Home Experimental studies on 3D printing of barium titanate ceramics for medical applications
Article Open Access

Experimental studies on 3D printing of barium titanate ceramics for medical applications

  • Mark Schult EMAIL logo , Eric Buckow and Hermann Seitz
Published/Copyright: September 30, 2016

Abstract

The present work deals with the 3D printing of porous barium titanate ceramics. Barium titanate is a biocompatible material with piezoelectric properties. Due to insufficient flowability of the starting material for 3D printing, the barium titanate raw material has been modified in three different ways. Firstly, barium titanate powder has been calcined. Secondly, flow additives have been added to the powder. And thirdly, flow additives have been added to the calcined powder. Finally, a polymer has been added to the three materials and specimens have been printed from these three material mixtures. The 3D printed parts were then sintered at 1320°C. The sintering leads to shrinkage which differs between 29.51–71.53% for the tested material mixtures. The porosity of the parts is beneficial for cell growth which is relevant for future medical applications. The results reported in this study demonstrate the possibility to fabricate porous piezoelectric barium titanate parts with a 3D printer that can be used for medical applications. 3D printed porous barium titanate ceramics can especially be used as scaffold for bone tissue engineering, where the bone formation can be promoted by electrical stimulation.

1 Introduction

Materials with piezoelectric properties are advantageous for various applications. They can be used in medical technology, for example in the implant technology. Through selective electrical stimulation of piezoelectrically active implants, the bone growth can be increased, the bone resorption can be reduced and the osseointegration of the implant can be improved [1], [2], [3].

Barium titanate has excellent piezoelectric properties [4]. Furthermore, studies [2], [3], [5] have shown that this ceramic is biocompatible and can therefore be used for medical applications such as implants.

There is a great desire for individualized implants, especially in the medical technology. This is where additive manufacturing comes into play. There have already been investigations regarding the fabrication of BaTiO3 (BTO) via additive manufacturing [6], [7], [8], which are addressed in these studies. Besides the production via stereolithography processes, the direct fabrication via 3D printing (3DP) is described. Especially for 3DP a flowable powder is needed (mean grain size of about 50 μm). Here, the particle size and shape play an important role [9], [10]. Untreated BTO powder is mostly a non-flowable material with a mean grain size of a few microns, so that a preparation of the material (in the form of heat treatment) or an addition of flow additives is necessary [6], [11]. Therefore, this study uses a calcined BTO on the one hand and on the other hand an untreated BTO is used to which flow additives are added in order to remove powder agglomerations and increase the flowability. In the third approach flow additives are added to calcined BTO.

The resulting 3D printed components are porous, which is good for tissue engineering. Especially for implants, this porous structure is advantageous because the cells can then grow better [12], [13]. The 3D printed BTO ceramics can especially be used as scaffold for bone tissue engineering. The piezoelectric properties can be used to stimulate bone formation by applying an electrical filed during tissue engineering and in vivo.

2 Material and methods

2.1 Materials and material processing

For this investigation, a barium titanate (IV) – powder, <3 μm, 99% (Sigma-Aldrich, USA) is used. To bond the material, a soluble polymer granulate with a mean grain size of 50 μm is used. Solupor-Binder (Voxeljet AG, Germany) is used as a binder fluid. The binder partially dissolves the polymer granulate so that the ceramic particles glue together. In order to increase the flowability, the flow additive AEROSIL® R 8200 (Evonik, Germany) is used. Three mixtures of these materials were produced, as shown in Table 1.

Table 1:

Composition of material mixtures M1–M3.

MixtureBTO [vol%]Polymer [vol%]Flow additive [vol%]
M170 (untreated)2010
D50<3 μm
M270 (calcined)2010
D5063–80 μm
M380 (calcined)200
D50<125 μm + 125–250 μm

The first mixture (M1) consists of untreated BTO, the soluble polymer and the flow additive. R 8200 makes up 10 vol%, equivalent to 1.47 wt%.

M2 contains the same ingredients as M1, but the BTO is heat-treated before. This is done by calcinating the BTO-powder at 1300°C. The heating rate is 10 K/min and the temperature is held for 4 h. Then the material is crushed with a roller as well as a mortar and pestle. Subsequently, the powder is sieved and divided into different fractions. For this mixture, a fraction of 63–80 μm is used. Again, flow additives are added due to insufficient flowability (1 wt%).

The third mixture also contains calcined BTO. Here, the fractions <125 μm and 125–250 μm are used in a ratio of 1:2. No flow additives were used, because of the good flowability of the material mixture.

2.2 3D printing

The green parts were manufactured using a 3D printer VX500 (Voxeljet AG, Germany). The parts were printed with the binder layer by layer. For this, the entry of the binder is adapted accordingly. The volume fraction of the solvent after printing is 20.87% for M1, 14.52% for M2 and 8.3% for M3.

Simple cylindrical parts (diameter 11.7 mm, height 3.51 mm) were prepared. After the 3D printing was complete, the parts were left in the powder bed for 24 h. They were then removed from the job box, cleaned with an air blower and dried for 24 h in an oven at 40°C until the binder had completely been removed.

2.3 Sintering

First, the organic components are removed. For this purpose, the 3D printed green parts are placed in an oven (L9/R, Nabertherm, Germany) at 1000 °C for 2 h under atmospheric pressure. The heating rate is 10 K/min. Thereafter, the solid state sintering is applied to sinter the parts at 1320°C for 4 h under atmospheric pressure. For this, a tubular furnace (RHTH 120–600/18, Nabertherm, Germany) is used. In order to investigate the sintered parts, SEM analyses are made.

3 Results and discussion

3.1 Increase of the flowability

As mentioned before, the flow additive R 8200 was added to the mixtures M1 and M2. The effect of the R 8200 is shown in Figure 1, based on M2.

Figure 1: Increasing volume percentage of R 8200 in mixture M2.
Figure 1:

Increasing volume percentage of R 8200 in mixture M2.

With the increasing volume percentage of R 8200, the powder becomes more and more free-flowing. When 10 vol% is made up by R 8200, no more agglomerates can be seen, so that the material can be considered flowable. Thus, it is possible to produce a defect-free, uniform powder bed during the subsequent 3DP. The R 8200 is burned out later during the pyrolysis, which leads to a relatively high porosity.

3.2 3D printing

The 3D printed green parts are relatively unstable, but exhibit sufficient mechanical strength to allow for safe handling. The difference between loose powder and component was partly difficult to see, so that a complete exposure of the samples was often not possible (Figure 2). Nevertheless, the geometry corresponded to the CAD data with only minimal deviations (Figure 4). The amount of binder had to be increased significantly due to the addition of R 8200, because the flow additive also encases the polymer granules, so that the binder had more difficulties reaching the polymer. However, all material systems could be processed using 3DP.

Figure 2: Green part and sintered part of M1.
Figure 2:

Green part and sintered part of M1.

3.3 Sintering and shrinkage

The sintering was successful for all parts. Figure 2 shows the green part and the sintered part for the example of M1. The sintered parts show a brownish discoloration and a large shrinkage.

The conducted SEM images confirm successful sintering. Figure 3 shows low (500 ×) and high (2000 ×) magnification SEM images of the parts after sintering. On the images, the sintering necks are clearly visible. Grain growth is also visible, so that a sintering temperature of 1320°C appears to be sufficient. The grains are still clearly visible in the sintered parts of mixture M1. For M2 and M3, the individual grains seem to be fused together more. This is due the much larger grain size of M2 and M3 before sintering. Porosity is visible in all samples.

Figure 3: Low (500 ×) and high (2000 ×) magnification of the sintered parts of M1 (top); M2 (middle); M3 (bottom).
Figure 3:

Low (500 ×) and high (2000 ×) magnification of the sintered parts of M1 (top); M2 (middle); M3 (bottom).

The shrinkage was calculated based on the volume of the samples. Due to the porous structure of the green parts, the shrinkage is very high (see Figure 4).

Figure 4: Percentage of shrinkage after 3DP and sintering.
Figure 4:

Percentage of shrinkage after 3DP and sintering.

The shrinkage during the process chain is given in percent of the volume. The 3D printed parts only show very low variations. This is due to the already described difficult separation between loose powder and sample.

During the pyrolysis there were no changes in the geometry of the samples, so that they could be placed in the sintering furnace without breakage.

After sintering, a strong shrinkage was recorded for all parts (M1–M3), whereas the largest shrinkage was found in the components which were produced with the mixture M1. Here, the parts shrank by 71.53%. This is due to the very fine starting powder (<3 μm), whereas the polymer granules have a mean particle size of about 50 μm. This results in a high porosity and thus a strong shrinkage during sintering. The parts fabricated with M2 (40.55%) and M3 (29.51%) show a significant lower shrinkage, though it is still relatively high. It is important to determine whether the absolute shrinkage is constant. If so, the components could be scaled up before the 3DP, resulting in a lower relative shrinkage.

3.4 Medical applications

The 3D printed parts are suitable for medical applications, such as scaffolds. The sharpness of the green parts should be improved, but the strength is sufficient to extract the components. The shrinkage must possibly be reduced, though a larger porosity is important for a good cell growth. Thus, each patient-specific geometry can be fabricated after controlling the process parameters.

The 3D printed piezoceramics must still be activated, but this could be done following the principle outlined in [6]. Moreover, BTO is biocompatible [2, 3, 5], and can serve as a scaffold material that can be activated by electrical fields in order to stimulate osteoblasts proliferation and differentiation of osteoclasts.

4 Conclusion

This investigation demonstrated the possibility to fabricate porous piezoelectric barium titanate parts with a 3D printer. Although the shrinkage after sintering is still high, the process can be done with thermally treated as well as untreated, non-flowable powder. The shrinkage in the parts which were produced with the heat-treated BTO is lowest. However, the expenditure for the material preparation is very high. Particularly the resulting porosity may be advantageous for cell growth relating to electrical stimulation.

Further studies will focus on the polarisation of the 3D printed parts. This is necessary in order to use the piezoelectric effect, for example for implants.

Acknowledgement

The authors would like to thank Dr. Marcus Frank (EMZ, University Medicine Rostock) for the SEM analysis and the Chair of Physics of New Materials (University of Rostock) for the sintering of the green parts. The authors also wish to acknowledge the assistance of Jöran Dam.

Author’s Statement

Research funding: The author state no funding involved. Conflict of interest: Authors state no con-flict of interest. Material and Methods: Informed consent: Informed consent has been obtained from all individuals included in this study. Ethical approval: The research related to human use complies with all the relevant national regulations, institutional policies and was performed in accordance with the tenets of the Helsinki Declaration, and has been approved by the authors’ institutional re-view board or equivalent committee.

References

[1] Itoh S, Nakamura S, Nakamura M, Shinomiya K, Yamashita K. Enhanced bone ingrowth into hydroxyapatite with interconnected pores by electrical polarization. Biomat. 2006;27:5572–9.10.1016/j.biomaterials.2006.07.007Search in Google Scholar

[2] Baxter FR, Turner IG, Bowen CR, Gittings JP, Chaudhuri JB. An in vitro study of eletrically active hydroxyapatite-barium titanate ceramics using Saos-2 cells. J Mater Sci. 2009;20:1697–708.10.1007/s10856-009-3734-0Search in Google Scholar

[3] Zarkoob H, Ziaei-Rad S, Fathi M, Dadkhah H. Synthesis, characterization and bioactivity evaluation of porous barium titanate with nanostructured hydroxyapatite coating for biomedical application. Adv Eng Mat. 2012;14:B322–9.10.1002/adem.201180091Search in Google Scholar

[4] Karaki T, Yan K, Miyamoto T, Adachi M. Lead-free piezoelectric ceramics with large dielectric and piezoelectric constants manufactured from BaTiO3 nano-powder. Jpn J Appl Phys. 2007;46(Part 2):97–8.10.1143/JJAP.46.L97Search in Google Scholar

[5] Ball JP, Mound BA, Nino JC, Allen JB. Biocompatible evaluation of barium titanate foamed ceramic structures. J Biomed Mater Res A. 2014;102:2089–95.10.1002/jbm.a.34879Search in Google Scholar

[6] Gaytan SM, Cadena MA, Karim H, Delfin D, Lin Y, Espalin D, et al. Fabrication of barium titanate by binder jetting additive manufacturing technology. Ceram Int. 2015;41:6610–9.10.1016/j.ceramint.2015.01.108Search in Google Scholar

[7] Kim K, Zhu W, Qu X, Aaronson C, McCall WR, Chen S, Sirbuly DJ. 3D optical printing of piezoelectric nanoparticle-polymer composite materials. ACS Nano. 2014;8:9799–806.10.1021/nn503268fSearch in Google Scholar

[8] Jang JH, Wang S, Pilgrim SM, Schulze WA. Preparation and characterization of barium titanate suspensions for stereolithography. J Am Cer Soc. 2000;83:1804–6.10.1111/j.1151-2916.2000.tb01467.xSearch in Google Scholar

[9] Spath S, Drescher P, Seitz H. Impact of particle size of ceramic granule blends on mechanical strength and porosity of 3D printed scaffolds. Materials. 2015;8:4720–32.10.3390/ma8084720Search in Google Scholar

[10] Spath S, Seitz H. Influence of grain size and grain-size distribution on workability of granules with 3D printing. Int J Adv Manuf Tech. 2014;70:135–44.10.1007/s00170-013-5210-8Search in Google Scholar

[11] Chatterjee S, Stojanovic BD, Maiti HS. Effect of additives and powder preparation techniques on PTCR properties of barium titanate. Mater Chem Phys 2003;78:702–10.10.1016/S0254-0584(02)00381-4Search in Google Scholar

[12] Butscher A, Bohner M, Doebelin N, Galea L, Loeffel O, Müller R. Moisture based three-dimensional printing of calcium phosphate structures for scaffold engineering. Acta Biomaterialia. 2013;9:5369–78.10.1016/j.actbio.2012.10.009Search in Google Scholar PubMed

[13] Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomat. 2005;26:5474–91.10.1016/j.biomaterials.2005.02.002Search in Google Scholar PubMed

Published Online: 2016-9-30
Published in Print: 2016-9-1

©2016 Mark Schult et al., licensee De Gruyter.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

Articles in the same Issue

  1. Synthesis and characterization of PIL/pNIPAAm hybrid hydrogels
  2. Novel blood protein based scaffolds for cardiovascular tissue engineering
  3. Cell adhesion and viability of human endothelial cells on electrospun polymer scaffolds
  4. Effects of heat treatment and welding process on superelastic behaviour and microstructure of micro electron beam welded NiTi
  5. Long-term stable modifications of silicone elastomer for improved hemocompatibility
  6. The effect of thermal treatment on the mechanical properties of PLLA tubular specimens
  7. Biocompatible wear-resistant thick ceramic coating
  8. Protection of active implant electronics with organosilicon open air plasma coating for plastic overmolding
  9. Examination of dielectric strength of thin Parylene C films under various conditions
  10. Open air plasma deposited antimicrobial SiOx/TiOx composite films for biomedical applications
  11. Systemic analysis about residual chloroform in PLLA films
  12. A macrophage model of osseointegration
  13. Towards in silico prognosis using big data
  14. Technical concept and evaluation of a novel shoulder simulator with adaptive muscle force generation and free motion
  15. Usability evaluation of a locomotor therapy device considering different strategies
  16. Hypoxia-on-a-chip
  17. Integration of a semi-automatic in-vitro RFA procedure into an experimental setup
  18. Fabrication of MEMS-based 3D-μECoG-MEAs
  19. High speed digital interfacing for a neural data acquisition system
  20. Bionic forceps for the handling of sensitive tissue
  21. Experimental studies on 3D printing of barium titanate ceramics for medical applications
  22. Patient specific root-analogue dental implants – additive manufacturing and finite element analysis
  23. 3D printing – a key technology for tailored biomedical cell culture lab ware
  24. 3D printing of hydrogels in a temperature controlled environment with high spatial resolution
  25. Biocompatibility of photopolymers for additive manufacturing
  26. Biochemical piezoresistive sensors based on pH- and glucose-sensitive hydrogels for medical applications
  27. Novel wireless measurement system of pressure dedicated to in vivo studies
  28. Portable auricular device for real-time swallow and chew detection
  29. Detection of miRNA using a surface plasmon resonance biosensor and antibody amplification
  30. Simulation and evaluation of stimulation scenarios for targeted vestibular nerve excitation
  31. Deep brain stimulation: increasing efficiency by alternative waveforms
  32. Prediction of immediately occurring microsleep events from brain electric signals
  33. Determining cardiac vagal threshold from short term heart rate complexity
  34. Classification of cardiac excitation patterns during atrial fibrillation
  35. An algorithm to automatically determine the cycle length coverage to identify rotational activity during atrial fibrillation – a simulation study
  36. Deriving respiration from high resolution 12-channel-ECG during cycling exercise
  37. Reducing of gradient induced artifacts on the ECG signal during MRI examinations using Wilcoxon filter
  38. Automatic detection and mapping of double potentials in intracardiac electrograms
  39. Modeling the pelvic region for non-invasive pelvic intraoperative neuromonitoring
  40. Postprocessing algorithm for automated analysis of pelvic intraoperative neuromonitoring signals
  41. Best practice: surgeon driven application in pelvic operations
  42. Vasomotor assessment by camera-based photoplethysmography
  43. Classification of morphologic changes in photoplethysmographic waveforms
  44. Novel computation of pulse transit time from multi-channel PPG signals by wavelet transform
  45. Efficient design of FIR filter based low-pass differentiators for biomedical signal processing
  46. Nonlinear causal influences assessed by mutual compression entropy
  47. Comparative study of methods for solving the correspondence problem in EMD applications
  48. fNIRS for future use in auditory diagnostics
  49. Semi-automated detection of fractional shortening in zebrafish embryo heart videos
  50. Blood pressure measurement on the cheek
  51. Derivation of the respiratory rate from directly and indirectly measured respiratory signals using autocorrelation
  52. Left cardiac atrioventricular delay and inter-ventricular delay in cardiac resynchronization therapy responder and non-responder
  53. An automatic systolic peak detector of blood pressure waveforms using 4th order cumulants
  54. Real-time QRS detection using integrated variance for ECG gated cardiac MRI
  55. Preprocessing of unipolar signals acquired by a novel intracardiac mapping system
  56. In-vitro experiments to characterize ventricular electromechanics
  57. Continuous non-invasive monitoring of blood pressure in the operating room: a cuffless optical technology at the fingertip
  58. Application of microwave sensor technology in cardiovascular disease for plaque detection
  59. Artificial blood circulatory and special Ultrasound Doppler probes for detecting and sizing gaseous embolism
  60. Detection of microsleep events in a car driving simulation study using electrocardiographic features
  61. A method to determine the kink resistance of stents and stent delivery systems according to international standards
  62. Comparison of stented bifurcation and straight vessel 3D-simulation with a prior simulated velocity profile inlet
  63. Transient Euler-Lagrange/DEM simulation of stent thrombosis
  64. Automated control of the laser welding process of heart valve scaffolds
  65. Automation of a test bench for accessing the bendability of electrospun vascular grafts
  66. Influence of storage conditions on the release of growth factors in platelet-rich blood derivatives
  67. Cryopreservation of cells using defined serum-free cryoprotective agents
  68. New bioreactor vessel for tissue engineering of human nasal septal chondrocytes
  69. Determination of the membrane hydraulic permeability of MSCs
  70. Climate retainment in carbon dioxide incubators
  71. Multiple factors influencing OR ventilation system effectiveness
  72. Evaluation of an app-based stress protocol
  73. Medication process in Styrian hospitals
  74. Control tower to surgical theater
  75. Development of a skull phantom for the assessment of implant X-ray visibility
  76. Surgical navigation with QR codes
  77. Investigation of the pressure gradient of embolic protection devices
  78. Computer assistance in femoral derotation osteotomy: a bottom-up approach
  79. Automatic depth scanning system for 3D infrared thermography
  80. A service for monitoring the quality of intraoperative cone beam CT images
  81. Resectoscope with an easy to use twist mechanism for improved handling
  82. In vitro simulation of distribution processes following intramuscular injection
  83. Adjusting inkjet printhead parameters to deposit drugs into micro-sized reservoirs
  84. A flexible standalone system with integrated sensor feedback for multi-pad electrode FES of the hand
  85. Smart control for functional electrical stimulation with optimal pulse intensity
  86. Tactile display on the remaining hand for unilateral hand amputees
  87. Effects of sustained electrical stimulation on spasticity assessed by the pendulum test
  88. An improved tracking framework for ultrasound probe localization in image-guided radiosurgery
  89. Improvement of a subviral particle tracker by the use of a LAP-Kalman-algorithm
  90. Learning discriminative classification models for grading anal intraepithelial neoplasia
  91. Regularization of EIT reconstruction based on multi-scales wavelet transforms
  92. Assessing MRI susceptibility artefact through an indicator of image distortion
  93. EyeGuidance – a computer controlled system to guide eye movements
  94. A framework for feedback-based segmentation of 3D image stacks
  95. Doppler optical coherence tomography as a promising tool for detecting fluid in the human middle ear
  96. 3D Local in vivo Environment (LivE) imaging for single cell protein analysis of bone tissue
  97. Inside-Out access strategy using new trans-vascular catheter approach
  98. US/MRI fusion with new optical tracking and marker approach for interventional procedures inside the MRI suite
  99. Impact of different registration methods in MEG source analysis
  100. 3D segmentation of thyroid ultrasound images using active contours
  101. Designing a compact MRI motion phantom
  102. Cerebral cortex classification by conditional random fields applied to intraoperative thermal imaging
  103. Classification of indirect immunofluorescence images using thresholded local binary count features
  104. Analysis of muscle fatigue conditions using time-frequency images and GLCM features
  105. Numerical evaluation of image parameters of ETR-1
  106. Fabrication of a compliant phantom of the human aortic arch for use in Particle Image Velocimetry (PIV) experimentation
  107. Effect of the number of electrodes on the reconstructed lung shape in electrical impedance tomography
  108. Hardware dependencies of GPU-accelerated beamformer performances for microwave breast cancer detection
  109. Computer assisted assessment of progressing osteoradionecrosis of the jaw for clinical diagnosis and treatment
  110. Evaluation of reconstruction parameters of electrical impedance tomography on aorta detection during saline bolus injection
  111. Evaluation of open-source software for the lung segmentation
  112. Automatic determination of lung features of CF patients in CT scans
  113. Image analysis of self-organized multicellular patterns
  114. Effect of key parameters on synthesis of superparamagnetic nanoparticles (SPIONs)
  115. Radiopacity assessment of neurovascular implants
  116. Development of a desiccant based dielectric for monitoring humidity conditions in miniaturized hermetic implantable packages
  117. Development of an artifact-free aneurysm clip
  118. Enhancing the regeneration of bone defects by alkalizing the peri-implant zone – an in vitro approach
  119. Rapid prototyping of replica knee implants for in vitro testing
  120. Protecting ultra- and hyperhydrophilic implant surfaces in dry state from loss of wettability
  121. Advanced wettability analysis of implant surfaces
  122. Patient-specific hip prostheses designed by surgeons
  123. Plasma treatment on novel carbon fiber reinforced PEEK cages to enhance bioactivity
  124. Wear of a total intervertebral disc prosthesis
  125. Digital health and digital biomarkers – enabling value chains on health data
  126. Usability in the lifecycle of medical software development
  127. Influence of different test gases in a non-destructive 100% quality control system for medical devices
  128. Device development guided by user satisfaction survey on auricular vagus nerve stimulation
  129. Empirical assessment of the time course of innovation in biomedical engineering: first results of a comparative approach
  130. Effect of left atrial hypertrophy on P-wave morphology in a computational model
  131. Simulation of intracardiac electrograms around acute ablation lesions
  132. Parametrization of activation based cardiac electrophysiology models using bidomain model simulations
  133. Assessment of nasal resistance using computational fluid dynamics
  134. Resistance in a non-linear autoregressive model of pulmonary mechanics
  135. Inspiratory and expiratory elastance in a non-linear autoregressive model of pulmonary mechanics
  136. Determination of regional lung function in cystic fibrosis using electrical impedance tomography
  137. Development of parietal bone surrogates for parietal graft lift training
  138. Numerical simulation of mechanically stimulated bone remodelling
  139. Conversion of engineering stresses to Cauchy stresses in tensile and compression tests of thermoplastic polymers
  140. Numerical examinations of simplified spondylodesis models concerning energy absorption in magnetic resonance imaging
  141. Principle study on the signal connection at transabdominal fetal pulse oximetry
  142. Influence of Siluron® insertion on model drug distribution in the simulated vitreous body
  143. Evaluating different approaches to identify a three parameter gas exchange model
  144. Effects of fibrosis on the extracellular potential based on 3D reconstructions from histological sections of heart tissue
  145. From imaging to hemodynamics – how reconstruction kernels influence the blood flow predictions in intracranial aneurysms
  146. Flow optimised design of a novel point-of-care diagnostic device for the detection of disease specific biomarkers
  147. Improved FPGA controlled artificial vascular system for plethysmographic measurements
  148. Minimally spaced electrode positions for multi-functional chest sensors: ECG and respiratory signal estimation
  149. Automated detection of alveolar arches for nasoalveolar molding in cleft lip and palate treatment
  150. Control scheme selection in human-machine- interfaces by analysis of activity signals
  151. Event-based sampling for reducing communication load in realtime human motion analysis by wireless inertial sensor networks
  152. Automatic pairing of inertial sensors to lower limb segments – a plug-and-play approach
  153. Contactless respiratory monitoring system for magnetic resonance imaging applications using a laser range sensor
  154. Interactive monitoring system for visual respiratory biofeedback
  155. Development of a low-cost senor based aid for visually impaired people
  156. Patient assistive system for the shoulder joint
  157. A passive beating heart setup for interventional cardiology training
Downloaded on 8.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/cdbme-2016-0024/html
Scroll to top button