcinoma
  159. VSTM1 regulates monocyte/macrophage function via the NF-κB signaling pathway
  160. Comparison of vaginal birth outcomes in midwifery-led versus physician-led setting: A propensity score-matched analysis
  161. Treatment of osteoporosis with teriparatide: The Slovenian experience
  162. New targets of morphine postconditioning protection of the myocardium in ischemia/reperfusion injury: Involvement of HSP90/Akt and C5a/NF-κB
  163. Superenhancer–transcription factor regulatory network in malignant tumors
  164. β-Cell function is associated with osteosarcopenia in middle-aged and older nonobese patients with type 2 diabetes: A cross-sectional study
  165. Clinical features of atypical tuberculosis mimicking bacterial pneumonia
  166. Proteoglycan-depleted regions of annular injury promote nerve ingrowth in a rabbit disc degeneration model
  167. Effect of electromagnetic field on abortion: A systematic review and meta-analysis
  168. miR-150-5p affects AS plaque with ASMC proliferation and migration by STAT1
  169. MALAT1 promotes malignant pleural mesothelioma by sponging miR-141-3p
  170. Effects of remifentanil and propofol on distant organ lung injury in an ischemia–reperfusion model
  171. miR-654-5p promotes gastric cancer progression via the GPRIN1/NF-κB pathway
  172. Identification of LIG1 and LIG3 as prognostic biomarkers in breast cancer
  173. MitoQ inhibits hepatic stellate cell activation and liver fibrosis by enhancing PINK1/parkin-mediated mitophagy
  174. Dissecting role of founder mutation p.V727M in GNE in Indian HIBM cohort
  175. circATP2A2 promotes osteosarcoma progression by upregulating MYH9
  176. Prognostic role of oxytocin receptor in colon adenocarcinoma
  177. Review Articles
  178. The function of non-coding RNAs in idiopathic pulmonary fibrosis
  179. Efficacy and safety of therapeutic plasma exchange in stiff person syndrome
  180. Role of cesarean section in the development of neonatal gut microbiota: A systematic review
  181. Small cell lung cancer transformation during antitumor therapies: A systematic review
  182. Research progress of gut microbiota and frailty syndrome
  183. Recommendations for outpatient activity in COVID-19 pandemic
  184. Rapid Communication
  185. Disparity in clinical characteristics between 2019 novel coronavirus pneumonia and leptospirosis
  186. Use of microspheres in embolization for unruptured renal angiomyolipomas
  187. COVID-19 cases with delayed absorption of lung lesion
  188. A triple combination of treatments on moderate COVID-19
  189. Social networks and eating disorders during the Covid-19 pandemic
  190. Letter
  191. COVID-19, WHO guidelines, pedagogy, and respite
  192. Inflammatory factors in alveolar lavage fluid from severe COVID-19 pneumonia: PCT and IL-6 in epithelial lining fluid
  193. COVID-19: Lessons from Norway tragedy must be considered in vaccine rollout planning in least developed/developing countries
  194. What is the role of plasma cell in the lamina propria of terminal ileum in Good’s syndrome patient?
  195. Case Report
  196. Rivaroxaban triggered multifocal intratumoral hemorrhage of the cabozantinib-treated diffuse brain metastases: A case report and review of literature
  197. CTU findings of duplex kidney in kidney: A rare duplicated renal malformation
  198. Synchronous primary malignancy of colon cancer and mantle cell lymphoma: A case report
  199. Sonazoid-enhanced ultrasonography and pathologic characters of CD68 positive cell in primary hepatic perivascular epithelioid cell tumors: A case report and literature review
  200. Persistent SARS-CoV-2-positive over 4 months in a COVID-19 patient with CHB
  201. Pulmonary parenchymal involvement caused by Tropheryma whipplei
  202. Mediastinal mixed germ cell tumor: A case report and literature review
  203. Ovarian female adnexal tumor of probable Wolffian origin – Case report
  204. Rare paratesticular aggressive angiomyxoma mimicking an epididymal tumor in an 82-year-old man: Case report
  205. Perimenopausal giant hydatidiform mole complicated with preeclampsia and hyperthyroidism: A case report and literature review
  206. Primary orbital ganglioneuroblastoma: A case report
  207. Primary aortic intimal sarcoma masquerading as intramural hematoma
  208. Sustained false-positive results for hepatitis A virus immunoglobulin M: A case report and literature review
  209. Peritoneal loose body presenting as a hepatic mass: A case report and review of the literature
  210. Chondroblastoma of mandibular condyle: Case report and literature review
  211. Trauma-induced complete pacemaker lead fracture 8 months prior to hospitalization: A case report
  212. Primary intradural extramedullary extraosseous Ewing’s sarcoma/peripheral primitive neuroectodermal tumor (PIEES/PNET) of the thoracolumbar spine: A case report and literature review
  213. Computer-assisted preoperative planning of reduction of and osteosynthesis of scapular fracture: A case report
  214. High quality of 58-month life in lung cancer patient with brain metastases sequentially treated with gefitinib and osimertinib
  215. Rapid response of locally advanced oral squamous cell carcinoma to apatinib: A case report
  216. Retrieval of intrarenal coiled and ruptured guidewire by retrograde intrarenal surgery: A case report and literature review
  217. Usage of intermingled skin allografts and autografts in a senior patient with major burn injury
  218. Retraction
  219. Retraction on “Dihydromyricetin attenuates inflammation through TLR4/NF-kappa B pathway”
  220. Special Issue Computational Intelligence Methodologies Meets Recurrent Cancers - Part I
  221. An artificial immune system with bootstrap sampling for the diagnosis of recurrent endometrial cancers
  222. Breast cancer recurrence prediction with ensemble methods and cost-sensitive learning
Downloaded on 21.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/med-2021-0250/html?lang=en
Scroll to top button