Abstract
Mathematical models can be employed to simulate a patient’s individual physiology and can therefore be used to predict reactions to changes in the therapy. To be clinically useful, those models need to be identifiable from data available at the bedside. Gradient based methods to identify the values of the model parameters that represent the recorded data highly depend on the initial estimates. The proposed work implements a previously developed method to overcome those dependencies to identify a three parameter model of gas exchange. The proposed hierarchical method uses models of lower order related to the three parameter model to calculate valid initial estimates for the parameter identification. The presented approach was evaluated using 12 synthetic patients and compared to a traditional direct approach as well as a global search method. Results show that the direct approach is highly dependent on how well the initial estimates are selected, while the hierarchical approach was able to find correct parameter values in all tested patients.
1 Introduction
Mathematical models have become a valid tool to simulate physiological reactions of patients treated in intensive care units [1]. Adapted to the individual patient properties, they might be used to predict the outcome of changes in the therapy settings. For example, models of gas exchange or respiratory mechanics can be fit to mechanically ventilated patients. The fitted models can then be used to predict the effect of changes in ventilation settings such as breath rate, PEEP or FiO2. Using those predictions in a decision support system might enable a clinician to calculate optimized settings to fulfil given therapy goals [2], [3], [4].
In order to be applicable at the bedside, such models need to be identifiable both structurally and practically. In order to identify a unique model parameter set that represents the recorded patient data, the parameter set needs to be obtainable from the data available at the bedside. While structural identifiability may be proven through mathematic tools, practical identifiability has to be tested specifically for the intended application. Practical identifiability considers the data available at the bedside and the expected range of patient physiologies [5].
Nonlinear mathematical models that are not identifiable through linear regression need to be identified using gradient based methods. The performance of those methods strongly depends on the selection of appropriate initial estimates. Thus, using a direct approach with arbitrary initial estimates might lead to incorrect parameter values leading to poor predictions. A previously published approach using easily identifiable models of lower order to obtain good initial guesses for the identification of models of higher order has shown satisfying results in models of respiratory mechanics [6]. The approach exploits model hierarchies, in particular, a family of models that are related to each other. In those hierarchies, models of higher order are extensions or modifications of models of lower order in the family.
The presented work aims at incorporating an identification approach that is related to the hierarchical approach to identify a three-parameter model of gas exchange. The hierarchical approach is compared with the standard approach of directly identifying the model with arbitrary initial guesses and a global search algorithm.
2 Methods
2.1 Model
The model of gas exchange is based on the three parameter model presented by Karbing et al. [7]. The model consists of two alveolar compartments which simulate the air distribution among differently ventilated parts of the lung. Additionally, it comprises a shunt to simulate a part of the venous blood not being oxygenated but being mixed directly with the oxygenated arterial blood. The non-shunted blood is distributed differently among the two alveolar compartments to model various ventilation (
Index x denotes O2 and CO2 here. FAx are the alveolar gas fractions. Venous concentrations are derived from:
Capillary gas concentrations Ccx are calculated from FAx using the gas dissociation equations [8], [9]. Q denotes blood flow,
Fix are the inspired gas fractions. Arterial gas concentrations are then calculated from:
Parameter fs has a range of 0–0.5, while fA and fQ can range between 0.1 and 0.9. Model inputs are inspired oxygen fraction, air flow and Fetx. Figure 1 shows a schematic representation of the model.

Three parameter gas exchange model.
2.2 Identification data
The goal of this study was to evaluate how well different identification strategies perform with arbitrary initial values. Thus, for a statistical evaluation, the true parameter values that represent the measured patient data have to be known. Therefore the identification data was computed using the same gas exchange model. The data contained measurements at four different levels of FiO2, each in equilibrium. In total, 12 different virtual patients that ranged from healthy patients to very ill patients were simulated.
2.3 Identification algorithms
Three different identification approaches were tested: direct approach, global search, and hierarchical approach. The objective function W to be minimized by all tested approaches was:
Direct approach: The direct approach starts at an arbitrary initial guess and uses a gradient based method to find the global minimum of the objective function. In the presented work, the Nelder-Mead Simplex-Search method [10] was used that is incorporated in MATLAB (R2015a, The Mathworks, Natick, MA, USA) as fminsearch. To evaluate the influence of the selected initial estimate, 100 constellations of initial estimates were randomly generated within a defined range. The number of successful identifications, i.e. if the identified parameter values were within 1% of the true value, was counted. These evaluations were repeated for a total of 10 extending ranges around the original values.
Global search: A global search approach starts at multiple initial estimates (trial points) and evaluates the convergence and the final value of the objective function for each of those estimates. The trial points that lead to the best scores (in terms of the objective function and violation of given constraints) are then used to create new trial points through deterministic combination [11]. The algorithm terminates after a given number of trial points have been evaluated. In the presented work we used the global search algorithm implemented in MATLAB.
Hierarchical identification: Hierarchical identification uses identification results of models of lower order to calculate good initial estimates for the identification of a model of higher order. The models used need to be related to each other in terms of a hierarchy. We have previously created a hierarchical family of gas exchange models shown in Figure 1 [12]. Specifically, a simple shunt model [3] is used to calculate the shunt from a blood gas measurement. The calculated shunt (fs) is then used as an initial estimate in the identification of a two parameter model that is derived from the three parameter model. Here, fQ is fixed to a certain value (fQi = 0.1, 0.2, 0.3,… 0.9). Parameters fs and fA of the two parameter model are then identified for the specific fQi. The calculated fs from the simple shunt model along with the combination of fA and fQi where the objective function resulted in the lowest value are finally used as initial estimates for the identification of the three parameter model. Figure 2 shows an overview of the described algorithm. The identification of the two and the three parameter model was done with fminsearch.

The hierarchical identification approach. The simple shunt model is used to calculate a valid initial guess (fs0) for the identification of the two parameter model. There, fA is identified for nine different fQi. The best combination of fA and fQi along with fs0 is then used as initial values for the identification of the three parameter model.
Global search and the hierarchical approach do not require initial estimates, thus in each patient only one identification was done. To allow a fair comparison, the maximum number of function evaluations for the direct approach was set to 10,000, while each of the hierarchical steps (nine iterations with fixed fQi and one final identification of the three parameter model) was allowed to call the function 1000 times. The global search was limited to a computing time of 500 s per run. Computing time for the tested approaches was recorded on an i7-4770 CPU (4x3.4GHz) with 12GB RAM.
3 Results
Figure 3 shows the averaged hit rate over all 12 virtual patients for the three parameter identification approaches. The hit rate was defined as the number of identifications that resulted in values within 1% of the true value (Xtrue) for all three parameters, with respect to the range (n) from which the initial estimates (X) were randomly drawn (Xtrue ± n). Hit rates of parameter identification with direct approach showed a decrease from 68% to 47% when the n-Range is increased from 0.05 to 0.5. The averaged deviation between the identified parameter values and the true values was 2.5% at an n-Range of 0.05 and increased to 17.6% when drawing initial estimates from Xtrue ± 0.5. Identification with global search showed a hit rate of 0% in all of the tested patients. In contrast, the hierarchical approach found the correct values (hit rate 100%) in all 12 patients.

Average hit rates for all 12 patients. Hit rate denotes the number of identifications that resulted in parameter values within 1% of the true value for all three model parameters. Hit rates are shown with respect to the range from which the initial estimates X were randomly drawn.
Averaged computing time for the direct approach was 39.4 s, 476.7 s for the global search approach, and 191.9 s for the hierarchical approach.
4 Discussion
Mathematical models can help in gaining a better understanding of the human physiology. When they are adapted to an individual human using various measurements, they are able to reproduce physiological reactions to changes in therapeutic settings. Thus they may be used to predict those reactions and can therefore be implemented in a decision support system that aims to optimize therapeutic outcomes to achieve goals defined by a clinician. To be applicable in a real clinical setting, those models need to be robustly identifiable from the data available at the bedside. Not only do incorrect parameter values influence the prediction of the reaction to changes in the therapy but they may also yield an incorrect picture of the current disease state of a patient.
The results show that when using a direct approach to identify the non-linear three-parameter gas exchange model, the outcome is highly dependent on the quality of the initial estimates. In particular, the direct approach had a higher hit rate when the initial values were close to the real values (Figure 3). Greater initial value ranges yielded lower hit rates for the direct approach parameter identification.
The proposed hierarchical approach eliminates the influence of the initial estimates by using models related to the three parameter models but of less complexity to compute adequate initial estimates. It was therefore able to determine better initial value estimations for the higher order three-parameter model. The hierarchical approach was thus able to find the true parameter values in all patients.
The evaluation of global search showed that this approach was not applicable to the presented problem, at least not using the applied settings, i.e. the maximum allowed computing time. The longer the computing time in a global search approach is set, the more trial points can be tested, thus with an infinite number of trial points and an unlimited computing time, the global search will should be able to find the correct parameter values. However, in a clinical setting parameter identification must be possible on a regular basis to allow the model to be adapted to changes in the patient’s physiology. Thus computing time needs to be low. The results show that the global search was allowed twice the computational time needed by the hierarchical approach and still yielded a higher deviation between identified and true values.
Using artificial patient data to test algorithms is a valid tool during development and initial evaluations. Since the true parameter values are known, they can be easily compared to the values identified by the evaluated algorithms. However to test the clinical applicability, real patient data must be employed for evaluation. Tests with data drawn from real patients are therefore planned for the future.
Author’s Statement
Research funding: The presented work was partially supported by the EU (eTime – ID FP7-PEOPLE-2012-IRSES). Conflict of interest: Authors state no conflict of interest. Material and Methods: Informed consent: Informed consent is not applicable. Ethical approval: The conducted research is not related to either human or animal use.
References
[1] Carson E, Cobelli C. Modelling methodology for physiology and medicine. San Diego: Academic Press; 2014.Search in Google Scholar
[2] Schranz C, Becher T, Schadler D, Weiler N, Moller K. Model-based setting of inspiratory pressure and respiratory rate in pressure-controlled ventilation. Physiol Meas. 2014;35:383–97.10.1088/0967-3334/35/3/383Search in Google Scholar
[3] Kretschmer J, Becher T, Riedlinger A, Schadler D, Weiler N, Moller K. A simple gas exchange model predicting arterial oxygen content for various FiO2 levels. Conf Proc IEEE Eng Med Biol Soc. 2013;2013:465–8.10.1109/EMBC.2013.6609537Search in Google Scholar
[4] Rees S, Allerød C, Murley D, Zhao Y, Smith B, Kjaergaard S, et al. Using physiological models and decision theory for selecting appropriate ventilator settings. J Clin Monit Comp. 2006;20:421–9.10.1007/s10877-006-9049-5Search in Google Scholar
[5] Docherty PD, Chase JG, Lotz TF, Desaive T. A graphical method for practical and informative identifiability analyses of physiological models: a case study of insulin kinetics and sensitivity. Biomed Eng Online. 2011;10:39.10.1186/1475-925X-10-39Search in Google Scholar
[6] Schranz C, Knöbel C, Kretschmer J, Zhao Z, Möller K. Hierarchical parameter identification in models of respiratory mechanics. IEEE Trans Biomed Eng. 2011;58:3234–41.10.1007/978-3-642-23508-5_76Search in Google Scholar
[7] Karbing DS, Kjaergaard S, Andreassen S, Espersen K, Rees SE. Minimal model quantification of pulmonary gas exchange in intensive care patients. Med Eng Phys. 2011;33:240–8.10.1016/j.medengphy.2010.10.007Search in Google Scholar
[8] Kelman GR. Digital computer subroutine for the conversion of oxygen tension into saturation. J Appl Physiol. 1966;21:1375–6.10.1152/jappl.1966.21.4.1375Search in Google Scholar
[9] Sharan M, Selvakumar S. A mathematical model for the simultaneous transport of gases to compute blood carboxyhaemoglobin build-up due to CO exposures: application to the end-expired breath technique. Environ Pollut. 1998;105:231–42.10.1016/S0269-7491(98)00215-2Search in Google Scholar
[10] Lagarias J, Reeds J, Wright M, Wright P. Convergence properties of the Nelder–Mead simplex method in low dimensions. SIAM J Optimiz. 1998;9:112–47.10.1137/S1052623496303470Search in Google Scholar
[11] Ugray Z, Lasdon L, Plummer J, Glover F, Kelly J, Martí R. Scatter search and local NLP solvers: a multistart framework for global optimization. Informs J Comput. 2007;19:328–40.10.1287/ijoc.1060.0175Search in Google Scholar
[12] Kretschmer J, Schranz C, Riedlinger A, Möller K. Komplexe Modellsysteme in der automatisierten Beatmung. at - Automatisierungstechnik. 2015;63:53–69.10.1515/auto-2014-1129Search in Google Scholar
©2016 Jörn Kretschmer et al., licensee De Gruyter.
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
Articles in the same Issue
- Synthesis and characterization of PIL/pNIPAAm hybrid hydrogels
- Novel blood protein based scaffolds for cardiovascular tissue engineering
- Cell adhesion and viability of human endothelial cells on electrospun polymer scaffolds
- Effects of heat treatment and welding process on superelastic behaviour and microstructure of micro electron beam welded NiTi
- Long-term stable modifications of silicone elastomer for improved hemocompatibility
- The effect of thermal treatment on the mechanical properties of PLLA tubular specimens
- Biocompatible wear-resistant thick ceramic coating
- Protection of active implant electronics with organosilicon open air plasma coating for plastic overmolding
- Examination of dielectric strength of thin Parylene C films under various conditions
- Open air plasma deposited antimicrobial SiOx/TiOx composite films for biomedical applications
- Systemic analysis about residual chloroform in PLLA films
- A macrophage model of osseointegration
- Towards in silico prognosis using big data
- Technical concept and evaluation of a novel shoulder simulator with adaptive muscle force generation and free motion
- Usability evaluation of a locomotor therapy device considering different strategies
- Hypoxia-on-a-chip
- Integration of a semi-automatic in-vitro RFA procedure into an experimental setup
- Fabrication of MEMS-based 3D-μECoG-MEAs
- High speed digital interfacing for a neural data acquisition system
- Bionic forceps for the handling of sensitive tissue
- Experimental studies on 3D printing of barium titanate ceramics for medical applications
- Patient specific root-analogue dental implants – additive manufacturing and finite element analysis
- 3D printing – a key technology for tailored biomedical cell culture lab ware
- 3D printing of hydrogels in a temperature controlled environment with high spatial resolution
- Biocompatibility of photopolymers for additive manufacturing
- Biochemical piezoresistive sensors based on pH- and glucose-sensitive hydrogels for medical applications
- Novel wireless measurement system of pressure dedicated to in vivo studies
- Portable auricular device for real-time swallow and chew detection
- Detection of miRNA using a surface plasmon resonance biosensor and antibody amplification
- Simulation and evaluation of stimulation scenarios for targeted vestibular nerve excitation
- Deep brain stimulation: increasing efficiency by alternative waveforms
- Prediction of immediately occurring microsleep events from brain electric signals
- Determining cardiac vagal threshold from short term heart rate complexity
- Classification of cardiac excitation patterns during atrial fibrillation
- An algorithm to automatically determine the cycle length coverage to identify rotational activity during atrial fibrillation – a simulation study
- Deriving respiration from high resolution 12-channel-ECG during cycling exercise
- Reducing of gradient induced artifacts on the ECG signal during MRI examinations using Wilcoxon filter
- Automatic detection and mapping of double potentials in intracardiac electrograms
- Modeling the pelvic region for non-invasive pelvic intraoperative neuromonitoring
- Postprocessing algorithm for automated analysis of pelvic intraoperative neuromonitoring signals
- Best practice: surgeon driven application in pelvic operations
- Vasomotor assessment by camera-based photoplethysmography
- Classification of morphologic changes in photoplethysmographic waveforms
- Novel computation of pulse transit time from multi-channel PPG signals by wavelet transform
- Efficient design of FIR filter based low-pass differentiators for biomedical signal processing
- Nonlinear causal influences assessed by mutual compression entropy
- Comparative study of methods for solving the correspondence problem in EMD applications
- fNIRS for future use in auditory diagnostics
- Semi-automated detection of fractional shortening in zebrafish embryo heart videos
- Blood pressure measurement on the cheek
- Derivation of the respiratory rate from directly and indirectly measured respiratory signals using autocorrelation
- Left cardiac atrioventricular delay and inter-ventricular delay in cardiac resynchronization therapy responder and non-responder
- An automatic systolic peak detector of blood pressure waveforms using 4th order cumulants
- Real-time QRS detection using integrated variance for ECG gated cardiac MRI
- Preprocessing of unipolar signals acquired by a novel intracardiac mapping system
- In-vitro experiments to characterize ventricular electromechanics
- Continuous non-invasive monitoring of blood pressure in the operating room: a cuffless optical technology at the fingertip
- Application of microwave sensor technology in cardiovascular disease for plaque detection
- Artificial blood circulatory and special Ultrasound Doppler probes for detecting and sizing gaseous embolism
- Detection of microsleep events in a car driving simulation study using electrocardiographic features
- A method to determine the kink resistance of stents and stent delivery systems according to international standards
- Comparison of stented bifurcation and straight vessel 3D-simulation with a prior simulated velocity profile inlet
- Transient Euler-Lagrange/DEM simulation of stent thrombosis
- Automated control of the laser welding process of heart valve scaffolds
- Automation of a test bench for accessing the bendability of electrospun vascular grafts
- Influence of storage conditions on the release of growth factors in platelet-rich blood derivatives
- Cryopreservation of cells using defined serum-free cryoprotective agents
- New bioreactor vessel for tissue engineering of human nasal septal chondrocytes
- Determination of the membrane hydraulic permeability of MSCs
- Climate retainment in carbon dioxide incubators
- Multiple factors influencing OR ventilation system effectiveness
- Evaluation of an app-based stress protocol
- Medication process in Styrian hospitals
- Control tower to surgical theater
- Development of a skull phantom for the assessment of implant X-ray visibility
- Surgical navigation with QR codes
- Investigation of the pressure gradient of embolic protection devices
- Computer assistance in femoral derotation osteotomy: a bottom-up approach
- Automatic depth scanning system for 3D infrared thermography
- A service for monitoring the quality of intraoperative cone beam CT images
- Resectoscope with an easy to use twist mechanism for improved handling
- In vitro simulation of distribution processes following intramuscular injection
- Adjusting inkjet printhead parameters to deposit drugs into micro-sized reservoirs
- A flexible standalone system with integrated sensor feedback for multi-pad electrode FES of the hand
- Smart control for functional electrical stimulation with optimal pulse intensity
- Tactile display on the remaining hand for unilateral hand amputees
- Effects of sustained electrical stimulation on spasticity assessed by the pendulum test
- An improved tracking framework for ultrasound probe localization in image-guided radiosurgery
- Improvement of a subviral particle tracker by the use of a LAP-Kalman-algorithm
- Learning discriminative classification models for grading anal intraepithelial neoplasia
- Regularization of EIT reconstruction based on multi-scales wavelet transforms
- Assessing MRI susceptibility artefact through an indicator of image distortion
- EyeGuidance – a computer controlled system to guide eye movements
- A framework for feedback-based segmentation of 3D image stacks
- Doppler optical coherence tomography as a promising tool for detecting fluid in the human middle ear
- 3D Local in vivo Environment (LivE) imaging for single cell protein analysis of bone tissue
- Inside-Out access strategy using new trans-vascular catheter approach
- US/MRI fusion with new optical tracking and marker approach for interventional procedures inside the MRI suite
- Impact of different registration methods in MEG source analysis
- 3D segmentation of thyroid ultrasound images using active contours
- Designing a compact MRI motion phantom
- Cerebral cortex classification by conditional random fields applied to intraoperative thermal imaging
- Classification of indirect immunofluorescence images using thresholded local binary count features
- Analysis of muscle fatigue conditions using time-frequency images and GLCM features
- Numerical evaluation of image parameters of ETR-1
- Fabrication of a compliant phantom of the human aortic arch for use in Particle Image Velocimetry (PIV) experimentation
- Effect of the number of electrodes on the reconstructed lung shape in electrical impedance tomography
- Hardware dependencies of GPU-accelerated beamformer performances for microwave breast cancer detection
- Computer assisted assessment of progressing osteoradionecrosis of the jaw for clinical diagnosis and treatment
- Evaluation of reconstruction parameters of electrical impedance tomography on aorta detection during saline bolus injection
- Evaluation of open-source software for the lung segmentation
- Automatic determination of lung features of CF patients in CT scans
- Image analysis of self-organized multicellular patterns
- Effect of key parameters on synthesis of superparamagnetic nanoparticles (SPIONs)
- Radiopacity assessment of neurovascular implants
- Development of a desiccant based dielectric for monitoring humidity conditions in miniaturized hermetic implantable packages
- Development of an artifact-free aneurysm clip
- Enhancing the regeneration of bone defects by alkalizing the peri-implant zone – an in vitro approach
- Rapid prototyping of replica knee implants for in vitro testing
- Protecting ultra- and hyperhydrophilic implant surfaces in dry state from loss of wettability
- Advanced wettability analysis of implant surfaces
- Patient-specific hip prostheses designed by surgeons
- Plasma treatment on novel carbon fiber reinforced PEEK cages to enhance bioactivity
- Wear of a total intervertebral disc prosthesis
- Digital health and digital biomarkers – enabling value chains on health data
- Usability in the lifecycle of medical software development
- Influence of different test gases in a non-destructive 100% quality control system for medical devices
- Device development guided by user satisfaction survey on auricular vagus nerve stimulation
- Empirical assessment of the time course of innovation in biomedical engineering: first results of a comparative approach
- Effect of left atrial hypertrophy on P-wave morphology in a computational model
- Simulation of intracardiac electrograms around acute ablation lesions
- Parametrization of activation based cardiac electrophysiology models using bidomain model simulations
- Assessment of nasal resistance using computational fluid dynamics
- Resistance in a non-linear autoregressive model of pulmonary mechanics
- Inspiratory and expiratory elastance in a non-linear autoregressive model of pulmonary mechanics
- Determination of regional lung function in cystic fibrosis using electrical impedance tomography
- Development of parietal bone surrogates for parietal graft lift training
- Numerical simulation of mechanically stimulated bone remodelling
- Conversion of engineering stresses to Cauchy stresses in tensile and compression tests of thermoplastic polymers
- Numerical examinations of simplified spondylodesis models concerning energy absorption in magnetic resonance imaging
- Principle study on the signal connection at transabdominal fetal pulse oximetry
- Influence of Siluron® insertion on model drug distribution in the simulated vitreous body
- Evaluating different approaches to identify a three parameter gas exchange model
- Effects of fibrosis on the extracellular potential based on 3D reconstructions from histological sections of heart tissue
- From imaging to hemodynamics – how reconstruction kernels influence the blood flow predictions in intracranial aneurysms
- Flow optimised design of a novel point-of-care diagnostic device for the detection of disease specific biomarkers
- Improved FPGA controlled artificial vascular system for plethysmographic measurements
- Minimally spaced electrode positions for multi-functional chest sensors: ECG and respiratory signal estimation
- Automated detection of alveolar arches for nasoalveolar molding in cleft lip and palate treatment
- Control scheme selection in human-machine- interfaces by analysis of activity signals
- Event-based sampling for reducing communication load in realtime human motion analysis by wireless inertial sensor networks
- Automatic pairing of inertial sensors to lower limb segments – a plug-and-play approach
- Contactless respiratory monitoring system for magnetic resonance imaging applications using a laser range sensor
- Interactive monitoring system for visual respiratory biofeedback
- Development of a low-cost senor based aid for visually impaired people
- Patient assistive system for the shoulder joint
- A passive beating heart setup for interventional cardiology training
Articles in the same Issue
- Synthesis and characterization of PIL/pNIPAAm hybrid hydrogels
- Novel blood protein based scaffolds for cardiovascular tissue engineering
- Cell adhesion and viability of human endothelial cells on electrospun polymer scaffolds
- Effects of heat treatment and welding process on superelastic behaviour and microstructure of micro electron beam welded NiTi
- Long-term stable modifications of silicone elastomer for improved hemocompatibility
- The effect of thermal treatment on the mechanical properties of PLLA tubular specimens
- Biocompatible wear-resistant thick ceramic coating
- Protection of active implant electronics with organosilicon open air plasma coating for plastic overmolding
- Examination of dielectric strength of thin Parylene C films under various conditions
- Open air plasma deposited antimicrobial SiOx/TiOx composite films for biomedical applications
- Systemic analysis about residual chloroform in PLLA films
- A macrophage model of osseointegration
- Towards in silico prognosis using big data
- Technical concept and evaluation of a novel shoulder simulator with adaptive muscle force generation and free motion
- Usability evaluation of a locomotor therapy device considering different strategies
- Hypoxia-on-a-chip
- Integration of a semi-automatic in-vitro RFA procedure into an experimental setup
- Fabrication of MEMS-based 3D-μECoG-MEAs
- High speed digital interfacing for a neural data acquisition system
- Bionic forceps for the handling of sensitive tissue
- Experimental studies on 3D printing of barium titanate ceramics for medical applications
- Patient specific root-analogue dental implants – additive manufacturing and finite element analysis
- 3D printing – a key technology for tailored biomedical cell culture lab ware
- 3D printing of hydrogels in a temperature controlled environment with high spatial resolution
- Biocompatibility of photopolymers for additive manufacturing
- Biochemical piezoresistive sensors based on pH- and glucose-sensitive hydrogels for medical applications
- Novel wireless measurement system of pressure dedicated to in vivo studies
- Portable auricular device for real-time swallow and chew detection
- Detection of miRNA using a surface plasmon resonance biosensor and antibody amplification
- Simulation and evaluation of stimulation scenarios for targeted vestibular nerve excitation
- Deep brain stimulation: increasing efficiency by alternative waveforms
- Prediction of immediately occurring microsleep events from brain electric signals
- Determining cardiac vagal threshold from short term heart rate complexity
- Classification of cardiac excitation patterns during atrial fibrillation
- An algorithm to automatically determine the cycle length coverage to identify rotational activity during atrial fibrillation – a simulation study
- Deriving respiration from high resolution 12-channel-ECG during cycling exercise
- Reducing of gradient induced artifacts on the ECG signal during MRI examinations using Wilcoxon filter
- Automatic detection and mapping of double potentials in intracardiac electrograms
- Modeling the pelvic region for non-invasive pelvic intraoperative neuromonitoring
- Postprocessing algorithm for automated analysis of pelvic intraoperative neuromonitoring signals
- Best practice: surgeon driven application in pelvic operations
- Vasomotor assessment by camera-based photoplethysmography
- Classification of morphologic changes in photoplethysmographic waveforms
- Novel computation of pulse transit time from multi-channel PPG signals by wavelet transform
- Efficient design of FIR filter based low-pass differentiators for biomedical signal processing
- Nonlinear causal influences assessed by mutual compression entropy
- Comparative study of methods for solving the correspondence problem in EMD applications
- fNIRS for future use in auditory diagnostics
- Semi-automated detection of fractional shortening in zebrafish embryo heart videos
- Blood pressure measurement on the cheek
- Derivation of the respiratory rate from directly and indirectly measured respiratory signals using autocorrelation
- Left cardiac atrioventricular delay and inter-ventricular delay in cardiac resynchronization therapy responder and non-responder
- An automatic systolic peak detector of blood pressure waveforms using 4th order cumulants
- Real-time QRS detection using integrated variance for ECG gated cardiac MRI
- Preprocessing of unipolar signals acquired by a novel intracardiac mapping system
- In-vitro experiments to characterize ventricular electromechanics
- Continuous non-invasive monitoring of blood pressure in the operating room: a cuffless optical technology at the fingertip
- Application of microwave sensor technology in cardiovascular disease for plaque detection
- Artificial blood circulatory and special Ultrasound Doppler probes for detecting and sizing gaseous embolism
- Detection of microsleep events in a car driving simulation study using electrocardiographic features
- A method to determine the kink resistance of stents and stent delivery systems according to international standards
- Comparison of stented bifurcation and straight vessel 3D-simulation with a prior simulated velocity profile inlet
- Transient Euler-Lagrange/DEM simulation of stent thrombosis
- Automated control of the laser welding process of heart valve scaffolds
- Automation of a test bench for accessing the bendability of electrospun vascular grafts
- Influence of storage conditions on the release of growth factors in platelet-rich blood derivatives
- Cryopreservation of cells using defined serum-free cryoprotective agents
- New bioreactor vessel for tissue engineering of human nasal septal chondrocytes
- Determination of the membrane hydraulic permeability of MSCs
- Climate retainment in carbon dioxide incubators
- Multiple factors influencing OR ventilation system effectiveness
- Evaluation of an app-based stress protocol
- Medication process in Styrian hospitals
- Control tower to surgical theater
- Development of a skull phantom for the assessment of implant X-ray visibility
- Surgical navigation with QR codes
- Investigation of the pressure gradient of embolic protection devices
- Computer assistance in femoral derotation osteotomy: a bottom-up approach
- Automatic depth scanning system for 3D infrared thermography
- A service for monitoring the quality of intraoperative cone beam CT images
- Resectoscope with an easy to use twist mechanism for improved handling
- In vitro simulation of distribution processes following intramuscular injection
- Adjusting inkjet printhead parameters to deposit drugs into micro-sized reservoirs
- A flexible standalone system with integrated sensor feedback for multi-pad electrode FES of the hand
- Smart control for functional electrical stimulation with optimal pulse intensity
- Tactile display on the remaining hand for unilateral hand amputees
- Effects of sustained electrical stimulation on spasticity assessed by the pendulum test
- An improved tracking framework for ultrasound probe localization in image-guided radiosurgery
- Improvement of a subviral particle tracker by the use of a LAP-Kalman-algorithm
- Learning discriminative classification models for grading anal intraepithelial neoplasia
- Regularization of EIT reconstruction based on multi-scales wavelet transforms
- Assessing MRI susceptibility artefact through an indicator of image distortion
- EyeGuidance – a computer controlled system to guide eye movements
- A framework for feedback-based segmentation of 3D image stacks
- Doppler optical coherence tomography as a promising tool for detecting fluid in the human middle ear
- 3D Local in vivo Environment (LivE) imaging for single cell protein analysis of bone tissue
- Inside-Out access strategy using new trans-vascular catheter approach
- US/MRI fusion with new optical tracking and marker approach for interventional procedures inside the MRI suite
- Impact of different registration methods in MEG source analysis
- 3D segmentation of thyroid ultrasound images using active contours
- Designing a compact MRI motion phantom
- Cerebral cortex classification by conditional random fields applied to intraoperative thermal imaging
- Classification of indirect immunofluorescence images using thresholded local binary count features
- Analysis of muscle fatigue conditions using time-frequency images and GLCM features
- Numerical evaluation of image parameters of ETR-1
- Fabrication of a compliant phantom of the human aortic arch for use in Particle Image Velocimetry (PIV) experimentation
- Effect of the number of electrodes on the reconstructed lung shape in electrical impedance tomography
- Hardware dependencies of GPU-accelerated beamformer performances for microwave breast cancer detection
- Computer assisted assessment of progressing osteoradionecrosis of the jaw for clinical diagnosis and treatment
- Evaluation of reconstruction parameters of electrical impedance tomography on aorta detection during saline bolus injection
- Evaluation of open-source software for the lung segmentation
- Automatic determination of lung features of CF patients in CT scans
- Image analysis of self-organized multicellular patterns
- Effect of key parameters on synthesis of superparamagnetic nanoparticles (SPIONs)
- Radiopacity assessment of neurovascular implants
- Development of a desiccant based dielectric for monitoring humidity conditions in miniaturized hermetic implantable packages
- Development of an artifact-free aneurysm clip
- Enhancing the regeneration of bone defects by alkalizing the peri-implant zone – an in vitro approach
- Rapid prototyping of replica knee implants for in vitro testing
- Protecting ultra- and hyperhydrophilic implant surfaces in dry state from loss of wettability
- Advanced wettability analysis of implant surfaces
- Patient-specific hip prostheses designed by surgeons
- Plasma treatment on novel carbon fiber reinforced PEEK cages to enhance bioactivity
- Wear of a total intervertebral disc prosthesis
- Digital health and digital biomarkers – enabling value chains on health data
- Usability in the lifecycle of medical software development
- Influence of different test gases in a non-destructive 100% quality control system for medical devices
- Device development guided by user satisfaction survey on auricular vagus nerve stimulation
- Empirical assessment of the time course of innovation in biomedical engineering: first results of a comparative approach
- Effect of left atrial hypertrophy on P-wave morphology in a computational model
- Simulation of intracardiac electrograms around acute ablation lesions
- Parametrization of activation based cardiac electrophysiology models using bidomain model simulations
- Assessment of nasal resistance using computational fluid dynamics
- Resistance in a non-linear autoregressive model of pulmonary mechanics
- Inspiratory and expiratory elastance in a non-linear autoregressive model of pulmonary mechanics
- Determination of regional lung function in cystic fibrosis using electrical impedance tomography
- Development of parietal bone surrogates for parietal graft lift training
- Numerical simulation of mechanically stimulated bone remodelling
- Conversion of engineering stresses to Cauchy stresses in tensile and compression tests of thermoplastic polymers
- Numerical examinations of simplified spondylodesis models concerning energy absorption in magnetic resonance imaging
- Principle study on the signal connection at transabdominal fetal pulse oximetry
- Influence of Siluron® insertion on model drug distribution in the simulated vitreous body
- Evaluating different approaches to identify a three parameter gas exchange model
- Effects of fibrosis on the extracellular potential based on 3D reconstructions from histological sections of heart tissue
- From imaging to hemodynamics – how reconstruction kernels influence the blood flow predictions in intracranial aneurysms
- Flow optimised design of a novel point-of-care diagnostic device for the detection of disease specific biomarkers
- Improved FPGA controlled artificial vascular system for plethysmographic measurements
- Minimally spaced electrode positions for multi-functional chest sensors: ECG and respiratory signal estimation
- Automated detection of alveolar arches for nasoalveolar molding in cleft lip and palate treatment
- Control scheme selection in human-machine- interfaces by analysis of activity signals
- Event-based sampling for reducing communication load in realtime human motion analysis by wireless inertial sensor networks
- Automatic pairing of inertial sensors to lower limb segments – a plug-and-play approach
- Contactless respiratory monitoring system for magnetic resonance imaging applications using a laser range sensor
- Interactive monitoring system for visual respiratory biofeedback
- Development of a low-cost senor based aid for visually impaired people
- Patient assistive system for the shoulder joint
- A passive beating heart setup for interventional cardiology training