Startseite Medizin Potential role of IFN-γ and IL-5 in sepsis prediction of preterm neonates
Artikel Open Access

Potential role of IFN-γ and IL-5 in sepsis prediction of preterm neonates

  • Jelena Vucic EMAIL logo , Miodrag Vucic , Tatjana Stankovic , Hristina Stamenkovic , Sandra Stankovic und Dragan Zlatanovic
Veröffentlicht/Copyright: 11. Januar 2021

Abstract

Not fully maturated immune system in preterm neonates may contribute to the increased susceptibility to infection. The levels of some cytokines can be useful in the prediction and diagnosis of sepsis in premature neonates. In the present study, we evaluated the potential predictive role of IFN-γ and IL-5 in cord and venous blood, together with the determination of C-reactive protein and procalcitonin (PCT) for sepsis development in premature neonates. A total of 80 participants were included. The laboratory results and clinical histories showed that 21 participants had sepsis. Early onset sepsis was detected in 3 patients while late onset sepsis was observed in 18 participants. The venous plasma levels of IFN-γ and PCT was markedly increased in sepsis groups when compared to the participants without sepsis. On the other hand, levels of IL-5 did not significantly change in the evaluated groups of sepsis and in the control group of participants. Simultaneously, plasma venous levels were not altered in any of the evaluated groups. Obtained findings suggest that venous plasma levels of IFN-γ, rather than levels of IFN-γ in cord blood plasma, and PCT may have predictive potential for sepsis development in preterm neonates. Further studies are necessary to get more comprehension of the complex function of cytokines for sepsis development in preterm neonates.

1 Introduction

Globally, neonatal sepsis represents public health problem with high rate of morbidity and mortality. The most harmful effect is especially addressed to preterm neonates [1]. The health of preterm neonates deteriorates rapidly, causing septic shock, and neonates may die even before antimicrobial tests are ready [2]. Early onset sepsis (EOS) occurs in the first 72 h of life and it is usually caused by organisms transmitted vertically, from the mother to the infant before or at the time of birth. Late onset sepsis (LOS) develops after 72 h of life and may be induced by pathogens acquired by delivery or during the course of hospital care [3].

The diagnosis of neonatal sepsis is especially difficult. Primarily, unspecific signs and symptoms (tachypnea, thermal dysregulation, lethargy, abdominal distension and others) are often seen in clinical condition of neonatal sepsis [1]. The mechanisms of distinct neonatal response to infection is not clearly understood. However, pro- and anti-inflammatory cytokines have key roles and regulate the inflammation process and host response to infection. Although the immune system develops throughout the fetal period, it has been proved that different microbial antigens evoke innate and adaptive mechanisms of the host and release cytokines, resulting in clinical signs and outcomes [4].

Because inflammation has an important role in sepsis development, various studies have been conducted to evaluate inflammatory mediators which may permit an early diagnosis of sepsis. These reports observed potential role of IL-1β, IL-6, IL-8, TNFα and IL-10 in early sepsis diagnosis, by evaluating these cytokines in cord blood or in venous blood [5,6]. However, systemic review revealed that the role of inflammatory mediators varied, and additional studies are needed to clarify the role of mediators [7]. Therefore, in the current study, we tested whether the levels (in cord and venous blood) of some of the key cytokines of Th1 (IFN-γ) and Th2 (IL-5) phenotypes, may have predictive role in early diagnosis of sepsis in preterm neonates, along with some standard laboratory analysis.

2 Materials and methods

2.1 Study population

This prospective study was carried out from December 2017 to December 2018 in Pediatric Internal Diseases Clinic, Clinical Center of Nis, Serbia. The study population included 101 neonates born at 36 weeks of gestational age (GA). However, among premature neonates, 21 of them were excluded from the study due to maternal pregnancy-induced hypertension and premature rupture of membranes (PROMs). Also, we excluded from the study premature neonates with congenital malformations and laboratory-confirmed TORCH (Toxoplasma, rubella virus, cytomegalovirus, herpes simplex virus-II) as well as premature neonates born to mother with signs of infection (cervicovaginitis, chorioamnionitis, urinary tract infection and fever during delivery) or presence of any systemic disease. This study was approved by the Ethics Committee, Medical Faculty in Nis (35144/2017). Written informed consent was obtained from the parents for all recruited premature neonates, prior to study participation.

2.2 Definition of sepsis and study group allocation

Sepsis is defined as evidence of a systemic inflammatory response in the presence of suspected or proven infection. In our study, definition of neonatal sepsis was performed according to the Criteria published by International Pediatric Sepsis Consensus Conference [8].

All recruited participants were classified according to the infant’s age at birth into two groups (group 1: <32 weeks and group 2: 32–36 weeks of GA) [2]. Simultaneously, according to the time when the first sepsis episode occurred, both groups were divided into EOS when the first sepsis episode occurs <72 h of life and LOS when the first sepsis episode occurs >72 h of life [3]. Among the recruited participants, premature neonates without any sepsis episodes served as a control group [1].

2.3 Neonatal and maternal data

Neonatal and maternal data were retrospectively obtained from maternal and infant’s medical records. Weight, length of neonates, GA, sex, delivery mode, Apgar score at 1 min after birth, low growth for GA, patent ductus arteriosus (PDA), respiratory distress syndrome (RDS), periventricular, intraventricular hemorrhage, pregnancy-induced hypertension and PROM were obtained from hospital records. Low growth for GA was determined as weight and length less then 10th percentile for GA.

2.4 Blood samples and laboratory data

Immediately after delivery, we collected cord blood and venous blood samples by using tubes coated with K2-ethylenediaminetetraacetic acid (Sarstaedt, Numbrecht, Germany). Collected samples were centrifuged at 300 rpm for 10 min. After samples from all participants had been collected, the removed plasma was stored in sterile tubes at −80°C for later measurements of biomarker levels. Additionally, from collected venous blood, levels of C-reactive protein (CRP) was evaluated by using Horiba-Microsemi (Roma, Italy) system, and procalcitonin (PCT) was determined by using Cobas e411 system (Roche/Hitachi, Bellport, USA).

2.5 Measurement of cytokines

The concentrations of IFN-γ and IL-5 in venous and cord blood samples were detected simultaneously by using the ELISA technique, according to the manufacturer’s instructions. For this analysis, we used 96-well flat bottom plate kit Express Assay Format Human Cytokine Group (Bio-Rad, Hercules, USA). Further microplate reading was assessed by using BioPlex 2200 system (Bio-Rad, Hercules, USA), following the analytical methodology given by manufacturer’s instructions.

2.6 Statistical analysis

We evaluated the normality of the data by using Shapiro–Wilk and Kolmogorov–Smirnov tests. Nonnormal distributed data are expressed as minimum–maximum (median value) and comparisons between these groups were assessed using Kruskal–Wallis and/or Mann–Whitney test. Categorical variables are expressed as frequencies and compared by using the chi-square test. Normally distributed data are expressed as mean ± SD and compared by using ANOVA. All statistical tests were two sided and performed at a significance level of p = 0.05. Statistical analysis was performed by using SPSS Statistics in Windows environment.

3 Results

By fulfilling the inclusion criteria mentioned above, 80 preterm infants were included in the study of the 101 total infants collected during the examination period. Table 1 shows some clinical and demographic features of the mothers and preterm infants included in our study. As shown in Table 1, seven infants (8.75%) were born before 32 GA, while 73 infants (91.25%) were born between 32 and 36 GA. Further characteristics of study enrolled infants are shown in Table 1.

Table 1

Risk factors for neonatal sepsis

Risk factors n (%), N = 101 n (%), N = 80
Prematurity – before 32 week of gestational age 8 (7.9%) 7 (8.75%)
Prematurity – 32–36 weeks of gestational age 93 (92.1%) 73 (91.25%)
Birth by cesarean section 40 (39.6%) 28 (35%)
Low weight for gestational age 12 (11.9%) 7 (8.75%)
Low growth for gestational age 10 (9.9%) 5 (6.3%)
Pregnancy-induced hypertension 14 (13.9%)
PROMs 9 (8.9%)
PDA 23 (22.8%) 22 (27.5%)
RDS 32 (31.7%) 31 (37.75%)
Periventricular and intraventricular hemorrhage 8 (7.9%) 7 (8.75%)

During follow-up, 21 of the 80 infants developed sepsis. Taking into account the GA of the infants, in group 1 (infants <32 weeks of GA), 2 infants (28.6%) developed EOS, 1 developed LOS (14.3%) and 4 infants (57.2%) did not develop sepsis. However, in group 2 (infants 32–36 weeks of GA), 8 infants (11%) demonstrated EOS, 10 infants (13.7%) with LOS, while 55 infants (75.3%) showed no septic episodes (Table 2). Comparing two groups (groups 1 and 2) with control group resulted in no significantly different incidence of sepsis development. Nevertheless, since in group 1 only three preterm infants developed sepsis, the results from this group should be considered, due to a small number of participants recruited in this group. Additionally, when two sepsis groups (EOS and LOS) were compared to the control group, the clinical variables birth weight, length, sex and Apgar score showed no statistical significance (p > 0.05). Also, the CRP concentration in venous blood plasma resulted in no statistical significance (p > 0.05) when compared to two sepsis (EOS and LOS) and control groups of premature infants (Table 2). On the other hand, PCT concentration in venous blood plasma showed statistical significance (p < 0.05) when EOS and LOS are compared as well as when LOS and control (with no sepsis) group (P < 0.001) are compared. Significantly higher (p < 0.001) PCT concentrations were observed when EOS and control group are compared (Table 2).

Table 2

Comparison of some clinical variables and levels of CRP and PCT among subjects by sepsis subgroups

Early onset sepsis Late sepsis No sepsis P
<32 GW 2 (28.6%) 1 (14.3%) 4 (57.2%) 0.256
32–36 GW 8 (11%) 10 (13.7%) 55 (75.3%)
Normal growth for GA 11 (14.7%) 10 (13.3%) 54 (72%) 1
Low growth for GA 0 (0%) 0 (0%) 5 (100%)
Female 5 (13.9%) 5 (13.9%) 26 (72.2%) 1
Male 5 (11.4%) 6 (13.6%) 33 (75%)
Apgar score 4–9 (8) 8–9 (8) 4–9 (8) 0.227
CRP (mg/L) 0–15.4 (6.42) 0.5–5.3 (2.2) 0–55.8 (1.3) 0.082
PCT (ng/mL) 4.85–26.59 (10.43) 3.13–16.9 (6.66) 0–4.79 (1.18) Early vs late < 0.05
Late vs no < 0.001
Early vs late < 0.001

In our further research, we tried to evaluate the concentrations of IFN-γ and IL-5 in cord blood and venous blood plasma. Taking into account that group 1 contains only three recruited participants, we focused to analyze mentioned cytokines in group 2 (32–36 weeks of GA) which enrolled 18 preterm infants. As shown in Figure 1, IFN-γ concentration in cord blood plasma did not significantly differ between sepsis groups (EOS and LOS) and control group (p > 0.05). Significantly higher levels (p < 0.001) of IFN-γ were observed only in control group between cord blood and venous plasma. Simultaneously, IFN-γ concentration in venous blood plasma significantly differs (p = 0.007) between EOS and LOS as well as between EOS and control groups (p < 0.001). Further, IFN-γ concentration in venous blood plasma showed significantly higher values in LOS (p < 0.001) compared to the control group of preterm infants (Figure 1).

Figure 1 
               IFN-γ (pg/mL) levels in the cord blood and peripheral blood among sepsis subgroups and control group. The plasma levels of IFN-γ was evaluated as described in Material and methods section. Data were expressed as mean ± SD. Abbreviations: no sepsis – participants without sepsis development; early sepsis – participants who developed sepsis in first 72 h of life; late sepsis – participants who developed sepsis after 72 h of life; n.s. – non-significance.
Figure 1

IFN-γ (pg/mL) levels in the cord blood and peripheral blood among sepsis subgroups and control group. The plasma levels of IFN-γ was evaluated as described in Material and methods section. Data were expressed as mean ± SD. Abbreviations: no sepsis – participants without sepsis development; early sepsis – participants who developed sepsis in first 72 h of life; late sepsis – participants who developed sepsis after 72 h of life; n.s. – non-significance.

On the other hand, concentration of IL-5 in cord blood and venous plasma did not significantly differ between sepsis groups (P > 0.05) as well as when sepsis and control groups of preterm infants are compared (Figure 2). Additionally, Figure 2 shows no statistical significant difference (p > 0.05) in IL-5 concentration (in cord blood and venous plasma) when compared to each group individually.

Figure 2 
               IL-5 (pg/mL) levels in the cord blood and peripheral blood among sepsis subgroups and control group. The plasma levels of IL-5 was evaluated as described in Material and methods section. Data were expressed as mean ± SD. Abbreviations: no sepsis – participants without sepsis development; early sepsis – participants who developed sepsis in first 72 h of life; late sepsis – participants who developed sepsis after 72 h of life; n.s. – non-significance.
Figure 2

IL-5 (pg/mL) levels in the cord blood and peripheral blood among sepsis subgroups and control group. The plasma levels of IL-5 was evaluated as described in Material and methods section. Data were expressed as mean ± SD. Abbreviations: no sepsis – participants without sepsis development; early sepsis – participants who developed sepsis in first 72 h of life; late sepsis – participants who developed sepsis after 72 h of life; n.s. – non-significance.

4 Discussion

Different human [9,10] and animal [11,12] studies have documented that sepsis provokes simultaneous release of numerous pro- and anti-inflammatory cytokines into the blood of premature infants. However, despite various studies, obtained results showed conflicting results about inflammatory mediators involved in sepsis prediction in premature neonates.

In our study, we tried to evaluate the role of representative cytokines of Th1 (IFN-γ) and Th2 (IL-5) immune response for sepsis prediction in premature neonates who are younger or older than 32 weeks of GA, mainly because named groups exhibit different levels of immune system maturity due to fetal development [2]. Taking into account that the difference in immune system maturity could be the origin of the heterogeneity of the immune response during sepsis [13], we also determined specific immune mediators (CRP and PCT) to have more elements for better prediction of sepsis development in preterm neonates [14]. Results obtained in our study demonstrated no statistical difference in sepsis (EOS and LOS) and control groups. Additionally, some clinical variables (birth weight, length, sex and Apgar score) showed no statistical significance when EOS and LOS were compared to the control group, indicating the equable manner of recruited participants and precisely inclusion of preterm neonates in our study. However, results from EOS group should be used with precaution, since this group includes seven participants, where only three of them developed sepsis. These results are in line with earlier reports [2,15], which enables more accurate evaluation of predictive factors for sepsis development in preterm neonates [16].

CRP is synthesized by the hepatocytes in a response to the infection, as a part of the innate immunity. Synthesis of this pentameric structure protein is stimulated by cytokines; and at the same time, it is the most commonly used test in the diagnosis of neonatal sepsis [17]. Our study results showed that CRP concentration in venous blood plasma did not significantly differ between two sepsis groups (EOS and LOS) and control group, indicating that this acute phase reactant protein may not be unreliable for early diagnosis of neonatal sepsis. The half-life of CRP is 24–48 h, and it needs around 12 h to reach increased level [18], which may in part clarify the results obtained in our study. Similar observations were reported previously, indicating that CRP evaluation 24–48 h after onset of symptoms has shown to increase its sensitivity for the diagnosis of neonatal sepsis [15]. Recent report confirmed the findings showing CRP tendency toward an increasing specificity after 24–48 h [19].

PCT is peptide prohormone of calcitonin and also an acute phase reactant protein. This protein is produced by hepatocytes and macrophages and has been shown to be associated with systemic inflammatory response syndrome (SIRS) [15]. Plasma levels of PCT in venous blood were markedly higher in sepsis groups (EOS and LOS) compared to the control group. The study also showed significantly elevated levels of PCT in EOS compared to the LOS group, suggesting that PCT plasma levels may represent potential useful marker for sepsis prediction. Similar results were obtained earlier, showing that elevated PCT levels can be appropriate for systemic fetal inflammatory response [20,21]. Elevated PCT levels occur within 2–4 h following the bacterial endotoxin exposure and remain increased for the next 24 h [22]. Even the half-life of PCT is 24–30 h, the rapid increase in PCT with the onset of bacterial infection makes it a proper marker for early diagnosis of neonatal sepsis [15], which corresponds to our study results. Furthermore, the observations were confirmed in previously reported meta-analysis which showed PCT as a helpful biomarker for early diagnosis of sepsis [23].

Cell-mediated immunity involves two main types of T cells, including cytotoxic T lymphocytes (CD8+) and T-helper lymphocytes (CD4+). CD8+ cells are involved in the eradication of intracellular pathogens while CD4+ cells are further divided into Th1 and Th2 CD4+ cells mainly defined by their cytokine profile. Th1 cells produce inflammatory cytokines (IFN-γ, IL-2 and TNFα), while anti-inflammatory cytokines (Il-4, IL-5, IL-13 and IL-10) are mainly produced by Th2 cells [24]. IFN-γ is a soluble cytokine secreted by Th1 cells, macrophages, NK cells and mucosal epithelial cells [25]. In our study, we found that IFN-γ plasma levels were notably elevated in EOS and LOS groups compared to the control group of preterm infants as well as in EOS group when compared with LOS group. On the other hand, IFN-γ concentrations in cord blood plasma did not significantly differ among the evaluated groups of preterm neonates. These findings may indicate that the levels of plasma IFN-γ concentrations, rather than levels of IFN-γ in cord blood, could be better predictive factor of sepsis development in preterm neonates. In line with our results are earlier report confirming that IFN-γ induces upregulation of Toll-like receptors and stimulates phagocytosis [26]. Similar results were confirmed in earlier studies [2,16,27] while some reports documented decreased IFN-γ levels in preterm neonates [28,29]. The reason for these conflict results are still unclear. Some factors have the ability to affect cytokine concentrations, including GA, sepsis definition (clinical sepsis or proven culture) or including various microorganisms (which may elicit different cytokine response) [16]. Increased IFN-γ levels in cord blood plasma, compared to venous blood, were only observed in preterm neonates without sepsis development. Observed alterations of cytokine levels in intrauterine growth has been shown in different reports, but functional significance of these findings needs to be clarified [30]. Our study results showed that IL-5 levels did not significantly differ between evaluated groups, as well as we compared IL-5 levels in cord and venous blood, suggesting that IL-5 may not be credible predictor for sepsis development in preterm neonates. IL-5 represents cytokine produced by Th2 and mast cells. This cytokine stimulates B cell growth, increases immunoglobulin secretion and stimulates eosinophil activation [31]. Preterm neonates have deficient T cell function due to greater proportion of naïve T cell. Also, in preterm neonates class-switch to express another antibody is reduced, as well as production of total amount of antibodies [24]. Furthermore, during fetal life, cytokine responses are mainly driven towards a Th2 phenotype. Due to bias to Th2 phenotype, preterm neonates are vulnerable to infection. It is believed that rapid switch towards Th1 phenotype and to production of Th1 cytokines may be one of the defensive mechanisms of preterm neonates [24,32], which may explain elevated IFN-γ levels and unchanged IL-5 levels observed in our study. Concentrations of IFN-γ varies depending on the time of sepsis and GA of preterm neonates [2] and this, also, should be considered when this cytokine is used for sepsis prediction.

In summary, we have shown that evaluation of IFN-γ levels, rather from venous blood than cord blood, have more predictive potential for sepsis development in preterm neonates. On the other hand, IL-5 level and CRP values did not show a predictive value for early detection of sepsis development in preterm neonates. Evaluation of PCT levels in venous blood may represent as a helpful factor, together with IFN-γ levels, for sepsis prediction in preterm neonates. However, further studies, including larger number of cohorts and preterm neonates matched for GA are needed to get more insight in prediction of sepsis development among preterm neonates.

  1. Conflict of interest: Authors state no conflict of interest.

  2. Data availability statement: The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

[1] Leal YA, Álvarez-Nemegyei J, Lavadores-May AI, Girón-Carrillo JL, Cedillo-Rivera R, Velazquez JR. Cytokine profile as diagnostic and prognostic factor in neonatal sepsis. J Matern Fetal Neonatal Med. 2019;32(17):2830–6. 10.1080/14767058.2018.1449828.Suche in Google Scholar PubMed

[2] Segura-Cervantes E, Mancilla-Ramírez J, González-Canudas J, Alba E, Santillán-Ballesteros R, Morales-Barquet D, et al. Inflammatory response in preterm and very preterm newborns with sepsis. Mediators Inflamm. 2016;2016:6740827. 10.1155/2016/6740827.Suche in Google Scholar PubMed PubMed Central

[3] Hornik CP, Fort P, Clark RH, Watt K, Benjamin DK, Smith PB, et al. Early and late onset sepsis in very-low-birth-weight infants from a large group of neonatal intensive care units. Early Hum Dev. 2012;88(Suppl 2):S69–74. 10.1016/S0378-3782(12)70019-1.Suche in Google Scholar PubMed PubMed Central

[4] Machado JR, Soave DF, da Silva MV, de Menezes LB, Etchebehere RM, Monteiro ML, et al. Neonatal sepsis and inflammatory mediators. Mediat Inflamm. 2014;2014:269681. 10.1155/2014/269681.Suche in Google Scholar PubMed PubMed Central

[5] Caron JE, La Pine TR, Augustine NH, Martins TB, Kumánovics A, Hill HR. Severely depressed interleukin-17 production by human neonatal mononuclear cells. Pediatr Res. 2014;76(6):522–7. 10.1038/pr.2014.133.Suche in Google Scholar PubMed

[6] Ng PC, Lam HS. Biomarkers for late-onset neonatal sepsis: cytokines and beyond. Clin Perinatol. 2010;37(3):599–610. 10.1016/j.clp.2010.05.005.Suche in Google Scholar PubMed PubMed Central

[7] Pammi M, Flores A, Leeflang M, Versalovic J. Molecular assays in the diagnosis of neonatal sepsis: a systematic review and meta-analysis. Pediatrics. 2011;128(4):e973–85. 10.1542/peds.2011-1208.Suche in Google Scholar PubMed

[8] Goldstein B, Giroir B, Randolph A. International consensus conference on pediatric sepsis. International pediatric sepsis consensus conference: definitions for sepsis and organ dysfunction in pediatrics. Pediatr Crit Care Med. 2005;6(1):2–8. 10.1097/01.PCC.0000149131.72248.E6.Suche in Google Scholar PubMed

[9] Shah BA, Padbury JF. Neonatal sepsis: an old problem with new insights. Virulence. 2014;5(1):170–8. 10.4161/viru.26906.Suche in Google Scholar PubMed PubMed Central

[10] Iskander KN, Osuchowski MF, Stearns-Kurosawa DJ, Kurosawa S, Stepien D, Valentine C, et al. Sepsis: multiple abnormalities, heterogeneous responses, and evolving understanding. Physiol Rev. 2013;93(3):1247–88. 10.1152/physrev.00037.2012.Suche in Google Scholar PubMed PubMed Central

[11] Osuchowski MF, Craciun F, Weixelbaumer KM, Duffy ER, Remick DG. Sepsis chronically in MARS: systemic cytokine responses are always mixed regardless of the outcome, magnitude, or phase of sepsis. J Immunol. 2012;189(9):4648–56. 10.4049/jimmunol.1201806.Suche in Google Scholar PubMed PubMed Central

[12] Fink MP. Animal models of sepsis. Virulence. 2014;5(1):143–53. 10.4161/viru.26083.Suche in Google Scholar PubMed PubMed Central

[13] Zasada M, Kwinta P, Durlak W, Bik-Multanowski M, Madetko-Talowska A, Pietrzyk JJ. Development and maturation of the immune system in preterm neonates: results from a whole genome expression study. Biomed Res Int. 2014;2014:498318. 10.1155/2014/498318.Suche in Google Scholar PubMed PubMed Central

[14] Lavoie PM, Huang Q, Jolette E, Whalen M, Nuyt AM, Audibert F, et al. Profound lack of interleukin (IL)-12/IL-23p40 in neonates born early in gestation is associated with an increased risk of sepsis. J Infect Dis. 2010;202(11):1754–63. 10.1086/657143.Suche in Google Scholar PubMed PubMed Central

[15] Sharma D, Farahbakhsh N, Shastri S, Sharma P. Biomarkers for diagnosis of neonatal sepsis: a literature review. J Matern Fetal Neonatal Med. 2018;31(12):1646–59. 10.1080/14767058.2017.1322060.Suche in Google Scholar PubMed

[16] Hibbert J, Strunk T, Simmer K, Richmond P, Burgner D, Currie A. Plasma cytokine profiles in very preterm infants with late-onset sepsis. PLoS One. 2020;15(5):e0232933. 10.1371/journal.pone.0232933.Suche in Google Scholar PubMed PubMed Central

[17] Ismail AQ, Gandhi A. Using CRP in neonatal practice. J Matern Fetal Neonatal Med. 2015;28(1):3–6. 10.3109/14767058.2014.885499.Suche in Google Scholar PubMed

[18] Hofer N, Zacharias E, Müller W, Resch B. An update on the use of C-reactive protein in early-onset neonatal sepsis: current insights and new tasks. Neonatology. 2012;102(1):25–36. 10.1159/000336629.Suche in Google Scholar PubMed

[19] Hedegaard SS, Wisborg K, Hvas AM. Diagnostic utility of biomarkers for neonatal sepsis – a systematic review. Infect Dis. 2015;47(3):117–24. 10.3109/00365548.2014.971053.Suche in Google Scholar PubMed

[20] Kordek A, Łoniewska B, Podraza W, Nikodemski T, Rudnicki J. Usefulness of estimation of blood procalcitonin concentration versus C-reactive protein concentration and white blood cell count for therapeutic monitoring of sepsis in neonates. Postepy Hig Med Dosw (Online). 2014;68:1516–23. 10.5604/17322693.1133101.Suche in Google Scholar PubMed

[21] Luzzani A, Polati E, Dorizzi R, Rungatscher A, Pavan R, Merlini A. Comparison of procalcitonin and C-reactive protein as markers of sepsis. Crit Care Med. 2003;31(6):1737–41. 10.1097/01.CCM.0000063440.19188.ED.Suche in Google Scholar PubMed

[22] Dandona P, Nix D, Wilson MF, Aljada A, Love J, Assicot M, et al. Procalcitonin increase after endotoxin injection in normal subjects. J Clin Endocrinol Metab. 1994;79(6):1605–8. 10.1210/jcem.79.6.7989463.Suche in Google Scholar PubMed

[23] Wacker C, Prkno A, Brunkhorst FM, Schlattmann P. Procalcitonin as a diagnostic marker for sepsis: a systematic review and meta-analysis. Lancet Infect Dis. 2013;13(5):426–35. 10.1016/S1473-3099(12)70323-7.Suche in Google Scholar PubMed

[24] Melville JM, Moss TJ. The immune consequences of preterm birth. Front Neurosci. 2013;7:79. 10.3389/fnins.2013.00079.Suche in Google Scholar PubMed PubMed Central

[25] Schoenborn JR, Wilson CB. Regulation of interferon-gamma during innate and adaptive immune responses. Adv Immunol. 2007;96:41–101. 10.1016/S0065-2776(07)96002-2.Suche in Google Scholar PubMed

[26] Tissières P, Ochoda A, Dunn-Siegrist I, Drifte G, Morales M, Pfister R, et al. Innate immune deficiency of extremely premature neonates can be reversed by interferon-γ. PLoS One. 2012;7(3):e32863. 10.1371/journal.pone.0032863.Suche in Google Scholar PubMed PubMed Central

[27] Sugitharini V, Prema A, Berla, Thangam E. Inflammatory mediators of systemic inflammation in neonatal sepsis. Inflamm Res. 2013;62(12):1025–34. 10.1007/s00011-013-0661-9.Suche in Google Scholar PubMed

[28] Takahashi N, Uehara R, Kobayashi M, Yada Y, Koike Y, Kawamata R, et al. Cytokine profiles of seventeen cytokines, growth factors and chemokines in cord blood and its relation to perinatal clinical findings. Cytokine. 2010;49(3):331–7. 10.1016/j.cyto.2009.11.024.Suche in Google Scholar PubMed

[29] Hansen-Pupp I, Harling S, Berg AC, Cilio C, Hellström-Westas L, Ley D. Circulating interferon-gamma and white matter brain damage in preterm infants. Pediatr Res. 2005;58(5):946–52. 10.1203/01.PDR.0000182592.76702.E8.Suche in Google Scholar PubMed

[30] Lindner U, Tutdibi E, Binot S, Monz D, Hilgendorff A, Gortner L. Levels of cytokines in umbilical cord blood in small for gestational age preterm infants. Lin Padiatr. 2013;225(2):70–4. 10.1055/s-0033-1334879.Suche in Google Scholar PubMed

[31] Shen HH, Ochkur SI, McGarry MP, Crosby JR, Hines EM, Borchers MT, et al. A causative relationship exists between eosinophils and the development of allergic pulmonary pathologies in the mouse. J Immunol. 2003;170(6):3296–305. 10.4049/jimmunol.170.6.3296.Suche in Google Scholar PubMed

[32] Maródi L. Innate cellular immune responses in newborns. Clin Immunol. 2006;118(2–3):137–44. 10.1016/j.clim.2005.10.012.Suche in Google Scholar PubMed

Received: 2020-11-12
Revised: 2020-11-27
Accepted: 2020-11-29
Published Online: 2021-01-11

© 2021 Jelena Vucic et al., published by De Gruyter

This work is licensed under the Creative Commons Attribution 4.0 International License.

Artikel in diesem Heft

  1. Research Articles
  2. Identification of ZG16B as a prognostic biomarker in breast cancer
  3. Behçet’s disease with latent Mycobacterium tuberculosis infection
  4. Erratum
  5. Erratum to “Suffering from Cerebral Small Vessel Disease with and without Metabolic Syndrome”
  6. Research Articles
  7. GPR37 promotes the malignancy of lung adenocarcinoma via TGF-β/Smad pathway
  8. Expression and role of ABIN1 in sepsis: In vitro and in vivo studies
  9. Additional baricitinib loading dose improves clinical outcome in COVID-19
  10. The co-treatment of rosuvastatin with dapagliflozin synergistically inhibited apoptosis via activating the PI3K/AKt/mTOR signaling pathway in myocardial ischemia/reperfusion injury rats
  11. SLC12A8 plays a key role in bladder cancer progression and EMT
  12. LncRNA ATXN8OS enhances tamoxifen resistance in breast cancer
  13. Case Report
  14. Serratia marcescens as a cause of unfavorable outcome in the twin pregnancy
  15. Spleno-adrenal fusion mimicking an adrenal metastasis of a renal cell carcinoma: A case report and embryological background
  16. Research Articles
  17. TRIM25 contributes to the malignancy of acute myeloid leukemia and is negatively regulated by microRNA-137
  18. CircRNA circ_0004370 promotes cell proliferation, migration, and invasion and inhibits cell apoptosis of esophageal cancer via miR-1301-3p/COL1A1 axis
  19. LncRNA XIST regulates atherosclerosis progression in ox-LDL-induced HUVECs
  20. Potential role of IFN-γ and IL-5 in sepsis prediction of preterm neonates
  21. Rapid Communication
  22. COVID-19 vaccine: Call for employees in international transportation industries and international travelers as the first priority in global distribution
  23. Case Report
  24. Rare squamous cell carcinoma of the kidney with concurrent xanthogranulomatous pyelonephritis: A case report and review of the literature
  25. An infertile female delivered a baby after removal of primary renal carcinoid tumor
  26. Research Articles
  27. Hypertension, BMI, and cardiovascular and cerebrovascular diseases
  28. Case Report
  29. Coexistence of bilateral macular edema and pale optic disc in the patient with Cohen syndrome
  30. Research Articles
  31. Correlation between kinematic sagittal parameters of the cervical lordosis or head posture and disc degeneration in patients with posterior neck pain
  32. Review Articles
  33. Hepatoid adenocarcinoma of the lung: An analysis of the Surveillance, Epidemiology, and End Results (SEER) database
  34. Research Articles
  35. Thermography in the diagnosis of carpal tunnel syndrome
  36. Pemetrexed-based first-line chemotherapy had particularly prominent objective response rate for advanced NSCLC: A network meta-analysis
  37. Comparison of single and double autologous stem cell transplantation in multiple myeloma patients
  38. The influence of smoking in minimally invasive spinal fusion surgery
  39. Impact of body mass index on left atrial dimension in HOCM patients
  40. Expression and clinical significance of CMTM1 in hepatocellular carcinoma
  41. miR-142-5p promotes cervical cancer progression by targeting LMX1A through Wnt/β-catenin pathway
  42. Comparison of multiple flatfoot indicators in 5–8-year-old children
  43. Early MRI imaging and follow-up study in cerebral amyloid angiopathy
  44. Intestinal fatty acid-binding protein as a biomarker for the diagnosis of strangulated intestinal obstruction: A meta-analysis
  45. miR-128-3p inhibits apoptosis and inflammation in LPS-induced sepsis by targeting TGFBR2
  46. Dynamic perfusion CT – A promising tool to diagnose pancreatic ductal adenocarcinoma
  47. Biomechanical evaluation of self-cinching stitch techniques in rotator cuff repair: The single-loop and double-loop knot stitches
  48. Review Articles
  49. The ambiguous role of mannose-binding lectin (MBL) in human immunity
  50. Case Report
  51. Membranous nephropathy with pulmonary cryptococcosis with improved 1-year follow-up results: A case report
  52. Fertility problems in males carrying an inversion of chromosome 10
  53. Acute myeloid leukemia with leukemic pleural effusion and high levels of pleural adenosine deaminase: A case report and review of literature
  54. Metastatic renal Ewing’s sarcoma in adult woman: Case report and review of the literature
  55. Burkitt-like lymphoma with 11q aberration in a patient with AIDS and a patient without AIDS: Two cases reports and literature review
  56. Skull hemophilia pseudotumor: A case report
  57. Judicious use of low-dosage corticosteroids for non-severe COVID-19: A case report
  58. Adult-onset citrullinaemia type II with liver cirrhosis: A rare cause of hyperammonaemia
  59. Clinicopathologic features of Good’s syndrome: Two cases and literature review
  60. Fatal immune-related hepatitis with intrahepatic cholestasis and pneumonia associated with camrelizumab: A case report and literature review
  61. Research Articles
  62. Effects of hydroxyethyl starch and gelatin on the risk of acute kidney injury following orthotopic liver transplantation: A multicenter retrospective comparative clinical study
  63. Significance of nucleic acid positive anal swab in COVID-19 patients
  64. circAPLP2 promotes colorectal cancer progression by upregulating HELLS by targeting miR-335-5p
  65. Ratios between circulating myeloid cells and lymphocytes are associated with mortality in severe COVID-19 patients
  66. Risk factors of left atrial appendage thrombus in patients with non-valvular atrial fibrillation
  67. Clinical features of hypertensive patients with COVID-19 compared with a normotensive group: Single-center experience in China
  68. Surgical myocardial revascularization outcomes in Kawasaki disease: systematic review and meta-analysis
  69. Decreased chromobox homologue 7 expression is associated with epithelial–mesenchymal transition and poor prognosis in cervical cancer
  70. FGF16 regulated by miR-520b enhances the cell proliferation of lung cancer
  71. Platelet-rich fibrin: Basics of biological actions and protocol modifications
  72. Accurate diagnosis of prostate cancer using logistic regression
  73. miR-377 inhibition enhances the survival of trophoblast cells via upregulation of FNDC5 in gestational diabetes mellitus
  74. Prognostic significance of TRIM28 expression in patients with breast carcinoma
  75. Integrative bioinformatics analysis of KPNA2 in six major human cancers
  76. Exosomal-mediated transfer of OIP5-AS1 enhanced cell chemoresistance to trastuzumab in breast cancer via up-regulating HMGB3 by sponging miR-381-3p
  77. A four-lncRNA signature for predicting prognosis of recurrence patients with gastric cancer
  78. Knockdown of circ_0003204 alleviates oxidative low-density lipoprotein-induced human umbilical vein endothelial cells injury: Circulating RNAs could explain atherosclerosis disease progression
  79. Propofol postpones colorectal cancer development through circ_0026344/miR-645/Akt/mTOR signal pathway
  80. Knockdown of lncRNA TapSAKI alleviates LPS-induced injury in HK-2 cells through the miR-205/IRF3 pathway
  81. COVID-19 severity in relation to sociodemographics and vitamin D use
  82. Clinical analysis of 11 cases of nocardiosis
  83. Cis-regulatory elements in conserved non-coding sequences of nuclear receptor genes indicate for crosstalk between endocrine systems
  84. Four long noncoding RNAs act as biomarkers in lung adenocarcinoma
  85. Real-world evidence of cytomegalovirus reactivation in non-Hodgkin lymphomas treated with bendamustine-containing regimens
  86. Relation between IL-8 level and obstructive sleep apnea syndrome
  87. circAGFG1 sponges miR-28-5p to promote non-small-cell lung cancer progression through modulating HIF-1α level
  88. Nomogram prediction model for renal anaemia in IgA nephropathy patients
  89. Effect of antibiotic use on the efficacy of nivolumab in the treatment of advanced/metastatic non-small cell lung cancer: A meta-analysis
  90. NDRG2 inhibition facilitates angiogenesis of hepatocellular carcinoma
  91. A nomogram for predicting metabolic steatohepatitis: The combination of NAMPT, RALGDS, GADD45B, FOSL2, RTP3, and RASD1
  92. Clinical and prognostic features of MMP-2 and VEGF in AEG patients
  93. The value of miR-510 in the prognosis and development of colon cancer
  94. Functional implications of PABPC1 in the development of ovarian cancer
  95. Prognostic value of preoperative inflammation-based predictors in patients with bladder carcinoma after radical cystectomy
  96. Sublingual immunotherapy increases Treg/Th17 ratio in allergic rhinitis
  97. Prediction of improvement after anterior cruciate ligament reconstruction
  98. Effluent Osteopontin levels reflect the peritoneal solute transport rate
  99. circ_0038467 promotes PM2.5-induced bronchial epithelial cell dysfunction
  100. Significance of miR-141 and miR-340 in cervical squamous cell carcinoma
  101. Association between hair cortisol concentration and metabolic syndrome
  102. Microvessel density as a prognostic indicator of prostate cancer: A systematic review and meta-analysis
  103. Characteristics of BCR–ABL gene variants in patients of chronic myeloid leukemia
  104. Knee alterations in rheumatoid arthritis: Comparison of US and MRI
  105. Long non-coding RNA TUG1 aggravates cerebral ischemia and reperfusion injury by sponging miR-493-3p/miR-410-3p
  106. lncRNA MALAT1 regulated ATAD2 to facilitate retinoblastoma progression via miR-655-3p
  107. Development and validation of a nomogram for predicting severity in patients with hemorrhagic fever with renal syndrome: A retrospective study
  108. Analysis of COVID-19 outbreak origin in China in 2019 using differentiation method for unusual epidemiological events
  109. Laparoscopic versus open major liver resection for hepatocellular carcinoma: A case-matched analysis of short- and long-term outcomes
  110. Travelers’ vaccines and their adverse events in Nara, Japan
  111. Association between Tfh and PGA in children with Henoch–Schönlein purpura
  112. Can exchange transfusion be replaced by double-LED phototherapy?
  113. circ_0005962 functions as an oncogene to aggravate NSCLC progression
  114. Circular RNA VANGL1 knockdown suppressed viability, promoted apoptosis, and increased doxorubicin sensitivity through targeting miR-145-5p to regulate SOX4 in bladder cancer cells
  115. Serum intact fibroblast growth factor 23 in healthy paediatric population
  116. Algorithm of rational approach to reconstruction in Fournier’s disease
  117. A meta-analysis of exosome in the treatment of spinal cord injury
  118. Src-1 and SP2 promote the proliferation and epithelial–mesenchymal transition of nasopharyngeal carcinoma
  119. Dexmedetomidine may decrease the bupivacaine toxicity to heart
  120. Hypoxia stimulates the migration and invasion of osteosarcoma via up-regulating the NUSAP1 expression
  121. Long noncoding RNA XIST knockdown relieves the injury of microglia cells after spinal cord injury by sponging miR-219-5p
  122. External fixation via the anterior inferior iliac spine for proximal femoral fractures in young patients
  123. miR-128-3p reduced acute lung injury induced by sepsis via targeting PEL12
  124. HAGLR promotes neuron differentiation through the miR-130a-3p-MeCP2 axis
  125. Phosphoglycerate mutase 2 is elevated in serum of patients with heart failure and correlates with the disease severity and patient’s prognosis
  126. Cell population data in identifying active tuberculosis and community-acquired pneumonia
  127. Prognostic value of microRNA-4521 in non-small cell lung cancer and its regulatory effect on tumor progression
  128. Mean platelet volume and red blood cell distribution width is associated with prognosis in premature neonates with sepsis
  129. 3D-printed porous scaffold promotes osteogenic differentiation of hADMSCs
  130. Association of gene polymorphisms with women urinary incontinence
  131. Influence of COVID-19 pandemic on stress levels of urologic patients
  132. miR-496 inhibits proliferation via LYN and AKT pathway in gastric cancer
  133. miR-519d downregulates LEP expression to inhibit preeclampsia development
  134. Comparison of single- and triple-port VATS for lung cancer: A meta-analysis
  135. Fluorescent light energy modulates healing in skin grafted mouse model
  136. Silencing CDK6-AS1 inhibits LPS-induced inflammatory damage in HK-2 cells
  137. Predictive effect of DCE-MRI and DWI in brain metastases from NSCLC
  138. Severe postoperative hyperbilirubinemia in congenital heart disease
  139. Baicalin improves podocyte injury in rats with diabetic nephropathy by inhibiting PI3K/Akt/mTOR signaling pathway
  140. Clinical factors predicting ureteral stent failure in patients with external ureteral compression
  141. Novel H2S donor proglumide-ADT-OH protects HUVECs from ox-LDL-induced injury through NF-κB and JAK/SATA pathway
  142. Triple-Endobutton and clavicular hook: A propensity score matching analysis
  143. Long noncoding RNA MIAT inhibits the progression of diabetic nephropathy and the activation of NF-κB pathway in high glucose-treated renal tubular epithelial cells by the miR-182-5p/GPRC5A axis
  144. Serum exosomal miR-122-5p, GAS, and PGR in the non-invasive diagnosis of CAG
  145. miR-513b-5p inhibits the proliferation and promotes apoptosis of retinoblastoma cells by targeting TRIB1
  146. Fer exacerbates renal fibrosis and can be targeted by miR-29c-3p
  147. The diagnostic and prognostic value of miR-92a in gastric cancer: A systematic review and meta-analysis
  148. Prognostic value of α2δ1 in hypopharyngeal carcinoma: A retrospective study
  149. No significant benefit of moderate-dose vitamin C on severe COVID-19 cases
  150. circ_0000467 promotes the proliferation, metastasis, and angiogenesis in colorectal cancer cells through regulating KLF12 expression by sponging miR-4766-5p
  151. Downregulation of RAB7 and Caveolin-1 increases MMP-2 activity in renal tubular epithelial cells under hypoxic conditions
  152. Educational program for orthopedic surgeons’ influences for osteoporosis
  153. Expression and function analysis of CRABP2 and FABP5, and their ratio in esophageal squamous cell carcinoma
  154. GJA1 promotes hepatocellular carcinoma progression by mediating TGF-β-induced activation and the epithelial–mesenchymal transition of hepatic stellate cells
  155. lncRNA-ZFAS1 promotes the progression of endometrial carcinoma by targeting miR-34b to regulate VEGFA expression
  156. Anticoagulation is the answer in treating noncritical COVID-19 patients
  157. Effect of late-onset hemorrhagic cystitis on PFS after haplo-PBSCT
  158. Comparison of Dako HercepTest and Ventana PATHWAY anti-HER2 (4B5) tests and their correlation with silver in situ hybridization in lung adenocarcinoma
  159. VSTM1 regulates monocyte/macrophage function via the NF-κB signaling pathway
  160. Comparison of vaginal birth outcomes in midwifery-led versus physician-led setting: A propensity score-matched analysis
  161. Treatment of osteoporosis with teriparatide: The Slovenian experience
  162. New targets of morphine postconditioning protection of the myocardium in ischemia/reperfusion injury: Involvement of HSP90/Akt and C5a/NF-κB
  163. Superenhancer–transcription factor regulatory network in malignant tumors
  164. β-Cell function is associated with osteosarcopenia in middle-aged and older nonobese patients with type 2 diabetes: A cross-sectional study
  165. Clinical features of atypical tuberculosis mimicking bacterial pneumonia
  166. Proteoglycan-depleted regions of annular injury promote nerve ingrowth in a rabbit disc degeneration model
  167. Effect of electromagnetic field on abortion: A systematic review and meta-analysis
  168. miR-150-5p affects AS plaque with ASMC proliferation and migration by STAT1
  169. MALAT1 promotes malignant pleural mesothelioma by sponging miR-141-3p
  170. Effects of remifentanil and propofol on distant organ lung injury in an ischemia–reperfusion model
  171. miR-654-5p promotes gastric cancer progression via the GPRIN1/NF-κB pathway
  172. Identification of LIG1 and LIG3 as prognostic biomarkers in breast cancer
  173. MitoQ inhibits hepatic stellate cell activation and liver fibrosis by enhancing PINK1/parkin-mediated mitophagy
  174. Dissecting role of founder mutation p.V727M in GNE in Indian HIBM cohort
  175. circATP2A2 promotes osteosarcoma progression by upregulating MYH9
  176. Prognostic role of oxytocin receptor in colon adenocarcinoma
  177. Review Articles
  178. The function of non-coding RNAs in idiopathic pulmonary fibrosis
  179. Efficacy and safety of therapeutic plasma exchange in stiff person syndrome
  180. Role of cesarean section in the development of neonatal gut microbiota: A systematic review
  181. Small cell lung cancer transformation during antitumor therapies: A systematic review
  182. Research progress of gut microbiota and frailty syndrome
  183. Recommendations for outpatient activity in COVID-19 pandemic
  184. Rapid Communication
  185. Disparity in clinical characteristics between 2019 novel coronavirus pneumonia and leptospirosis
  186. Use of microspheres in embolization for unruptured renal angiomyolipomas
  187. COVID-19 cases with delayed absorption of lung lesion
  188. A triple combination of treatments on moderate COVID-19
  189. Social networks and eating disorders during the Covid-19 pandemic
  190. Letter
  191. COVID-19, WHO guidelines, pedagogy, and respite
  192. Inflammatory factors in alveolar lavage fluid from severe COVID-19 pneumonia: PCT and IL-6 in epithelial lining fluid
  193. COVID-19: Lessons from Norway tragedy must be considered in vaccine rollout planning in least developed/developing countries
  194. What is the role of plasma cell in the lamina propria of terminal ileum in Good’s syndrome patient?
  195. Case Report
  196. Rivaroxaban triggered multifocal intratumoral hemorrhage of the cabozantinib-treated diffuse brain metastases: A case report and review of literature
  197. CTU findings of duplex kidney in kidney: A rare duplicated renal malformation
  198. Synchronous primary malignancy of colon cancer and mantle cell lymphoma: A case report
  199. Sonazoid-enhanced ultrasonography and pathologic characters of CD68 positive cell in primary hepatic perivascular epithelioid cell tumors: A case report and literature review
  200. Persistent SARS-CoV-2-positive over 4 months in a COVID-19 patient with CHB
  201. Pulmonary parenchymal involvement caused by Tropheryma whipplei
  202. Mediastinal mixed germ cell tumor: A case report and literature review
  203. Ovarian female adnexal tumor of probable Wolffian origin – Case report
  204. Rare paratesticular aggressive angiomyxoma mimicking an epididymal tumor in an 82-year-old man: Case report
  205. Perimenopausal giant hydatidiform mole complicated with preeclampsia and hyperthyroidism: A case report and literature review
  206. Primary orbital ganglioneuroblastoma: A case report
  207. Primary aortic intimal sarcoma masquerading as intramural hematoma
  208. Sustained false-positive results for hepatitis A virus immunoglobulin M: A case report and literature review
  209. Peritoneal loose body presenting as a hepatic mass: A case report and review of the literature
  210. Chondroblastoma of mandibular condyle: Case report and literature review
  211. Trauma-induced complete pacemaker lead fracture 8 months prior to hospitalization: A case report
  212. Primary intradural extramedullary extraosseous Ewing’s sarcoma/peripheral primitive neuroectodermal tumor (PIEES/PNET) of the thoracolumbar spine: A case report and literature review
  213. Computer-assisted preoperative planning of reduction of and osteosynthesis of scapular fracture: A case report
  214. High quality of 58-month life in lung cancer patient with brain metastases sequentially treated with gefitinib and osimertinib
  215. Rapid response of locally advanced oral squamous cell carcinoma to apatinib: A case report
  216. Retrieval of intrarenal coiled and ruptured guidewire by retrograde intrarenal surgery: A case report and literature review
  217. Usage of intermingled skin allografts and autografts in a senior patient with major burn injury
  218. Retraction
  219. Retraction on “Dihydromyricetin attenuates inflammation through TLR4/NF-kappa B pathway”
  220. Special Issue Computational Intelligence Methodologies Meets Recurrent Cancers - Part I
  221. An artificial immune system with bootstrap sampling for the diagnosis of recurrent endometrial cancers
  222. Breast cancer recurrence prediction with ensemble methods and cost-sensitive learning
Heruntergeladen am 1.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/med-2021-0206/html
Button zum nach oben scrollen