Home The planning process of transport tasks for autonomous vans
Article Open Access

The planning process of transport tasks for autonomous vans

  • Aleksander Nieoczym , Jacek Caban , Ondrej Stopka EMAIL logo , Tomasz Krajka and Mária Stopková
Published/Copyright: September 7, 2021
Become an author with De Gruyter Brill

Abstract

Recently, we have seen an increase in interest in autonomous mobility around the world. Autonomous vehicles have enormous potential, and the development of radar, information, communication, and measurement technologies brings us closer and closer to this type of mobility. This article considers the principles of planning and selecting routes for transport tasks. The research on the values of indicators characterizing the transport process was carried out for a simple case, when vehicles move along a fixed route without disturbances. The research used mathematical modelling based on the theory of Markov random systems to determine the capacity of the system, the average length of the queue for service, and the average number of transport tasks. The simulations were carried out for the assumed number of vehicles m = 15 and for points requiring service N = 40. The ranges were obtained wherein the number of occupied vehicles oscillated around 30% (for ρ = 0.1), when all the vehicles were occupied (for ρ = 0.625), and when the system became inefficient.

1 Introduction

Autonomous vehicles (AV) are supposed to bring many benefits to society [1]. AV in the long run have significant benefits in terms of transport accessibility, safety, traffic flow, emissions, fuel consumption, and travel comfort. This is confirmed by numerous scientific works [2,3,4,5,6,7,8,9,10,11]. Many scientists believe that the implementation of AV will improve the level of road safety [4,9,11]. It will also cause transformational changes in mobility and accessibility [2,5,12,13,14], as well as energy efficiency and emissions from the transport sector [10,15,16,17]. Changing the mobility system to autonomous will also affect changes in employment, data availability, management, and business models of various industries related to the supply chain [18,19,20]. Significant benefits can also be achieved using mathematical optimization methods [21,22,23,24].

The localization tasks focus on the problem of determining the position of object in a given frame of reference [25]. Real-time information gathering by the onboard computer is an important element of safe driving when driving an AV. This information is dynamically changing while embracing: the impact of other vehicles in motion, hazards on the route, information on the weather condition, and information on changes in the road infrastructure (e.g., traffic lane turned off, traffic signal failure). It is assumed that the true safety test for AV will be the ability to recreate failure-free and safe driving in a way that can be achieved by a driver in a traditional car.

There are two concepts relating to the design, connectivity configuration, and information gathering of AV. One of them assumes interaction between autonomous and conventional vehicles, while the other assumes the extension of connectivity between the AV and the infrastructure [26]. Both methods of communication and navigation require the development of communication protocols, encrypted security standards, and precise digital recreation of the environment in the form of high-resolution maps.

The currently tested AV use sensors grouped in radar, lidar, GPS, and vision cameras, which, combined with high-resolution maps, enable onboard systems to identify appropriate navigation paths, as well as obstacles and appropriate markings. Communication is realized in the form of a protocol as follows [26,27]:

  • V2X, known as “vehicle for everything,” includes technology that allows vehicles to communicate with the moving parts of the motion system surrounding the vehicle.

  • V2V allowing the vehicles to communicate with each other.

  • V2I, known as “vehicle to infrastructure,” is the communication that allows vehicles to communicate with external systems such as streetlights, buildings, and even cyclists or pedestrians.

The above technologies require low data transmission latency and involve the use of wireless technologies to achieve real-time two-way communication. V2V and/or V2I (V2X) communication will allow the visibility of other vehicles in a straight line when they are obstructed when the vehicles move in a straight line [28]. It will also enable the acquisition of new information from other vehicles, including traffic, weather, and information about the condition of other vehicles. Information on infrastructure is collected by sensors placed by roads, elements located by lidars, or data available from other vehicles connected to V2V [29]. If the vehicle cannot detect or predict road conditions, the information may be sent from the vehicle in front approaching the danger area [30].

Digital perception should be replicated in AV as algorithmic preprocessing, validation of measured data, and the ability to infer and predict new events through associative and case-based reasoning [31]. In addition to detection, identification, or measurement, an important problem is the correct interpretation and, on its basis, generating a command for automatic steering systems [32].

Transport tasks can be more or less complex and take place in different conditions of the intensity of recalling to the task [33]. This study discusses the principles of planning and selecting routes for servicing transport tasks, and then simulation tests were carried out. The research on the values of indicators characterizing the transport process was performed for a simple case, which assumes that vehicles move along a fixed route without disturbances. The simulation assumed a certain number of vehicles m = 15 for points requiring servicing N = 40. In the study, it is important to obtain intervals in which we do not use all the vehicles, when they are occupied, and when the task allocation system becomes inefficient.

2 Mathematical modeling

Sending vehicles to demand points is known as the vehicle routing problem. This problem is combinatorial and belongs to NP-complete problems. Finding the optimal solution becomes more complicated as the number of points reporting service needs increases. The selection of the optimal route must be chosen in a way that follows the decisions of other carriers [34]. When solving this problem, one encounters interdependent optimization issues as follows [26,35]:

  • Dividing the set of all delivery/collection points into regions, each of which will be assigned to one vehicle. The location of service points can be defined by GPS coordinates.

  • Determining the order of service within the area.

  • A situation where none of the vehicles has preliminary information about the target, but has a built-in map with all points within its range marked. Vehicles divide destinations among themselves in order to reach the destination in the shortest possible time. This problem is called the goal assignment problem. Originally, it was used in the operation of unmanned aerial vehicles (UAVs) or in vehicles whose route is determined by a network of sensors.

    The problem of mapping the routes for vehicles is the starting point for the formulation of related problems related to the modification of the basic task. This may encompass subjects as follows [35]: determination of vehicle routes with time windows, vehicle routing, delivery and reception, stochastic vehicle routing problem of whether the problem of determining vehicle routes with additions cargo vehicle.

    The problem of mapping the routes is solved with the use of heuristic (approximate) methods, which, unlike the exact methods, do not provide certainty of obtaining the optimal solution. The obtained solution is close to the optimal one and acceptable from the point of view of the calculation duration, which is incomparably shorter than in the case of accurate methods. Analyzing system attributes and applying them correctly in a model are important in order to achieve the most accurate results [36].

    The heuristic methods proposed so far can be classified into three groups as follows [22,37,38,39]:

  • construction methods,

  • decomposition methods,

  • methods of growth.

Design methods include algorithms that simultaneously assign recipients to individual vehicles and determine the order of deliveries by a given vehicle. The choice of a vehicle for specific transport tasks can be accomplished in two ways. In the first, the load is assigned to a free vehicle. In a second method, a vehicle that is free at a given moment can be directed to a specific point of delivery/collection that is currently in need of transport service. Another variable introduced is represented by the issue of how the transport task is initiated. There are tasks initiated by delivery/collection points (search for free vehicles) or tasks initiated by vehicles (search for free loads) [40,41].

In decomposition methods, the allocation of recipients to vehicles and the sequence of service by individual vehicles are considered separately. This way of looking for a solution is to shape one route for all recipients served by the supplier, and then divide it into smaller sub-routes served by individual vehicles.

The last group of heuristic methods entails growth algorithms, so called local optimization methods. They are based on the strategy of searching for the optimal solution by replacing the currently considered solution with a new one, representing a better route system. The transformation of the currently considered set of vehicle routes into another one may take place, inter alia, by direct exchange of service points between routes or by transferring service points from one route to another.

In the case of dynamic (online) control systems, simple heuristics are implemented to address the transport task according to the first-come-first-served (FIFO) rule. The first available vehicle is sent to the load that first requested transport service. The transport process can also be carried out according to the first-encountered-first-served (FEFS) rule. This rule is used in distributed dynamic control systems. Transport vehicles capable of carrying many loads at the same time take the first vacant loads encountered, if there is room for them. Then, the transport modules are unloaded at their destination. Simulation studies have shown that for single-loop cases, this type of FEFS heuristics is more effective compared to those using the FIFO rule.

3 Probabilistic evaluation of the operation of simple system

The transport system includes N points requiring servicing by m vehicles [42]. Each point sends reports with the intensity λ, while the intensity of servicing these points by vehicles is μ. The general intensity of reports depends on the task load of a given point, i.e., it is a function of the state of the system. It is assumed that the sequences of time intervals among successive reports sent by points to be serviced are independent of each other and have the same distribution. The service time is a random variable, and with m vehicles, each of them works independently of each other and the service time has the same schedule. In order to determine the capacity of the transport system, the average length of the queue for service, and the average number of notifications, the theory of Mark’s random systems is used [43]. It assumes that it is a single-channel system for which the request stream λ is described by the Poisson distribution, while the service time is subject to the exponential distribution. Handling as follows [44]:

  • E 0 – all vehicles free, no tasks to be serviced,

  • E 1 – one vehicle busy, one notification in the system,

  • E 2 – two vehicles seized, two reports in the system.

By introducing successive iterations regarding the number of vehicles and the number of service requests, the following states are obtained [45]:

  • E m  – m of vehicles occupied, m notification in the system,

  • E j  – m of vehicles occupied, j-m reports in the queue for service,

  • E N  – m of vehicles occupied, N points waiting for service, N-m requests waiting for service.

Between the individual states from E 1 to E 2, the system is routed through the request stream with the intensity (N − 1) λ, because in the E 1 state one service point has already sent the request, so N − 1 points can already be reported. Between the states E 0 to E N , the system is guided by the request stream with the intensity [46]. Using the mnemonic rule, it is possible to write down the system of differential equations describing the dynamics of the system [42,47]:

(1) p 0 ' ( t ) = N λ p 0 ( t ) + μ p 1 ( t ) , p 1 ' ( t ) = N λ p 0 ( t ) [ ( N 1 ) λ + μ ] p 1 ( t ) + 2 μ p 2 ( t ) , p i ' ( t ) = ( N i + 1 ) λ p i 1 ( t ) [ ( N i ) λ + i μ ] p i ( t ) + ( i + 1 ) μ p i + 1 ( t ) , 2 i m 1 , p m ' ( t ) = ( N m + 1 ) λ p m 1 ( t ) [ ( N m ) λ + m μ ] p m ( t ) + m μ p m + 1 ( t ) , p i ' ( t ) = ( N i + 1 ) λ p i 1 ( t ) [ ( N i ) λ + m μ ] p i ( t ) + m μ p i + 1 ( t ) , m + 1 i N 1 , p N ' ( t ) = λ p N 1 ( t ) m μ p N ( t ) ,

or equivalently matrix

(2) p ' ( t ) = M p ( t ) ,

where: M = [ m i , j , 0 i , j N ] and

(3) m i , j = ( N i + 1 ) λ , i = j + 1 , [ ( N i ) λ + min { i , m } μ ] , i = j , min { i + 1 , m } μ , i = j 1 , 0 , except .

Since the probabilities should add up to 1, after performing the calculations, we normalize so that:

(4) p ( t + d t ) = ( M + I ) p ( t ) | | ( M + I ) p ( t ) | | 1 ,

where:

(5) | | p ( t ) | | 1 = N i = 0 p i ( t ) .

and I is the identity matrix with dimensions (N + 1) × (N + 1).

We obtain the steady state probabilities by solving the equation:

(6) M x = 0 ,

hence:

(7) x i = i = 0 m N i ρ i + j = m + 1 N N ! ρ j m ! ( N j ) ! m j m 1 , d l a i = 0 , N i ρ i x 0 , d l a 1 i m , N ! m ! m i m ( N i ) ! ρ i x 0 , d l a m + 1 i N ,

where:

(8) ρ = λ μ ,

and n k = n ! k ! ( n k ) ! is a symbol of Newton.

The probability that r points report the necessity to service is given by the formula:

(9) q m + r = N ! ρ m + r m ! ( N m r ) ! m r i = 0 m N ! i ! ( N i ) ! ρ i + r = 0 N m N ! ρ m + r m r m ! ( N m r ) !

However, the average number of applications waiting in the queue:

(10) υ ¯ = N ! m ! x 0 r = 0 N m r m r ( N m r ) ρ m + r

Average number of vehicles serving points:

(11) m ¯ = i = 0 m 1 i x i + m 1 i = 0 m 1 x i

Average number of notifications in the system:

(12) n ¯ = i = 0 m i x i + j = m + r N j x j

Average time the notifications remain in the system:

(13) t s = n ¯ λ ( N n ¯ )

The average waiting time of notifications in the queue:

(14) t f = t s 1 μ .

The simulations of sending vehicles to the points service are presented below (Figures 14). They were carried out for N = 40 points requiring service (i.e., including state 0 in total, we have 41 states) and for the number of m = 15 vehicles. We conducted all simulations for the following data sets [48]:

  • with the established service intensity µ = 0.008 and three report intensity values λ 1 = 0.001, λ 2 = 0.005, and λ 3 = 0.02 (which corresponds to the values ρ 1 = 0.125, ρ 2 = 0.625, and ρ 3 = 2.5) – Figures 1 and 3,

  • with a set intensity of reports λ = 0,005 and three different service intensity values μ 1 = 0.003, μ 2 = 0.008, and μ 3 = 0.05 (ρ 1 = 1.67, ρ 2 = 0.625, and ρ 3 = 0.1) – Figures 2 and 4,

  • for three different values ρ 1 = 0.5, ρ 2 = 0.8, and ρ 3 = 1.2 – Figure 5.

Figure 1 
               Simulation of transition between states in T = 1,000 consecutive moments of time (starting from state 0 – no pending reports), for 
                     
                        
                        
                           μ
                        
                        \mu 
                     
                   = 0.008 and values λ
                  1 = 0.001, λ
                  2 = 0.005, and λ
                  3 = 0.02.
Figure 1

Simulation of transition between states in T = 1,000 consecutive moments of time (starting from state 0 – no pending reports), for μ = 0.008 and values λ 1 = 0.001, λ 2 = 0.005, and λ 3 = 0.02.

Figure 2 
               Simulation of transition between states at T = 1,000 consecutive moments of time (starting from state 0 – no pending reports), for a fixed λ = 0, and three different values μ
                  1 = 0.003, μ
                  2 = 0.008, and μ
                  3 = 0.05.
Figure 2

Simulation of transition between states at T = 1,000 consecutive moments of time (starting from state 0 – no pending reports), for a fixed λ = 0, and three different values μ 1 = 0.003, μ 2 = 0.008, and μ 3 = 0.05.

Figure 3 
               Simulation of times for the parameters of the exponential distribution μ = 0.008 and λ
                  1 = 0.001, λ
                  2 = 0.005, and λ
                  3 = 0.02 of the presence of reports in the system for 20 randomly generated reports.
Figure 3

Simulation of times for the parameters of the exponential distribution μ = 0.008 and λ 1 = 0.001, λ 2 = 0.005, and λ 3 = 0.02 of the presence of reports in the system for 20 randomly generated reports.

Figure 4 
               Simulation of times for the parameters of the exponential distribution λ = 0.005, μ
                  1 = 0.003, μ
                  2 = 0.008, and μ
                  3 = 0.05 of the presence of reports in the system for 20 randomly generated reports.
Figure 4

Simulation of times for the parameters of the exponential distribution λ = 0.005, μ 1 = 0.003, μ 2 = 0.008, and μ 3 = 0.05 of the presence of reports in the system for 20 randomly generated reports.

In Figure 1, on the OX axis, consecutive moments of time are marked, and on the OY axis, the state in which the system is at a given moment (i.e., the sum of the number of calls currently handled and waiting for service). The horizontal line at level 15 shows the number of vehicles that support the system. The simulation result presented in the graph shows that with a set call intensity level of μ = 0.008, with a call intensity of λ 1 = 0.001, the vehicles keep up with the call handling (we have a large reserve of free vehicles), and the number of notifications in the system remains low. With the call intensity λ 2 = 0.005, the system is on the verge of servicing efficiency – the sum of serviced notifications and waiting for service oscillates around the number of available vehicles (m = 15). It can be said that in this situation the vehicles are used optimally, with almost no downtime. With the reporting intensity of λ 3 = 0.02, the system becomes inefficient, the number of notifications in the system increases to the maximum possible level of notifications (40), and 15 vehicles are not able to handle the notifications appearing in the system.

In Figure 2, on the OX axis, consecutive moments of time are marked, and on the OY axis, the state in which the system is at a given moment (i.e., the sum of the number of calls currently handled and waiting for service). As in Figure 1, the horizontal line represents the number of vehicles servicing the system (m = 15). The simulation result presented in the graph shows that with a set reporting intensity level of λ = 0.005, with a request processing intensity of μ 3 = 0.05, the vehicles keep up with the service of requests, and the number of requests in the system remains low. With the call handling intensity of μ 2 = 0.008, the system is on the verge of service efficiency – the sum of handled notifications and waiting for service oscillates around the number of available vehicles (m = 15). With the intensity of handling reports at the level of μ 1 = 0.003, the system becomes inefficient, the number of reports in the system grows significantly above the number of vehicles handling reports.

Figures 3 and 4 show a simulation of the time the declarations remain in the system for 20 randomly generated reports for various parameters of the exponential distribution.

The numbers of consecutively generated reports are marked on the OX axis, and their residence times in the system on the OY axis. The times of residence of the requests in the system presented in the graph are the times generated from the exponential distribution with the parameter λ ( N n ¯ ) n ¯ . They correspond to the times when a randomly selected 20 notifications will be present in the system in its steady state. The presented diagram shows that with the set call intensity level μ = 0.008, for the call intensity level λ 1 = 0.001 (orange points), the reports stay in the system for a relatively short time and their handling is efficient. For the reporting intensity λ 2 = 0.005 (green points), the service time is correspondingly greater, while with the reporting intensity λ 3 = 0.02 (blue points) corresponding (as shown in Figure 3) to an inefficient handling system, they are very long (in some cases exceeding even simulation time).

The numbers of the generated times are marked on the OX axis (they have nothing to do with the time t), and on the OY axis their duration in the system. The times of residence of the requests in the system presented in the graph are the times generated from the exponential distribution with the parameter λ ( N n ¯ ) n ¯ . They correspond to the times when a randomly selected 20 notifications will be present in the system in its steady state. The presented diagram shows that with a set call intensity level of λ = 0.005, for a call handling intensity of μ 3 = 0.05 (blue points), the reports stay in the system for a relatively short time, and their handling is efficient. For the report handling intensity μ 2 = 0.008 (green points), the handling time is correspondingly greater, and for the report handling intensity μ 1 = 0.003 (orange points) corresponding (as shown in Figure 4) to an inefficient handling system, they are very long (in most cases even exceeding the simulation time).

In Figure 5, the stationary probabilities of individual states are presented. Individual states (from 0 to 40) are marked on the OX axis, and on the OY axis, the probability of staying in these states in a steady state for different values of ρ.

Figure 5 
               Probability distribution of individual states in steady state, for λ/μ = 0.5, λ/μ = 0.8, and λ/μ = 1.2.
Figure 5

Probability distribution of individual states in steady state, for λ/μ = 0.5, λ/μ = 0.8, and λ/μ = 1.2.

The OX axis shows the individual states (the number of requests in the system), and the OY axis shows the probability that the system in a steady state will be in the state marked on the OX axis.

From the presented probability distributions, it can be concluded that the value of the coefficient ρ = λ μ plays a key role in the context of the probability of individual states in which the system is in a steady state. As for the small values of ρ (as in the situation depicted in red ρ = 0.5 ) corresponding to the situation in which the service of reports is faster than the rate of new reports in the system, the maximum probabilities refer to the states wherein not many reports occur in the system notifications (for the situation presented in the chart (Figure 5), the maximum probabilities correspond to 10–15 notifications in the system). For average values of ρ (as in the situation presented in the graph with green color ρ = 0.8 ) corresponding to the situation in which the service of notifications takes place at a similar pace as the rate of new notifications in the system, the maximum probabilities refer to the states in which the system is in the average number of notifications (for the one presented in the chart (Figure 5), the maximum probabilities correspond to 19–25 notifications in the system). For large values of ρ (as in the situation ρ = 1.2 shown in the graph in blue) corresponding to the situation in which the service of reports is slower than the rate of new reports in the system, the maximum probabilities refer to the states in which the system is in a large number of notifications (for the one presented in the chart (see Figure 5), the maximum probabilities correspond to 27–31 notifications in the system).

4 Conclusion

The article considers the principles of planning and selecting routes for servicing transport tasks. The simulations were carried out for the assumed number of vehicles m = 15 and for points requiring servicing of N = 40. Based on the simulation tests performed, the ensuing conclusions can be summarized as follows:

  • The described system is in a state of equilibrium when the number of calls coincides with the service time, that is, when ρ = m/N or ρ = 0.375 in our example. For ρ = 0.1, the number of seized vehicles oscillated around 30%; for ρ = 0.625, in the vast majority of the time, all the vehicles were already occupied; and for ρ = 1.6, the system became inefficient (see Figures 1 and 2). Given the N points with an estimated value of ρ, the number of vehicles serving this system should be mo = ρN with a possible variation of about 30%.

  • Assuming the significance level 1 − α = 0.95, then with a probability lower than α, at least one order may appear at a time, processed for a period longer than n ¯ λ ( N n ¯ ) ln ( 1 1 α m ¯ ) . From Figures 3 and 4, we can see that even in the best situations of ρ = 0.125 and ρ = 0.1, there are orders the handling of which takes as much as 30% of the entire simulation time. It seems that such orders are quite likely. The transport system is very heterogeneous; there are orders handled very quickly and there are those whose handling is very long.

  • The heterogeneity of the system can also be seen in Figure 5; almost all the states (except a few initial states) have quite a high probability of occurrence in the range ρ under consideration. Although the stationary distribution of the probabilities is unimodal, it is nevertheless with a large degree of scatter.

Acknowledgments

This manuscript was supported as part of the research project entitled “Autonomous mobility in the context of regional development LTC19009” of the INTER-EXCELLENCE program, the VES 19 INTER-COST subprogram.

  1. Conflict of interest: Authors state no conflict of interest.

  2. Data availability statement: The authors declare that the manuscript is an original work of the author. It has not been published in other periodicals and is not being in the review process of other journals. The authors confirm the data availability for the purpose of the journal Open Engineering.

References

[1] Czech P, Turoń K, Barcik J. Autonomous vehicles: basic issues. Sci J Silesian Univer Technol-Series Trans. 2018;100:15–22.10.20858/sjsutst.2018.100.2Search in Google Scholar

[2] Bartuska L, Labudzki R. Research of basic issues of autonomous mobility. LOGI 2019 – horizons of autonomous mobility in Europe. Transp Resea Procedia. 2020;44:356–60.10.1016/j.trpro.2020.02.031Search in Google Scholar

[3] Gkartzonikas C, Gkritza K. What have we learned? A review of stated preference and choice studies on autonomous vehicles. Transp Res Part C. 2019;98:323–37.10.1016/j.trc.2018.12.003Search in Google Scholar

[4] Haboucha CJ, Ishaq R, Shiftan Y. User preferences regarding autonomous vehicles. Transp Res Part C Emerg Technol. 2017;78:37–49.10.1016/j.trc.2017.01.010Search in Google Scholar

[5] Keil R, Hedrich F, Kremenova I, Madlenak R. Modelling of technological reliability in traffic logistic networks in urban areas. In: Sung WP, Kao JCM, editors. MATEC Web of Conferences. Vol. 44; 2016. p. 01046.10.1051/matecconf/20164401046Search in Google Scholar

[6] Moravcik L. Type approval of autonomous (self-driving) vehicles. Perner’s Contacts. 2020;15(2):1–11.Search in Google Scholar

[7] Papa E, Ferreire A. Sustainable accessibility and the implementation of automated vehicles: Identifying critical decisions. Urban Sci. 2018;2:5.10.3390/urbansci2010005Search in Google Scholar

[8] Pettigrew S, Fritschi L, Norman R. The potential implications of autonomous vehicles in and around the workplace. Int J Env Res Public Health. 2018;15:1876.10.3390/ijerph15091876Search in Google Scholar PubMed PubMed Central

[9] Riedmaier S, Schneider D, Watzenig D, Diermeyer F, Schick B. Model validation and scenario selection for virtual-based homologation of automated vehicles. Appl Sci. 2021;11:35.10.3390/app11010035Search in Google Scholar

[10] Sarkan B, Skrucany T, Semanova S, Madlenak R, Kuranc A, Sejkorova M, et al. Vehicle coast-down method as a tool for calculating total resistance for the purposes of type-approval fuel consumption. Sci J Silesian Univer Technol-Series Transp. 2018;98:167–72.10.20858/sjsutst.2018.98.15Search in Google Scholar

[11] Siqueira Silva D, Csiszár C, Földes D. Autonomous vehicles and urban space management. Sci J Silesian Univer Technol-Series Transp. 2021;110:169–81.10.20858/sjsutst.2021.110.14Search in Google Scholar

[12] Kampf R, Hlatká M, Gross P. Optimisation of distribution routes: a case study. Commun Sci Lett Univer Zilina. 2021;23(1):A62–73.10.26552/com.C.2021.1.A62-A73Search in Google Scholar

[13] Brumercikova E, Bukova B, Rybicka I, Drozdziel P. Measures for increasing performance of the rail freight transport in the north-south direction. Commun Sci Lett Univer Zilina. 2019;21(3):13–20.10.26552/com.C.2019.3.13-20Search in Google Scholar

[14] Šimek L, Cempírek V. Quality management systems as a “tool” for increasing competitiveness of logistic services providers in coronavirus. Acad Strat Manag J. 2021;20(2):1–17.Search in Google Scholar

[15] Hittmar S, Varmus M, Lendel V. Proposal of model for effective implementation of innovation strategy to business. Procedia Soc Behav Scien. 2014;109:1194–8; In: 2nd World Conference on Business, Economics and Management (BEM). Antalya, Turkey: APR; 2013. p. 25–28.10.1016/j.sbspro.2013.12.611Search in Google Scholar

[16] Konecny V, Gnap J, Settey T, Petro F, Skrucany T, Figlus T. Environmental sustainability of the vehicle fleet change in public city transport of selected city in central Europe. Energies. 2020;13(15):3869.10.3390/en13153869Search in Google Scholar

[17] Barta D, Mruzek M. Importance of real operating parameters for design of public transport vehicles drive. Sci J Marit Univer Szczec. 2014;39(111):5–10.Search in Google Scholar

[18] Droździel P, Wińska M, Madlenak R, Szumski P. Optimization of the position of the local distribution centre of the regional post logistics network. Transp Probl. 2017;12(3):43–50.10.20858/tp.2017.12.3.4Search in Google Scholar

[19] Madlenakova L, Madlenak R, Droździel P, Kurtev I. Layers and processes in the model of technological postal system. Transp Telecommunic J. 2015;16(4):353–60.10.1515/ttj-2015-0032Search in Google Scholar

[20] Ližbetin J. Methodology for determining the location of intermodal transport terminals for the development of sustainable transport systems: a case study from Slovakia. Sustainability. 2019;11(5):1230.10.3390/su11051230Search in Google Scholar

[21] McNabb ME, Weir JD, Hill RR, Hall SN. Testing local search move operators on the vehicle routing problem with split deliveries and time windows. Comput Oper Res. 2015;56:93–109.10.1016/j.cor.2014.11.007Search in Google Scholar

[22] Misztal W. The impact of perturbation mechanisms on the operation of the SWAP heuristic. Arch Autom Eng Archiwum Motoryzacji. 2019;86(4):27–39.10.14669/AM.VOL86.ART2Search in Google Scholar

[23] Subramanian A, Penna PHV, Uchoa E, Ochi LS. A hybrid algorithm for the heterogeneous fleet vehicle routing problem. Eur J Oper Res. 2012;221(2):285–95.10.1016/j.ejor.2012.03.016Search in Google Scholar

[24] Subramanian A, Uchoa E, Ochi LS. A hybrid algorithm for a class of vehicle routing problems. Comput Oper Res. 2013;40(10):2519–31.10.1016/j.cor.2013.01.013Search in Google Scholar

[25] Miś P, Szulim P. Analysis of the possibility of using markers emitting pulsating light in the task of localization. Appl Comput Sci. 2021;17(1):26–39.10.35784/acs-2021-03Search in Google Scholar

[26] Automated and Autonomous Driving Regulation under uncertainty. OECD/ITF; 2015.Search in Google Scholar

[27] Rupp J, King A. Autonomous driving – a practical roadmap. SAE Technical Paper; 2010. 2010-01-2335.10.4271/2010-01-2335Search in Google Scholar

[28] Fedorko G, Molnar V, Honus S, Neradilova H, Kampf R. The application of simulation model of a milk run to identify the occurrence of failures. Intern J Simul Model. 2018;17(3):444–57.10.2507/IJSIMM17(3)440Search in Google Scholar

[29] Fedorko G, Molnar V, Strohmandl J, Vasil M. Development of simulation model for light-controlled road junction in the program technomatix plant simulation. Proceedings of the International Conference on Transport Means; 2015. p. 466–9.Search in Google Scholar

[30] Kodym O, Kavka L, Sedlacek M. Simulation of logistics chain information system. Intern Multidiscip Scien Geo Conference-SGEM. 2016;1:375–82.10.5593/SGEM2016/B21/S07.048Search in Google Scholar

[31] Kavka L, Dockalikova I, Cujan Z, Fedorko G. Technological and economic analysis of logistic activities in interior parts manufacturing. Adv Sci Tech-Res J. 2020;14(3):204–12.10.12913/22998624/122062Search in Google Scholar

[32] Fabianova J, Michalik P, Janekova J, Fabian M. Design and evaluation of a new intersection model to minimize congestions using VISSIM software. Open Engin. 2020;10(1):48–56.10.1515/eng-2020-0019Search in Google Scholar

[33] Mikusova N, Tomkova E, Dovica M, Debelic B, Peric-Hadzic A, Zajac J. Use of simulation for waste management and reverse material flow. Adv Sci Tech-Res J. 2018;12(4):137.10.12913/22998624/94965Search in Google Scholar

[34] Bukvic L, Skrinjar JP, Abramovic B, Zitricky V. Route selection decision-making in an intermodal transport network using game theory. Sustainability. 2021;13(8):4443.10.3390/su13084443Search in Google Scholar

[35] Smith SL. Task allocation and vehicle routing in dynamic environments. Doctoral Thesis. Santa Barbara: University of California; 2009.Search in Google Scholar

[36] Madlenak R, Dutkova S, Hostakova D, Sarkan B. Reliability enhancement using optimization analysis. Sci J Silesian Univ Tech-Series Transp. 2018;10:11–2.10.20858/sjsutst.2018.100.10Search in Google Scholar

[37] Jadczak R. Rozwiązywanie zagadnień układania tras pojazdów z wykorzystaniem algorytmów ewolucyjnych. Badania Operacyjne i Decyzje. 2005;3–4:7–22.Search in Google Scholar

[38] Laporte G. The vehicle routing problem: an overview of exact and approximate algorithms. Eur J Oper Res. 1992;59(3):345–58.10.1016/0377-2217(92)90192-CSearch in Google Scholar

[39] Liu R, Xie X, Augusto V, Rodriguez C. Heuristic algorithms for a vehicle routing problem with simultaneous delivery and pickup and time windows in home health care. Eur J Oper Res. 2013;230(1):475–86.10.1016/j.ejor.2013.04.044Search in Google Scholar

[40] Malmborg CJ. A model for the design of zone control automated guidem vehicle systems. Int J Prod Res. 1990;28(10):1741–58.10.1080/00207549008942830Search in Google Scholar

[41] Lau H, Wong V, Lee I. Immunity-based autonomous guided vehicles control. Appl Soft Comput. 2007;7:41–57.10.1016/j.asoc.2005.02.003Search in Google Scholar

[42] Nieoczym A, Caban J, Dudziak A, Stoma M. Autonomous vans – the planning process of transport tasks. Open Engin. 2020;10:18–25.10.1515/eng-2020-0006Search in Google Scholar

[43] Filipowicz B. Modele stochastyczne w badaniach operacyjnych. Warszawa: WNT; 1996. p. 328.Search in Google Scholar

[44] Fedorko G, Honus S, Salai R. Comparison of the traditional and autonomous AGV systems. MATEC Web of Conferences; 2017. p. 134; In: 18th International Conference on Scientometrics & Informatics. LOGI 2017; 19 October 2017. 10.1051/matecconf/201713400013Search in Google Scholar

[45] Tomasikova M, Sojcak D, Nieoczym A, Brumercik F. Experimental data in vehicle modeling. LOGI Sci J Transp Logist. 2017;8(1):82–7.10.1515/logi-2017-0010Search in Google Scholar

[46] Pedersen TA, Glomsrud JA, Ruud EL, Simonsen A, Sandrib J, Eriksen BOH. Towards simulation-based verification of autonomous navigation systems. Saf Sci. 2020;129:104799.10.2478/9788395669606-001Search in Google Scholar

[47] Varecha D, Kohar R, Brumercik F. AGV brake system simulation. LOGI Sci J Transp Logist. 2019;10(1):1–9.10.2478/logi-2019-0001Search in Google Scholar

[48] Sar H, Brukalski M, Rokicki K. Simulation of curvilinear motion of automobile with the use of two-degree-of-freedom flat model. Arch Autom Engin Archiwum Motoryzacji. 2020;87(1):19–32.10.14669/AM.VOL87.ART2Search in Google Scholar

Received: 2021-07-03
Revised: 2021-07-29
Accepted: 2021-08-01
Published Online: 2021-09-07

© 2021 Aleksander Nieoczym et al., published by De Gruyter

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Regular Articles
  2. Electrochemical studies of the synergistic combination effect of thymus mastichina and illicium verum essential oil extracts on the corrosion inhibition of low carbon steel in dilute acid solution
  3. Adoption of Business Intelligence to Support Cost Accounting Based Financial Systems — Case Study of XYZ Company
  4. Techno-Economic Feasibility Analysis of a Hybrid Renewable Energy Supply Options for University Buildings in Saudi Arabia
  5. Optimized design of a semimetal gasket operating in flange-bolted joints
  6. Behavior of non-reinforced and reinforced green mortar with fibers
  7. Field measurement of contact forces on rollers for a large diameter pipe conveyor
  8. Development of Smartphone-Controlled Hand and Arm Exoskeleton for Persons with Disability
  9. Investigation of saturation flow rate using video camera at signalized intersections in Jordan
  10. The features of Ni2MnIn polycrystalline Heusler alloy thin films formation by pulsed laser deposition
  11. Selection of a workpiece clamping system for computer-aided subtractive manufacturing of geometrically complex medical models
  12. Development of Solar-Powered Water Pump with 3D Printed Impeller
  13. Identifying Innovative Reliable Criteria Governing the Selection of Infrastructures Construction Project Delivery Systems
  14. Kinetics of Carbothermal Reduction Process of Different Size Phosphate Rocks
  15. Plastic forming processes of transverse non-homogeneous composite metallic sheets
  16. Accelerated aging of WPCs Based on Polypropylene and Birch plywood Sanding Dust
  17. Effect of water flow and depth on fatigue crack growth rate of underwater wet welded low carbon steel SS400
  18. Non-invasive attempts to extinguish flames with the use of high-power acoustic extinguisher
  19. Filament wound composite fatigue mechanisms investigated with full field DIC strain monitoring
  20. Structural Timber In Compartment Fires – The Timber Charring and Heat Storage Model
  21. Technical and economic aspects of starting a selected power unit at low ambient temperatures
  22. Car braking effectiveness after adaptation for drivers with motor dysfunctions
  23. Adaptation to driver-assistance systems depending on experience
  24. A SIMULINK implementation of a vector shift relay with distributed synchronous generator for engineering classes
  25. Evaluation of measurement uncertainty in a static tensile test
  26. Errors in documenting the subsoil and their impact on the investment implementation: Case study
  27. Comparison between two calculation methods for designing a stand-alone PV system according to Mosul city basemap
  28. Reduction of transport-related air pollution. A case study based on the impact of the COVID-19 pandemic on the level of NOx emissions in the city of Krakow
  29. Driver intervention performance assessment as a key aspect of L3–L4 automated vehicles deployment
  30. A new method for solving quadratic fractional programming problem in neutrosophic environment
  31. Effect of fish scales on fabrication of polyester composite material reinforcements
  32. Impact of the operation of LNG trucks on the environment
  33. The effectiveness of the AEB system in the context of the safety of vulnerable road users
  34. Errors in controlling cars cause tragic accidents involving motorcyclists
  35. Deformation of designed steel plates: An optimisation of the side hull structure using the finite element approach
  36. Thermal-strength analysis of a cross-flow heat exchanger and its design improvement
  37. Effect of thermal collector configuration on the photovoltaic heat transfer performance with 3D CFD modeling
  38. Experimental identification of the subjective reception of external stimuli during wheelchair driving
  39. Failure analysis of motorcycle shock breakers
  40. Experimental analysis of nonlinear characteristics of absorbers with wire rope isolators
  41. Experimental tests of the antiresonance vibratory mill of a sectional movement trajectory
  42. Experimental and theoretical investigation of CVT rubber belt vibrations
  43. Is the cubic parabola really the best railway transition curve?
  44. Transport properties of the new vibratory conveyor at operations in the resonance zone
  45. Assessment of resistance to permanent deformations of asphalt mixes of low air void content
  46. COVID-19 lockdown impact on CERN seismic station ambient noise levels
  47. Review Articles
  48. FMEA method in operational reliability of forest harvesters
  49. Examination of preferences in the field of mobility of the city of Pila in terms of services provided by the Municipal Transport Company in Pila
  50. Enhancement stability and color fastness of natural dye: A review
  51. Special Issue: ICE-SEAM 2019 - Part II
  52. Lane Departure Warning Estimation Using Yaw Acceleration
  53. Analysis of EMG Signals during Stance and Swing Phases for Controlling Magnetorheological Brake applications
  54. Sensor Number Optimization Using Neural Network for Ankle Foot Orthosis Equipped with Magnetorheological Brake
  55. Special Issue: Recent Advances in Civil Engineering - Part II
  56. Comparison of STM’s reliability system on the example of selected element
  57. Technical analysis of the renovation works of the wooden palace floors
  58. Special Issue: TRANSPORT 2020
  59. Simulation assessment of the half-power bandwidth method in testing shock absorbers
  60. Predictive analysis of the impact of the time of day on road accidents in Poland
  61. User’s determination of a proper method for quantifying fuel consumption of a passenger car with compression ignition engine in specific operation conditions
  62. Analysis and assessment of defectiveness of regulations for the yellow signal at the intersection
  63. Streamlining possibility of transport-supply logistics when using chosen Operations Research techniques
  64. Permissible distance – safety system of vehicles in use
  65. Study of the population in terms of knowledge about the distance between vehicles in motion
  66. UAVs in rail damage image diagnostics supported by deep-learning networks
  67. Exhaust emissions of buses LNG and Diesel in RDE tests
  68. Measurements of urban traffic parameters before and after road reconstruction
  69. The use of deep recurrent neural networks to predict performance of photovoltaic system for charging electric vehicles
  70. Analysis of dangers in the operation of city buses at the intersections
  71. Psychological factors of the transfer of control in an automated vehicle
  72. Testing and evaluation of cold-start emissions from a gasoline engine in RDE test at two different ambient temperatures
  73. Age and experience in driving a vehicle and psychomotor skills in the context of automation
  74. Consumption of gasoline in vehicles equipped with an LPG retrofit system in real driving conditions
  75. Laboratory studies of the influence of the working position of the passenger vehicle air suspension on the vibration comfort of children transported in the child restraint system
  76. Route optimization for city cleaning vehicle
  77. Efficiency of electric vehicle interior heating systems at low ambient temperatures
  78. Model-based imputation of sound level data at thoroughfare using computational intelligence
  79. Research on the combustion process in the Fiat 1.3 Multijet engine fueled with rapeseed methyl esters
  80. Overview of the method and state of hydrogenization of road transport in the world and the resulting development prospects in Poland
  81. Tribological characteristics of polymer materials used for slide bearings
  82. Car reliability analysis based on periodic technical tests
  83. Special Issue: Terotechnology 2019 - Part II
  84. DOE Application for Analysis of Tribological Properties of the Al2O3/IF-WS2 Surface Layers
  85. The effect of the impurities spaces on the quality of structural steel working at variable loads
  86. Prediction of the parameters and the hot open die elongation forging process on an 80 MN hydraulic press
  87. Special Issue: AEVEC 2020
  88. Vocational Student's Attitude and Response Towards Experiential Learning in Mechanical Engineering
  89. Virtual Laboratory to Support a Practical Learning of Micro Power Generation in Indonesian Vocational High Schools
  90. The impacts of mediating the work environment on the mode choice in work trips
  91. Utilization of K-nearest neighbor algorithm for classification of white blood cells in AML M4, M5, and M7
  92. Car braking effectiveness after adaptation for drivers with motor dysfunctions
  93. Case study: Vocational student’s knowledge and awareness level toward renewable energy in Indonesia
  94. Contribution of collaborative skill toward construction drawing skill for developing vocational course
  95. Special Issue: Annual Engineering and Vocational Education Conference - Part II
  96. Vocational teachers’ perspective toward Technological Pedagogical Vocational Knowledge
  97. Special Issue: ICIMECE 2020 - Part I
  98. Profile of system and product certification as quality infrastructure in Indonesia
  99. Prediction Model of Magnetorheological (MR) Fluid Damper Hysteresis Loop using Extreme Learning Machine Algorithm
  100. A review on the fused deposition modeling (FDM) 3D printing: Filament processing, materials, and printing parameters
  101. Facile rheological route method for LiFePO4/C cathode material production
  102. Mosque design strategy for energy and water saving
  103. Epoxy resins thermosetting for mechanical engineering
  104. Estimating the potential of wind energy resources using Weibull parameters: A case study of the coastline region of Dar es Salaam, Tanzania
  105. Special Issue: CIRMARE 2020
  106. New trends in visual inspection of buildings and structures: Study for the use of drones
  107. Special Issue: ISERT 2021
  108. Alleviate the contending issues in network operating system courses: Psychomotor and troubleshooting skill development with Raspberry Pi
  109. Special Issue: Actual Trends in Logistics and Industrial Engineering - Part II
  110. The Physical Internet: A means towards achieving global logistics sustainability
  111. Special Issue: Modern Scientific Problems in Civil Engineering - Part I
  112. Construction work cost and duration analysis with the use of agent-based modelling and simulation
  113. Corrosion rate measurement for steel sheets of a fuel tank shell being in service
  114. The influence of external environment on workers on scaffolding illustrated by UTCI
  115. Allocation of risk factors for geodetic tasks in construction schedules
  116. Pedestrian fatality risk as a function of tram impact speed
  117. Technological and organizational problems in the construction of the radiation shielding concrete and suggestions to solve: A case study
  118. Finite element analysis of train speed effect on dynamic response of steel bridge
  119. New approach to analysis of railway track dynamics – Rail head vibrations
  120. Special Issue: Trends in Logistics and Production for the 21st Century - Part I
  121. Design of production lines and logistic flows in production
  122. The planning process of transport tasks for autonomous vans
  123. Modeling of the two shuttle box system within the internal logistics system using simulation software
  124. Implementation of the logistics train in the intralogistics system: A case study
  125. Assessment of investment in electric buses: A case study of a public transport company
  126. Assessment of a robot base production using CAM programming for the FANUC control system
  127. Proposal for the flow of material and adjustments to the storage system of an external service provider
  128. The use of numerical analysis of the injection process to select the material for the injection molding
  129. Economic aspect of combined transport
  130. Solution of a production process with the application of simulation: A case study
  131. Speedometer reliability in regard to road traffic sustainability
  132. Design and construction of a scanning stand for the PU mini-acoustic sensor
  133. Utilization of intelligent vehicle units for train set dispatching
  134. Special Issue: ICRTEEC - 2021 - Part I
  135. LVRT enhancement of DFIG-driven wind system using feed-forward neuro-sliding mode control
  136. Special Issue: Automation in Finland 2021 - Part I
  137. Prediction of future paths of mobile objects using path library
  138. Model predictive control for a multiple injection combustion model
  139. Model-based on-board post-injection control development for marine diesel engine
  140. Intelligent temporal analysis of coronavirus statistical data
Downloaded on 18.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/eng-2021-0087/html
Scroll to top button