Home Resistance in a non-linear autoregressive model of pulmonary mechanics
Article Open Access

Resistance in a non-linear autoregressive model of pulmonary mechanics

  • Ruby Langdon EMAIL logo , Paul D. Docherty , Bernhard Laufer and Knut Möller
Published/Copyright: September 30, 2016

Abstract

Respiratory system modelling can enable patient-specific mechanical ventilator settings to be found, and can thus reduce the incidence of ventilator induced lung injury in the intensive care unit. The resistance of a simple first order model (FOM) of pulmonary mechanics was compared with a flow dependent term of a non-linear autoregressive (NARX) model. Model parameters were identified for consecutive non-overlapping windows of length 20 breaths. The analysis was performed over recruitment manoeuvres for 25 sedated mechanically ventilated patients. The NARX model term, b1, consistently decreased as positive end expiratory pressure (PEEP) increased, while the FOM resistance behaviour varied. Overall the NARX b1 behaviour is more in-line with expected trends in airway resistance as PEEP increases. This work has further verified the physiologically descriptive capability of the NARX model.

1 Introduction

Mechanical ventilation (MV) is essential for patients with acute respiratory distress syndrome (ARDS) in the intensive care unit (ICU). ARDS can be caused by a variety of injuries or illnesses, and it generally involves inflammation in the lungs, and increased pulmonary elastance [1]. Mechanical ventilation pushes air into the lungs and ensures adequate gas exchange is maintained. However, suboptimal ventilator settings can result in ventilator induced lung injury (VILI) [2]. Respiratory system modelling can enable patient-specific pulmonary mechanics to be captured, and aids clinicians in setting optimal ventilator settings for each patient, reducing the incidence of VILI [3].

There are a wide range of physiologically and clinically relevant models. However, simple models have been limited in their abilities to describe all relevant behaviour [4], [5], and more complex models have had issues with non-identifiability or practical usability [6], [7]. In particular, many models use a single term to represent the effects of airway resistance, which may be an unreasonable assumption [8].

A nonlinear autoregressive (NARX) model of respiratory mechanics has been proposed by Langdon et al. [9]. The NARX model has successfully captured airway pressure waveforms in ARDS patients during recruitment manoeuvres. The model uses basis functions to capture elastance across pressure, and multiple flow-dependent, time-dependent coefficients to capture resistance, passive lung relaxation, and viscoelastic effects. In particular, the NARX model has been more successful than the first order model (FOM) at capturing the expiratory relaxation, and both the pressure relaxation and oscillation during an end-inspiratory pause.

In this paper, we aim to evaluate the changes in resistance captured by the NARX model in response to PEEP changes. When PEEP is increased, resistance is expected to decrease as the higher pressure causes recruitment of alveoli, and a widening of the bronchial path vessels [10]. The ability of the NARX model to capture the reduction in resistance at higher PEEP levels will confirm its ability to describe expected behaviour and will validate this element of the modelling approach.

2 Material and methods

2.1 Data

The data was obtained from a study conducted in the ICUs of eight German hospitals between 2000 and 2002. Full details of this study are available in Stahl et al. [11]. Measurements were taken from 28 patients who suffered from ARDS. A wide range of patient conditions were captured, as the cause of ARDS varied, the length of ventilation was between two and 19 days, and the patient age ranged from 17 to 77 years. The protocol was approved by the local ethics committee of each participating institution, and informed consent was obtained from the patient, or his or her legally authorised representative.

The volume controlled method of ventilation was used, with a tidal volume of 8 ± 2 ml/kg body weight. An end-inspiratory pause of ≥ 0.2 s was used. Sedatives were titrated to achieve a Ramsay sedation score of 4–5, and neuromuscular blocking drugs were administered as needed. Therefore patient breathing efforts did not occur.

Airway pressure and flow were measured at the airway opening, using a pneumotachometer and piezoresistive transducer. The volume was calculated from continuous integration of the flow, with adjustment for volume drift. The sampling rate was 125 Hz. The sampling rate was later reduced to 62.5 Hz for analysis, in order to reduce noise in the data and improve the speed of simulations.

During the study, patients underwent recruitment manoeuvres (RMs). We have selected a data set from each patient that spans 8–10 min. During this period, patients were ventilated at zero PEEP (ZEEP) for approximately 5 min, before PEEP was increased in steps of 2 cmH2O after every 5–10 breathing cycles. This continued until a peak inspiratory pressure of approximately 50 cmH2O was reached.

The analysis in this paper was performed on 25 patients. One patient of the 28 was excluded because a recruitment manoeuvre was not performed. Two patients were excluded due to unusually high intrinsix PEEP, causing nonlinear behaviour that the NARX model was unable to capture well [9].

2.2 Respiratory models

The first order model is the foundation of the NARX model:

(1)Paw=RV˙+EV+P0

where: Paw is the measured airway pressure (cmH2O), R is the airway resistance (cmH2Os/l), V˙ is the airway flow rate (l/s), E is the pulmonary elastance (cmH2O/l), V is the inspired volume (l), and P0 is the end-expiratory pressure (cmH2O).

The NARX model builds upon the structure of the FOM:

(2)Paw(t)=i=1Maii,d(Paw(t))V(t)+j=1LbjV˙(tj)+P0(t)

where: M is the number of b-spline basis-functions to be used, i is the index of a particular basis function of degree d, ai is the coefficient for a given basis function (cmH2O/l), and i,d(Paw(t)) is the basis function value for a given pressure measurement. The sum of the basis functions multiplied by their ai coefficients defines a pressure dependent elastance.

There are j = 1 … L ⋅ bj coefficients (cmH2Os/l) that capture the pressure responses that occur due to flow and changes in flow. The subscript −j in the second term refers to the previous time sample. Thus, each Paw(t) is calculated from information from the previous L data points.

The b1 coefficient corresponds most closely to the resistance term R in the FOM. The coefficients b2bL capture other effects related to the pressure response to flow. These may include the effects of inertance, relaxation of the lung during expiration, and viscoelastic effects occurring during the end-inspiratory pause. The b allow the NARX model to capture both the end-inspiratory pause and the expiration curve much more accurately than the FOM.

2.3 Analysis

The NARX model was identified on a moving window of 20 breaths that shifted across the recruitment manoeuvre of each data set (Figure 1). Coefficients ai and bj were identified independently for each of these windows, allowing the trend of the resistance term b1 to be observed over time as PEEP increased.

Figure 1 Three pressure windows of length 20 breaths.
Figure 1

Three pressure windows of length 20 breaths.

Previous work determining the optimal parameters of the NARX model for this cohort found that d = 1, L = 350, and M = 5 provided a good fit to the data, when identified on the entire recruitment manoeuvre with a pressure range of 0–50 cmH2O [9]. When identified over a smaller pressure range, a smaller value of M is appropriate to provide a robust result. Therefore, M = 3 was used in this analysis, as the NARX model was identified on breaths at one to three adjacent PEEP levels only.

The NARX model used in this analysis has 353 parameters. The number of data points per breath is in the range 190–380 for different patients, due to varied breathing rates of patients, and a constant sampling frequency of 62.5 Hz. Therefore the window length must be at least two breaths long to avoid non-identifiability of the NARX model. A window length of 20 breaths was chosen as it enabled robust and stable b1 values that exhibited the underlying behaviour of the patients.

To observe how b1 varied with PEEP, boxplots for the 25 data sets were created. The average PEEP for each window was calculated, and the boxplots were plotted using data from windows where the average PEEP was 0.1–5, 5.1–10, 10.1–15, and 15.1–20 cmH2O.

The same analysis was performed using the R value of the FOM. All analysis was undertaken on an i7 quad core PC with 16GB RAM using MATLAB 2014a 64 bit functions and the statistical toolbox (Mathworks, Natick, MA).

3 Results

Figure 2 shows how the NARX b1 term and the FOM R term changed over time, for three data sets. Separate linear trend lines have been plotted over the ZEEP portion and over the recruitment manoeuvre portion. These three cases show the range of behaviours observed in this cohort. In the recruitment manoeuvre, the NARX b1 tended to decrease. In contrast, the FOM resistance exhibited three different types of behaviour. The FOM resistance increased, decreased, or had a quadratic shape as PEEP increased.

Figure 2 The NARX b1 (left) and the FOM R (right) for three patients. T = time at the start of the window.
Figure 2

The NARX b1 (left) and the FOM R (right) for three patients. T = time at the start of the window.

Table 1 shows the mean gradient of the linear trend line applied to the ZEEP and RM portions for b1 and R. Within the 90% confidence interval, the RM gradient of b1 was negative, as b1 consistently decreased with PEEP. In fact there was only one patient for which the RM b1 gradient was positive. In contrast, the varied behaviour of R as PEEP increased meant that the 90% confidence interval for the R gradient in the RM surrounded zero. The t-test revealed a significant difference between the mean gradient of b1 and R during the recruitment manoeuvres. There was no significant difference in the behaviour of R and b1 at ZEEP.

Table 1

The mean gradient of the NARX b1 and FOM R terms for the ZEEP and RM portions.

Mean ZEEP gradientMean RM gradient
and 90% CIand 90% CI
NARX b1−0.011 [−0.021, −0.0012]−0.031 [−0.041, −0.021]
FOM R−0.0012 [−0.0027, 0.0003]−0.0035 [−0.011, 0.0036]
p-Value0.110.0006
(t-test)

The boxplots for the b1 and R terms (Figure 3) shows that the median of b1 decreased as PEEP increased. The median of R also decreased with PEEP, but with a much shallower slope. The boxplot at PEEP = 10.1–15 cmH2O contains 23 data sets out of the total of 25, because the highest PEEP for two patients was less than 10 cmH2O. Similarly, the boxplot at PEEP = 15.1–20.1 cm H2O contains data from 17 patients only.

Figure 3 Boxlots for the NARX b1 and FOM R parameters, normalised to the average value at ZEEP. The box limits are the 25th and 75th percentiles, and the whiskers show the range limited to data points that are within 1.5 IQR.
Figure 3

Boxlots for the NARX b1 and FOM R parameters, normalised to the average value at ZEEP. The box limits are the 25th and 75th percentiles, and the whiskers show the range limited to data points that are within 1.5 IQR.

4 Discussion

The resistance to flow is primarily described by the NARX model via variance in the b1 parameter. Figure 2 and Figure 3 show that the resistance captured by the NARX b1 term consistently reduced as PEEP increased, over 25 recruitment manoeuvres. This behaviour is concomitant with expected behaviour, as high pressures cause widening of airway passages, thus reducing resistance.

In contrast, the behaviour of the FOM R term was inconsistent. In response to the RM, the R term either decreased, increased, or had a quadratic shape (Figure 2). While Figure 3 shows that the general trend of R as a function of PEEP was downwards, the variance exhibited by the FOM was significantly larger than that of the NARX b1 value.

The average trend in both b1 and R during ZEEP was a very shallow negative slope. The 90% confidence interval indicated no consistent trend in R at ZEEP, and the t-test showed no significant difference in the gradient of R and b1 at ZEEP (Table 1). This behaviour was expected, as patient’s resistance at ZEEP would be likely to be roughly constant, unless patient condition changes.

The R term of the FOM had inconsistent behaviour across patients. Many patients experienced an increase in this modelled resistance as PEEP increased, from either the beginning of the RM or from midway through the RM. It is suspected that those patients that had an apparent increase in modelled resistance at higher pressures were actually exhibiting non-linear elastance behaviour that was being compensated for by increased resistance values in the FOM. In contrast, the non-linear elastance behaviour was captured by the more complex NARX model, due to the multiple elastance parameters and the other flow-dependent terms. Thus, the b1 term was robust to this non-linearity.

This work has further validated the descriptive capability of the NARX model for capturing changes in airway resistance over PEEP steps. Hence the NARX may offer a unique methodology for observing changes in ARDS patients, most notably, those suffering from chronic obstructive pulmonary disease (COPD). Future work will assess the physiological relevance and numerical robustness of the b2 – bL coefficients that are necessary to capture the viscoelastic effects observed in the end expiratory pause, and expiratory phase [9].

Author’s Statement

Research funding: The author state no funding involved. Conflict of interest: Authors state no conflict of interest. Ethical approval: The protocol was approved by the local ethics committee of each participating institution, and informed consent was obtained from the patient, or his or her legally authorised representative.

References

[1] Slutsky AS, Ranieri VM. Mechanical ventilation: lessons from the ARDSNet trial. Respir Res. 2000;1:73–7.10.1186/rr15Search in Google Scholar PubMed PubMed Central

[2] Dreyfuss D, Saumon G. Ventilator-induced lung injury. Lessons from experimental studies. Am J Respir Crit Care Med. 1998;157:294–323.10.1164/ajrccm.157.1.9604014Search in Google Scholar PubMed

[3] Chiew YS, Chase JG, Shaw G, Sundaresan A, Desaive T. Model-based PEEP optimisation in mechanical ventilation. BioMed Eng Online.2011;10:111.10.1186/1475-925X-10-111Search in Google Scholar PubMed PubMed Central

[4] Mount LE. The ventilation flow-resistance and compliance of rat lungs. J Physiol. 1955;127:157–67.10.1113/jphysiol.1955.sp005246Search in Google Scholar PubMed PubMed Central

[5] van Drunen E, Chiew YS, Chase J, Shaw G, Lambermont B, Janssen N, et al. Expiratory model-based method to monitor ARDS disease state. BioMed Eng Online. 2013;12:57.10.1186/1475-925X-12-57Search in Google Scholar PubMed PubMed Central

[6] Sundaresan A, Yuta T, Hann CE, Chase JG, Shaw GM. A minimal model of lung mechanics and model-based markers for optimizing ventilator treatment in ARDS patients. Comput Methods Programs Biomed. 2009;95:166–80.10.1016/j.cmpb.2009.02.008Search in Google Scholar PubMed

[7] Schranz C, Docherty PD, Chiew YS, Möller K, Chase JG. Identifiability analysis of a pressure-depending alveolar recruitment model, in IFAC Proceedings Volumes; 2012. p. 137–42.10.3182/20120829-3-HU-2029.00015Search in Google Scholar

[8] Mols G, Kessler V, Benzing A, Lichtwarck-Aschoff M, Geiger K, Guttmann J. Is pulmonary resistance constant, within the range of tidal volume ventilation, in patients with ARDS? Bri J Anaesth. 2001;86:176–82.10.1093/bja/86.2.176Search in Google Scholar PubMed PubMed Central

[9] Langdon R, Docherty PD, Chiew Y-S, Möller K, Chase JG. Use of basis functions within a non-linear autoregressive model of pulmonary mechanics. Biomed Sig Process Contr. 2016;27:44–50.10.1016/j.bspc.2016.01.010Search in Google Scholar

[10] Damanhuri NS, Docherty PD, Chiew YS, van Drunen EJ, Desaive T, Chase JG. A patient-specific airway branching model for mechanically ventilated patients. Comput Math Methods Med. 2014.10.1155/2014/645732Search in Google Scholar PubMed PubMed Central

[11] Stahl CA, Moller K, Schumann S, Kuhlen R, Sydow M, Putensen C, et al. Dynamic versus static respiratory mechanics in acute lung injury and acute respiratory distress syndrome. Crit Care Med. 2006;34:2090–8.10.1097/01.CCM.0000227220.67613.0DSearch in Google Scholar PubMed

Published Online: 2016-9-30
Published in Print: 2016-9-1

©2016 Ruby Langdon et al., licensee De Gruyter.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

Articles in the same Issue

  1. Synthesis and characterization of PIL/pNIPAAm hybrid hydrogels
  2. Novel blood protein based scaffolds for cardiovascular tissue engineering
  3. Cell adhesion and viability of human endothelial cells on electrospun polymer scaffolds
  4. Effects of heat treatment and welding process on superelastic behaviour and microstructure of micro electron beam welded NiTi
  5. Long-term stable modifications of silicone elastomer for improved hemocompatibility
  6. The effect of thermal treatment on the mechanical properties of PLLA tubular specimens
  7. Biocompatible wear-resistant thick ceramic coating
  8. Protection of active implant electronics with organosilicon open air plasma coating for plastic overmolding
  9. Examination of dielectric strength of thin Parylene C films under various conditions
  10. Open air plasma deposited antimicrobial SiOx/TiOx composite films for biomedical applications
  11. Systemic analysis about residual chloroform in PLLA films
  12. A macrophage model of osseointegration
  13. Towards in silico prognosis using big data
  14. Technical concept and evaluation of a novel shoulder simulator with adaptive muscle force generation and free motion
  15. Usability evaluation of a locomotor therapy device considering different strategies
  16. Hypoxia-on-a-chip
  17. Integration of a semi-automatic in-vitro RFA procedure into an experimental setup
  18. Fabrication of MEMS-based 3D-μECoG-MEAs
  19. High speed digital interfacing for a neural data acquisition system
  20. Bionic forceps for the handling of sensitive tissue
  21. Experimental studies on 3D printing of barium titanate ceramics for medical applications
  22. Patient specific root-analogue dental implants – additive manufacturing and finite element analysis
  23. 3D printing – a key technology for tailored biomedical cell culture lab ware
  24. 3D printing of hydrogels in a temperature controlled environment with high spatial resolution
  25. Biocompatibility of photopolymers for additive manufacturing
  26. Biochemical piezoresistive sensors based on pH- and glucose-sensitive hydrogels for medical applications
  27. Novel wireless measurement system of pressure dedicated to in vivo studies
  28. Portable auricular device for real-time swallow and chew detection
  29. Detection of miRNA using a surface plasmon resonance biosensor and antibody amplification
  30. Simulation and evaluation of stimulation scenarios for targeted vestibular nerve excitation
  31. Deep brain stimulation: increasing efficiency by alternative waveforms
  32. Prediction of immediately occurring microsleep events from brain electric signals
  33. Determining cardiac vagal threshold from short term heart rate complexity
  34. Classification of cardiac excitation patterns during atrial fibrillation
  35. An algorithm to automatically determine the cycle length coverage to identify rotational activity during atrial fibrillation – a simulation study
  36. Deriving respiration from high resolution 12-channel-ECG during cycling exercise
  37. Reducing of gradient induced artifacts on the ECG signal during MRI examinations using Wilcoxon filter
  38. Automatic detection and mapping of double potentials in intracardiac electrograms
  39. Modeling the pelvic region for non-invasive pelvic intraoperative neuromonitoring
  40. Postprocessing algorithm for automated analysis of pelvic intraoperative neuromonitoring signals
  41. Best practice: surgeon driven application in pelvic operations
  42. Vasomotor assessment by camera-based photoplethysmography
  43. Classification of morphologic changes in photoplethysmographic waveforms
  44. Novel computation of pulse transit time from multi-channel PPG signals by wavelet transform
  45. Efficient design of FIR filter based low-pass differentiators for biomedical signal processing
  46. Nonlinear causal influences assessed by mutual compression entropy
  47. Comparative study of methods for solving the correspondence problem in EMD applications
  48. fNIRS for future use in auditory diagnostics
  49. Semi-automated detection of fractional shortening in zebrafish embryo heart videos
  50. Blood pressure measurement on the cheek
  51. Derivation of the respiratory rate from directly and indirectly measured respiratory signals using autocorrelation
  52. Left cardiac atrioventricular delay and inter-ventricular delay in cardiac resynchronization therapy responder and non-responder
  53. An automatic systolic peak detector of blood pressure waveforms using 4th order cumulants
  54. Real-time QRS detection using integrated variance for ECG gated cardiac MRI
  55. Preprocessing of unipolar signals acquired by a novel intracardiac mapping system
  56. In-vitro experiments to characterize ventricular electromechanics
  57. Continuous non-invasive monitoring of blood pressure in the operating room: a cuffless optical technology at the fingertip
  58. Application of microwave sensor technology in cardiovascular disease for plaque detection
  59. Artificial blood circulatory and special Ultrasound Doppler probes for detecting and sizing gaseous embolism
  60. Detection of microsleep events in a car driving simulation study using electrocardiographic features
  61. A method to determine the kink resistance of stents and stent delivery systems according to international standards
  62. Comparison of stented bifurcation and straight vessel 3D-simulation with a prior simulated velocity profile inlet
  63. Transient Euler-Lagrange/DEM simulation of stent thrombosis
  64. Automated control of the laser welding process of heart valve scaffolds
  65. Automation of a test bench for accessing the bendability of electrospun vascular grafts
  66. Influence of storage conditions on the release of growth factors in platelet-rich blood derivatives
  67. Cryopreservation of cells using defined serum-free cryoprotective agents
  68. New bioreactor vessel for tissue engineering of human nasal septal chondrocytes
  69. Determination of the membrane hydraulic permeability of MSCs
  70. Climate retainment in carbon dioxide incubators
  71. Multiple factors influencing OR ventilation system effectiveness
  72. Evaluation of an app-based stress protocol
  73. Medication process in Styrian hospitals
  74. Control tower to surgical theater
  75. Development of a skull phantom for the assessment of implant X-ray visibility
  76. Surgical navigation with QR codes
  77. Investigation of the pressure gradient of embolic protection devices
  78. Computer assistance in femoral derotation osteotomy: a bottom-up approach
  79. Automatic depth scanning system for 3D infrared thermography
  80. A service for monitoring the quality of intraoperative cone beam CT images
  81. Resectoscope with an easy to use twist mechanism for improved handling
  82. In vitro simulation of distribution processes following intramuscular injection
  83. Adjusting inkjet printhead parameters to deposit drugs into micro-sized reservoirs
  84. A flexible standalone system with integrated sensor feedback for multi-pad electrode FES of the hand
  85. Smart control for functional electrical stimulation with optimal pulse intensity
  86. Tactile display on the remaining hand for unilateral hand amputees
  87. Effects of sustained electrical stimulation on spasticity assessed by the pendulum test
  88. An improved tracking framework for ultrasound probe localization in image-guided radiosurgery
  89. Improvement of a subviral particle tracker by the use of a LAP-Kalman-algorithm
  90. Learning discriminative classification models for grading anal intraepithelial neoplasia
  91. Regularization of EIT reconstruction based on multi-scales wavelet transforms
  92. Assessing MRI susceptibility artefact through an indicator of image distortion
  93. EyeGuidance – a computer controlled system to guide eye movements
  94. A framework for feedback-based segmentation of 3D image stacks
  95. Doppler optical coherence tomography as a promising tool for detecting fluid in the human middle ear
  96. 3D Local in vivo Environment (LivE) imaging for single cell protein analysis of bone tissue
  97. Inside-Out access strategy using new trans-vascular catheter approach
  98. US/MRI fusion with new optical tracking and marker approach for interventional procedures inside the MRI suite
  99. Impact of different registration methods in MEG source analysis
  100. 3D segmentation of thyroid ultrasound images using active contours
  101. Designing a compact MRI motion phantom
  102. Cerebral cortex classification by conditional random fields applied to intraoperative thermal imaging
  103. Classification of indirect immunofluorescence images using thresholded local binary count features
  104. Analysis of muscle fatigue conditions using time-frequency images and GLCM features
  105. Numerical evaluation of image parameters of ETR-1
  106. Fabrication of a compliant phantom of the human aortic arch for use in Particle Image Velocimetry (PIV) experimentation
  107. Effect of the number of electrodes on the reconstructed lung shape in electrical impedance tomography
  108. Hardware dependencies of GPU-accelerated beamformer performances for microwave breast cancer detection
  109. Computer assisted assessment of progressing osteoradionecrosis of the jaw for clinical diagnosis and treatment
  110. Evaluation of reconstruction parameters of electrical impedance tomography on aorta detection during saline bolus injection
  111. Evaluation of open-source software for the lung segmentation
  112. Automatic determination of lung features of CF patients in CT scans
  113. Image analysis of self-organized multicellular patterns
  114. Effect of key parameters on synthesis of superparamagnetic nanoparticles (SPIONs)
  115. Radiopacity assessment of neurovascular implants
  116. Development of a desiccant based dielectric for monitoring humidity conditions in miniaturized hermetic implantable packages
  117. Development of an artifact-free aneurysm clip
  118. Enhancing the regeneration of bone defects by alkalizing the peri-implant zone – an in vitro approach
  119. Rapid prototyping of replica knee implants for in vitro testing
  120. Protecting ultra- and hyperhydrophilic implant surfaces in dry state from loss of wettability
  121. Advanced wettability analysis of implant surfaces
  122. Patient-specific hip prostheses designed by surgeons
  123. Plasma treatment on novel carbon fiber reinforced PEEK cages to enhance bioactivity
  124. Wear of a total intervertebral disc prosthesis
  125. Digital health and digital biomarkers – enabling value chains on health data
  126. Usability in the lifecycle of medical software development
  127. Influence of different test gases in a non-destructive 100% quality control system for medical devices
  128. Device development guided by user satisfaction survey on auricular vagus nerve stimulation
  129. Empirical assessment of the time course of innovation in biomedical engineering: first results of a comparative approach
  130. Effect of left atrial hypertrophy on P-wave morphology in a computational model
  131. Simulation of intracardiac electrograms around acute ablation lesions
  132. Parametrization of activation based cardiac electrophysiology models using bidomain model simulations
  133. Assessment of nasal resistance using computational fluid dynamics
  134. Resistance in a non-linear autoregressive model of pulmonary mechanics
  135. Inspiratory and expiratory elastance in a non-linear autoregressive model of pulmonary mechanics
  136. Determination of regional lung function in cystic fibrosis using electrical impedance tomography
  137. Development of parietal bone surrogates for parietal graft lift training
  138. Numerical simulation of mechanically stimulated bone remodelling
  139. Conversion of engineering stresses to Cauchy stresses in tensile and compression tests of thermoplastic polymers
  140. Numerical examinations of simplified spondylodesis models concerning energy absorption in magnetic resonance imaging
  141. Principle study on the signal connection at transabdominal fetal pulse oximetry
  142. Influence of Siluron® insertion on model drug distribution in the simulated vitreous body
  143. Evaluating different approaches to identify a three parameter gas exchange model
  144. Effects of fibrosis on the extracellular potential based on 3D reconstructions from histological sections of heart tissue
  145. From imaging to hemodynamics – how reconstruction kernels influence the blood flow predictions in intracranial aneurysms
  146. Flow optimised design of a novel point-of-care diagnostic device for the detection of disease specific biomarkers
  147. Improved FPGA controlled artificial vascular system for plethysmographic measurements
  148. Minimally spaced electrode positions for multi-functional chest sensors: ECG and respiratory signal estimation
  149. Automated detection of alveolar arches for nasoalveolar molding in cleft lip and palate treatment
  150. Control scheme selection in human-machine- interfaces by analysis of activity signals
  151. Event-based sampling for reducing communication load in realtime human motion analysis by wireless inertial sensor networks
  152. Automatic pairing of inertial sensors to lower limb segments – a plug-and-play approach
  153. Contactless respiratory monitoring system for magnetic resonance imaging applications using a laser range sensor
  154. Interactive monitoring system for visual respiratory biofeedback
  155. Development of a low-cost senor based aid for visually impaired people
  156. Patient assistive system for the shoulder joint
  157. A passive beating heart setup for interventional cardiology training
Downloaded on 8.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/cdbme-2016-0137/html
Scroll to top button