Home Analysis of muscle fatigue conditions using time-frequency images and GLCM features
Article Open Access

Analysis of muscle fatigue conditions using time-frequency images and GLCM features

  • P.A. Karthick , M. Navaneethakrishna , N. Punitha EMAIL logo , A.R. Jac Fredo and S. Ramakrishnan
Published/Copyright: September 30, 2016

Abstract

In this work, an attempt has been made to differentiate muscle non-fatigue and fatigue conditions using sEMG signals and texture representation of the time-frequency images. The sEMG signals are recorded from the biceps brachii muscle of 25 healthy adult volunteers during dynamic fatiguing contraction. The first and last curls of these signals are considered as the non-fatigue and fatigue zones, respectively. These signals are preprocessed and the time-frequency spectrum is computed using short time fourier transform (STFT). Gray-Level Co-occurrence Matrix (GLCM) is extracted from low (15–45 Hz), medium (46–95 Hz) and high (96–150 Hz) frequency bands of the time-frequency images. Further, the features such as contrast, correlation, energy and homogeneity are calculated from the resultant matrices. The results show that the high frequency band based features are able to differentiate non-fatigue and fatigue conditions. The features such as correlation, contrast and homogeneity extracted at angles 0°, 45°, 90°, and 135° are found to be distinct with high statistical significance (p < 0.0001). Hence, this framework can be used for analysis of neuromuscular disorders.

1 Introduction

Muscle fatigue is a time-related progressive impairment of maximal force generating capacity of the muscles. It arises due to sustained or intense contraction, Parkinson’s disease, carcinoma, endocrine disturbances, malnutrition and immobilization [1]. Repeated fatigue may lead to irreversible impairment of muscles. Hence, it is necessary to analyse fatigue conditions for the clinical diagnosis of muscle disorders. Surface electromyography (sEMG) is a non-invasive technique which is commonly used to analyse muscle fatigue [2].

sEMG is a complex bio-electric signal which represents the contraction of the muscle in the body. It offers useful information to understand the human movement which helps in the assessment of muscular activation and internal loads on muscles, tendons, and other tissues. These signals are random, non-stationary and multi-component in nature [3].

The main component of fatigue analysis is the identification of prominent features of the signal [1]. Various methods have been proposed in the literature based on the extraction of sEMG features in the time [4], frequency [5], and t-f domain [2], [3], [6]. The time domain features contain amplitude, rhythmicity and entropy information. The frequency domain features includes spectrum normalized power, frequency sub-band powers and mean frequency. In the t-f domain, the features are extracted from the time-frequency representation of sEMG signals and are capable of characterizing the non-stationary and multi-component nature of sEMG signals [3]. These include instantaneous frequency and sub-band energies.

Recently, time-frequency spectrum computed from the EEG signals is considered as images and the features extracted are used for the automatic detection of epileptic seizure in EEG data [7], [8], [9], [10], [11], [12]. These features includes Haralick features [8], texture features such as first order moment, second order moment [10], GLCM [7], [10], [12], texture feature coding method [4] and local binary pattern [7], [9] and Histogram features such as mean, variance, skewness and kurtosis [11].

In this work, sEMG signals are recorded from biceps brachii muscles in bipolar configuration. These signals are represented in t-f domain using the spectrogram of STFT. The corresponding images obtained are subdivided into three images based on the frequency bands and converted into 8- bit grayscale images. Finally, GLCM texture features are extracted and sEMG signals are analysed.

2 Methodology

Signals are acquired from 25 normal subjects with no history of neuromuscular problems. The experiment is carried out on the biceps. Ag–AgCl disc-type disposable surface electrodes are placed on the belly of the muscle in differential electrode configuration, with the distance between the electrodes equal to 3 cm. The reference electrode is placed at the proximal end of the elbow. The subjects are made to stand on a wooden platform to provide isolation. The subjects perform repetitive flexion and extension of the elbow with a 6 kg load until they experiences fatigue [3]. These signals are recorded at a sampling rate of 1000 Hz. The sEMG signals corresponding to the first and the last curls are used in this study.

2.1 STFT spectrogram

STFT is a commonly used method for spectrogram image formation [2]. Each signal is divided into smaller segments and subjected to discrete fourier transform (DFT). The spectrum values from each segment are stacked side-by-side to form the spectrogram image. The spectrogram shows dominant frequency information against time where the frequency components are equally spaced along the vertical axis with constant bandwidth.

By definition, STFT spectrogram is the normalized, squared magnitude of the STFT coefficients. STFT coefficients for a signal is calculated as [7]

(1)X(n,ω)=m=x[m]w[nm]ejωn

where x[m]w[nm] is a short time part of input signal x[m] at time n.

The frequency range of sEMG varies from dc to 10 kHz with the dominant frequency content lying in the range of 50–150 Hz [3]. Each spectrogram is divided into three sub-images corresponding to the dominant frequency bands as follows: Low frequency band (15–45 Hz), Medium frequency band (46–95 Hz) and High frequency band (96–150 Hz).

2.2 GLCM features

The sub images are converted into 8-bit grayscale images and the texture features are extracted. GLCM is a method to analyse the texture images which estimates image properties related to second-order statistics [10]. This corresponds to a directional pattern counter with a specific distance d and angle θ between neighbouring pixel pairs for grayscale images [7]. The distance parameter d is set to 1 and the angle parameters θ are 0°, 45°, 90°, and 135°. The corresponding displacement vectors are [0 1], [−1 1], [−1 0] and [−1 −1]. The features such as contrast, correlation, energy and homogeneity are extracted and the formula is given below:

(2)Contrast=i,j|ij|2p(i,j)
(3)Correlation=i,j(iμi)(jμj)p(i,j)σiσj
(4)Energy=i,jp(i,j)2
(5)Homogeneity=i,jp(i,j)1+|ij|

where p(i, j) is the intensity value of the pixel at point (i, j), μ and σ represents the mean and standard deviation.

Contrast is a measure of the intensity variation between a pixel and its neighbour over the whole image. Correlation explains the relation between a pixel and its neighbour over the whole image while energy is the sum of squared elements in the GLCM. Homogeneity calculates the closeness of the distribution of elements in the GLCM to its diagonal.

3 Results and discussion

The representative sEMG signals recorded during the experiment is shown in Figure 1.

Figure 1 Typical sEMG signals. (A) Non-fatigue and (B) Fatigue conditions.
Figure 1

Typical sEMG signals. (A) Non-fatigue and (B) Fatigue conditions.

The amplitude and frequency components of the recorded signals are found to be subject dependent. The amplitude is observed to be higher in fatigue condition. This may be due to the participation of more motor units during the contraction. Similar variations are observed in most of the cases.

The spectrogram of sEMG signals has been represented as a t–f image. Figure 2 shows the spectrogram of sEMG signals for non-fatigue and fatigue conditions. The colormap represents the strength of the magnitude of sEMG signals. The variations in the spectral components are associated with physiological parameters such as random firing rate, motor unit recruitment patterns, muscle fibre conduction velocity and volume conductor effects. A reduction in the frequency components is observed in fatigue condition and this may be due to the synchronisation of motor units.

Figure 2 Spectrogram of sEMG signals. (A) Non-Fatigue and (B) Fatigue.
Figure 2

Spectrogram of sEMG signals. (A) Non-Fatigue and (B) Fatigue.

It is observed that, during non-fatigue conditions, the texture pattern exhibits brighter pixels with more variations compared to fatigue conditions. In order to discriminate between these texture patterns, GLCM features are employed. The t-f images are converted to 8-bit grayscale images. For each of these images, the angle parameter is varied from 0° to 135° with a 45° increment. Thus four GLCMs are obtained for each image. Features such as contrast, correlation, energy and homogeneity are extracted for each angle thereby constructing a 16-dimensional feature vector for each image. The average value of these features is shown in Table 1. The class discrimination ability of the feature sets is quantified using t-test. It is observed that only the energy feature calculated from all the angles is distinct with high statistical significance (p < 0.0001).

Table 1

Average value of features extracted from t-f images.

FeaturesNon-fatigueFatiguep-Value
Contrast06.12364.57200.0588
4559.526740.98580.0265
9053.831936.77040.0287
13559.455141.00850.0270
Correlation00.99590.99570.8075
450.96270.96380.2671
900.96650.96770.2209
1350.96270.96370.2961
Energy00.40980.5906<0.0001
450.39720.5821<0.0001
900.40000.5843<0.0001
1350.39720.5821<0.0001
Homogeneity00.94940.96700.0033
450.87580.92190.0003
900.88990.93120.0003
1350.87580.92180.0003

Figure 3 shows the 8-bit grayscale sub-image representation of t-f images. For each of these sub-images, the GLCM features are extracted. Due to the non-uniform nature of the sEMG spectrograms, this local feature extraction gives better results than global features.

Figure 3 Grayscale sub-images: (A) Non-fatigue and (B) Fatigue sEMG signals corresponding to frequency-bands (a) low (15–45 Hz), (b) medium (46–95 Hz), (c) high (96–150 Hz).
Figure 3

Grayscale sub-images: (A) Non-fatigue and (B) Fatigue sEMG signals corresponding to frequency-bands (a) low (15–45 Hz), (b) medium (46–95 Hz), (c) high (96–150 Hz).

The average value of the features extracted from the high frequency band is shown in Table 2. Among the three frequency bands considered, the high frequency band is able to discriminate non-fatigue and fatigue conditions. The three features namely correlation, energy and homogeneity extracted from this band in all the four angles is found to be highly significant (p < 0.0001). There is a greater value of energy for fatigue condition compared to non-fatigue condition indicating reduction in the action potential of the muscles. The higher correlation for non-fatigue condition indicates normal muscle activity.

Table 2

Average value of the features in the high frequency band.

FeaturesNon-fatigueFatiguep-Value (less than)
Contrast05.88817.01860.1355
4520.397911.59090.001
9015.95095.93540.001
13520.395211.59270.001
Correlation00.96790.72770.0001
450.93030.60820.0001
900.95570.84030.0001
1350.93020.60840.0001
Energy00.63860.92160.0001
450.62920.91990.0001
900.96790.72770.0001
1350.93030.60820.0001
Homogeneity00.95570.84030.0001
450.93020.60840.0001
900.63860.92160.0001
1350.62920.91990.0001

4 Conclusion

In this work, second order texture statistics have been used to analyse muscle non-fatigue and fatigue conditions after mapping the sEMG signals into a 2D grayscale image. The time-frequency spectrum of the signals is computed using STFT. Each spectrum is divided into three frequency bands such as low, medium and high. GLCM features such as contrast, correlation, energy and homogeneity are calculated for different angles from these sub-images. The visual results suggest that the non-fatigue and fatigue conditions have different spectral patterns. The features calculated from the sub band images carry more information than the whole spectral images. The texture features namely correlation, energy and homogeneity calculated from the high frequency sub images gives significant results compared to other frequency sub images (p < 0.0001). Hence, it appears that time-frequency images based texture features could be used for analysis of neuromuscular disorders.

Author’s Statement

Research funding: The author state no funding involved. Conflict of interest: Authors state no conflict of interest. Material and Methods: Informed consent: Informed consent is not applicable. Ethical approval: The conducted research is not related to either human or animal use.

References

[1] Venugopal G, Navaneethakrishna M, Ramakrishnan S. Extraction and analysis of multiple time window features associated with muscle fatigue conditions using sEMG signals. Expert Syst Appl. 2014;41:2652–9.10.1016/j.eswa.2013.11.009Search in Google Scholar

[2] Zawawi TNST, Abdullah AR, Shair EF, Halim I, Rawaida O. Electromyography signal analysis using spectrogram. IEEE Student Conference on Research and Development (SCOReD); 2013. p. 319–24.10.1109/SCOReD.2013.7002599Search in Google Scholar

[3] Karthick PA, Ramakrishnan S. Surface electromyography dased muscle fatigue progression analysis using modified B distribution time-frequency features. Biomed Signal Proces 2015;2:42–51.10.1016/j.bspc.2015.12.007Search in Google Scholar

[4] Abdullah RS, Pinar A. Detection of surface electromyography recording time interval without muscle fatigue effect for biceps brachii muscle during maximum voluntary contraction. J Electromyogr Kines. 2010;20:773–6.10.1016/j.jelekin.2010.02.006Search in Google Scholar PubMed

[5] Gonzalez IM, Malanda A, Navarro-Amezqueta I, Gorostiaga EM, Mallor F, Ibanez J. EMG spectral indices and muscle power fatigue during dynamic contractions. J Electromyogr Kines. 2010;20:233–40.10.1016/j.jelekin.2009.03.011Search in Google Scholar PubMed

[6] Yousefi H, Askari S, Dumont GA, Bastany Z. Automated decomposition of needle EMG signal using STFT and Wavelet Transforms. Iranian Conference on Biomedical Engineering (ICBME). 2014;358–63.10.1109/ICBME.2014.7043951Search in Google Scholar

[7] Sengu A, Guo Y, Akbulut Y. Time-frequency texture descriptors of EEG signals for ef?cient detection of epileptic seizure. Brain Informat. 2015;1–8.Search in Google Scholar

[8] Boubchir L, Al-Maadeed S, Bouridane A. Haralick feature extraction from time-frequency images for epileptic seizure detection and classification of EEG data. International Conference on Microelectronics (ICM). 2014;32–35.10.1109/ICM.2014.7071799Search in Google Scholar

[9] Boubchir L, Al-Maadeed S, Bouridane A, Cherif A. Classification of EEG signals for detection of epileptic seizure activities based on LBP descriptor of time-frequency images. International Conference on Image Processing. 2015;3758–62.10.1109/ICIP.2015.7351507Search in Google Scholar

[10] Boubchir L, Al-Maadeed S, Bouridane A, Cherif A. Time-frequency image descriptors–based features for EEG epileptic seizure activities detection and classification. International Conference on Acoustics, Speech, and Signal Processing (ICASSP). 2015;867–71.10.1109/ICASSP.2015.7178093Search in Google Scholar

[11] Fu K, Qu J, Chai Y, Dong Y. Classification of seizure based on the time-frequency image of EEG signals using HHT and SVM. Biomed Signal Proces. 2014;13:15–22.10.1016/j.bspc.2014.03.007Search in Google Scholar

[12] Samiee K, Kiranyaz S, Gabbouj M, Saramaki T. Long-term epileptic EEG classification via 2D mapping and textural Features. Expert Syst Appl. 2015;42:7175–85.10.1016/j.eswa.2015.05.002Search in Google Scholar

Published Online: 2016-9-30
Published in Print: 2016-9-1

©2016 N. Punitha et al., licensee De Gruyter.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

Articles in the same Issue

  1. Synthesis and characterization of PIL/pNIPAAm hybrid hydrogels
  2. Novel blood protein based scaffolds for cardiovascular tissue engineering
  3. Cell adhesion and viability of human endothelial cells on electrospun polymer scaffolds
  4. Effects of heat treatment and welding process on superelastic behaviour and microstructure of micro electron beam welded NiTi
  5. Long-term stable modifications of silicone elastomer for improved hemocompatibility
  6. The effect of thermal treatment on the mechanical properties of PLLA tubular specimens
  7. Biocompatible wear-resistant thick ceramic coating
  8. Protection of active implant electronics with organosilicon open air plasma coating for plastic overmolding
  9. Examination of dielectric strength of thin Parylene C films under various conditions
  10. Open air plasma deposited antimicrobial SiOx/TiOx composite films for biomedical applications
  11. Systemic analysis about residual chloroform in PLLA films
  12. A macrophage model of osseointegration
  13. Towards in silico prognosis using big data
  14. Technical concept and evaluation of a novel shoulder simulator with adaptive muscle force generation and free motion
  15. Usability evaluation of a locomotor therapy device considering different strategies
  16. Hypoxia-on-a-chip
  17. Integration of a semi-automatic in-vitro RFA procedure into an experimental setup
  18. Fabrication of MEMS-based 3D-μECoG-MEAs
  19. High speed digital interfacing for a neural data acquisition system
  20. Bionic forceps for the handling of sensitive tissue
  21. Experimental studies on 3D printing of barium titanate ceramics for medical applications
  22. Patient specific root-analogue dental implants – additive manufacturing and finite element analysis
  23. 3D printing – a key technology for tailored biomedical cell culture lab ware
  24. 3D printing of hydrogels in a temperature controlled environment with high spatial resolution
  25. Biocompatibility of photopolymers for additive manufacturing
  26. Biochemical piezoresistive sensors based on pH- and glucose-sensitive hydrogels for medical applications
  27. Novel wireless measurement system of pressure dedicated to in vivo studies
  28. Portable auricular device for real-time swallow and chew detection
  29. Detection of miRNA using a surface plasmon resonance biosensor and antibody amplification
  30. Simulation and evaluation of stimulation scenarios for targeted vestibular nerve excitation
  31. Deep brain stimulation: increasing efficiency by alternative waveforms
  32. Prediction of immediately occurring microsleep events from brain electric signals
  33. Determining cardiac vagal threshold from short term heart rate complexity
  34. Classification of cardiac excitation patterns during atrial fibrillation
  35. An algorithm to automatically determine the cycle length coverage to identify rotational activity during atrial fibrillation – a simulation study
  36. Deriving respiration from high resolution 12-channel-ECG during cycling exercise
  37. Reducing of gradient induced artifacts on the ECG signal during MRI examinations using Wilcoxon filter
  38. Automatic detection and mapping of double potentials in intracardiac electrograms
  39. Modeling the pelvic region for non-invasive pelvic intraoperative neuromonitoring
  40. Postprocessing algorithm for automated analysis of pelvic intraoperative neuromonitoring signals
  41. Best practice: surgeon driven application in pelvic operations
  42. Vasomotor assessment by camera-based photoplethysmography
  43. Classification of morphologic changes in photoplethysmographic waveforms
  44. Novel computation of pulse transit time from multi-channel PPG signals by wavelet transform
  45. Efficient design of FIR filter based low-pass differentiators for biomedical signal processing
  46. Nonlinear causal influences assessed by mutual compression entropy
  47. Comparative study of methods for solving the correspondence problem in EMD applications
  48. fNIRS for future use in auditory diagnostics
  49. Semi-automated detection of fractional shortening in zebrafish embryo heart videos
  50. Blood pressure measurement on the cheek
  51. Derivation of the respiratory rate from directly and indirectly measured respiratory signals using autocorrelation
  52. Left cardiac atrioventricular delay and inter-ventricular delay in cardiac resynchronization therapy responder and non-responder
  53. An automatic systolic peak detector of blood pressure waveforms using 4th order cumulants
  54. Real-time QRS detection using integrated variance for ECG gated cardiac MRI
  55. Preprocessing of unipolar signals acquired by a novel intracardiac mapping system
  56. In-vitro experiments to characterize ventricular electromechanics
  57. Continuous non-invasive monitoring of blood pressure in the operating room: a cuffless optical technology at the fingertip
  58. Application of microwave sensor technology in cardiovascular disease for plaque detection
  59. Artificial blood circulatory and special Ultrasound Doppler probes for detecting and sizing gaseous embolism
  60. Detection of microsleep events in a car driving simulation study using electrocardiographic features
  61. A method to determine the kink resistance of stents and stent delivery systems according to international standards
  62. Comparison of stented bifurcation and straight vessel 3D-simulation with a prior simulated velocity profile inlet
  63. Transient Euler-Lagrange/DEM simulation of stent thrombosis
  64. Automated control of the laser welding process of heart valve scaffolds
  65. Automation of a test bench for accessing the bendability of electrospun vascular grafts
  66. Influence of storage conditions on the release of growth factors in platelet-rich blood derivatives
  67. Cryopreservation of cells using defined serum-free cryoprotective agents
  68. New bioreactor vessel for tissue engineering of human nasal septal chondrocytes
  69. Determination of the membrane hydraulic permeability of MSCs
  70. Climate retainment in carbon dioxide incubators
  71. Multiple factors influencing OR ventilation system effectiveness
  72. Evaluation of an app-based stress protocol
  73. Medication process in Styrian hospitals
  74. Control tower to surgical theater
  75. Development of a skull phantom for the assessment of implant X-ray visibility
  76. Surgical navigation with QR codes
  77. Investigation of the pressure gradient of embolic protection devices
  78. Computer assistance in femoral derotation osteotomy: a bottom-up approach
  79. Automatic depth scanning system for 3D infrared thermography
  80. A service for monitoring the quality of intraoperative cone beam CT images
  81. Resectoscope with an easy to use twist mechanism for improved handling
  82. In vitro simulation of distribution processes following intramuscular injection
  83. Adjusting inkjet printhead parameters to deposit drugs into micro-sized reservoirs
  84. A flexible standalone system with integrated sensor feedback for multi-pad electrode FES of the hand
  85. Smart control for functional electrical stimulation with optimal pulse intensity
  86. Tactile display on the remaining hand for unilateral hand amputees
  87. Effects of sustained electrical stimulation on spasticity assessed by the pendulum test
  88. An improved tracking framework for ultrasound probe localization in image-guided radiosurgery
  89. Improvement of a subviral particle tracker by the use of a LAP-Kalman-algorithm
  90. Learning discriminative classification models for grading anal intraepithelial neoplasia
  91. Regularization of EIT reconstruction based on multi-scales wavelet transforms
  92. Assessing MRI susceptibility artefact through an indicator of image distortion
  93. EyeGuidance – a computer controlled system to guide eye movements
  94. A framework for feedback-based segmentation of 3D image stacks
  95. Doppler optical coherence tomography as a promising tool for detecting fluid in the human middle ear
  96. 3D Local in vivo Environment (LivE) imaging for single cell protein analysis of bone tissue
  97. Inside-Out access strategy using new trans-vascular catheter approach
  98. US/MRI fusion with new optical tracking and marker approach for interventional procedures inside the MRI suite
  99. Impact of different registration methods in MEG source analysis
  100. 3D segmentation of thyroid ultrasound images using active contours
  101. Designing a compact MRI motion phantom
  102. Cerebral cortex classification by conditional random fields applied to intraoperative thermal imaging
  103. Classification of indirect immunofluorescence images using thresholded local binary count features
  104. Analysis of muscle fatigue conditions using time-frequency images and GLCM features
  105. Numerical evaluation of image parameters of ETR-1
  106. Fabrication of a compliant phantom of the human aortic arch for use in Particle Image Velocimetry (PIV) experimentation
  107. Effect of the number of electrodes on the reconstructed lung shape in electrical impedance tomography
  108. Hardware dependencies of GPU-accelerated beamformer performances for microwave breast cancer detection
  109. Computer assisted assessment of progressing osteoradionecrosis of the jaw for clinical diagnosis and treatment
  110. Evaluation of reconstruction parameters of electrical impedance tomography on aorta detection during saline bolus injection
  111. Evaluation of open-source software for the lung segmentation
  112. Automatic determination of lung features of CF patients in CT scans
  113. Image analysis of self-organized multicellular patterns
  114. Effect of key parameters on synthesis of superparamagnetic nanoparticles (SPIONs)
  115. Radiopacity assessment of neurovascular implants
  116. Development of a desiccant based dielectric for monitoring humidity conditions in miniaturized hermetic implantable packages
  117. Development of an artifact-free aneurysm clip
  118. Enhancing the regeneration of bone defects by alkalizing the peri-implant zone – an in vitro approach
  119. Rapid prototyping of replica knee implants for in vitro testing
  120. Protecting ultra- and hyperhydrophilic implant surfaces in dry state from loss of wettability
  121. Advanced wettability analysis of implant surfaces
  122. Patient-specific hip prostheses designed by surgeons
  123. Plasma treatment on novel carbon fiber reinforced PEEK cages to enhance bioactivity
  124. Wear of a total intervertebral disc prosthesis
  125. Digital health and digital biomarkers – enabling value chains on health data
  126. Usability in the lifecycle of medical software development
  127. Influence of different test gases in a non-destructive 100% quality control system for medical devices
  128. Device development guided by user satisfaction survey on auricular vagus nerve stimulation
  129. Empirical assessment of the time course of innovation in biomedical engineering: first results of a comparative approach
  130. Effect of left atrial hypertrophy on P-wave morphology in a computational model
  131. Simulation of intracardiac electrograms around acute ablation lesions
  132. Parametrization of activation based cardiac electrophysiology models using bidomain model simulations
  133. Assessment of nasal resistance using computational fluid dynamics
  134. Resistance in a non-linear autoregressive model of pulmonary mechanics
  135. Inspiratory and expiratory elastance in a non-linear autoregressive model of pulmonary mechanics
  136. Determination of regional lung function in cystic fibrosis using electrical impedance tomography
  137. Development of parietal bone surrogates for parietal graft lift training
  138. Numerical simulation of mechanically stimulated bone remodelling
  139. Conversion of engineering stresses to Cauchy stresses in tensile and compression tests of thermoplastic polymers
  140. Numerical examinations of simplified spondylodesis models concerning energy absorption in magnetic resonance imaging
  141. Principle study on the signal connection at transabdominal fetal pulse oximetry
  142. Influence of Siluron® insertion on model drug distribution in the simulated vitreous body
  143. Evaluating different approaches to identify a three parameter gas exchange model
  144. Effects of fibrosis on the extracellular potential based on 3D reconstructions from histological sections of heart tissue
  145. From imaging to hemodynamics – how reconstruction kernels influence the blood flow predictions in intracranial aneurysms
  146. Flow optimised design of a novel point-of-care diagnostic device for the detection of disease specific biomarkers
  147. Improved FPGA controlled artificial vascular system for plethysmographic measurements
  148. Minimally spaced electrode positions for multi-functional chest sensors: ECG and respiratory signal estimation
  149. Automated detection of alveolar arches for nasoalveolar molding in cleft lip and palate treatment
  150. Control scheme selection in human-machine- interfaces by analysis of activity signals
  151. Event-based sampling for reducing communication load in realtime human motion analysis by wireless inertial sensor networks
  152. Automatic pairing of inertial sensors to lower limb segments – a plug-and-play approach
  153. Contactless respiratory monitoring system for magnetic resonance imaging applications using a laser range sensor
  154. Interactive monitoring system for visual respiratory biofeedback
  155. Development of a low-cost senor based aid for visually impaired people
  156. Patient assistive system for the shoulder joint
  157. A passive beating heart setup for interventional cardiology training
Downloaded on 16.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/cdbme-2016-0107/html
Scroll to top button