Home Effect of the number of electrodes on the reconstructed lung shape in electrical impedance tomography
Article Open Access

Effect of the number of electrodes on the reconstructed lung shape in electrical impedance tomography

  • Benjamin Schullcke EMAIL logo , Sabine Krueger-Ziolek , Bo Gong and Knut Moeller
Published/Copyright: September 30, 2016

Abstract

Electrical impedance tomography (EIT) is used to monitor the regional distribution of ventilation in a transversal plane of the thorax. In this manuscript we evaluate the impact of different quantities of electrodes used for current injection and voltage measurement on the reconstructed shape of the lungs. Results indicate that the shape of reconstructed impedance changes in the body depends on the number of electrodes. In this manuscript, we demonstrate that a higher number of electrodes do not necessarily increase the image quality. For the used stimulation pattern, utilizing neighboring electrodes for current injection and voltage measurement, we conclude that the shape of the lungs is best reconstructed if 16 electrodes are used.

1 Introduction

Electrical impedance tomography (EIT) is an emerging medical imaging technique, which is used in a clinical context to generate tomographic images of the thorax, depicting regional ventilation of the lungs. Currently, EIT is mainly used in the intensive care unit, where the regional information about lung ventilation is used to adjust ventilator parameters and thus prevent ventilator induced lung injuries [1]. Recently it has also been used in the examination of spontaneously breathing patients suffering from obstructive lung diseases such as chronic obstructive lung disease (COPD) [2], cystic fibrosis (CF) [3] or asthma.

In EIT an array of electrodes is attached around the circumference of the thorax. It is assumed that the impedance of the lungs increases during inspiration. Electrodes are used to inject small alternating currents and measure resulting voltages.

In clinical context difference-EIT is an established method to visualize changes in impedance, rather than absolute values of impedance. This modality is less sensitive to unknown electrode contact impedance and unknown thorax shape. A reconstruction algorithm is used to generate tomographic images of impedance variations from changes in measured electrode voltages. Usually one set of voltages is recorded at end-expiration, whereas another set of voltages is traced after inspiration. The underlying changes in impedance are reconstructed from the voltage measurements and displayed in real-time. Compared to structural images techniques, such as x-ray computed tomography (CT), the images of impedance change are severely blurred and structural information cannot be obtained. Thus, in many EIT applications only specific measures, e.g. the centre of ventilation (CoV) [4] or the global inhomogeneity index (GI) [5] are used.

However, the allocation of structural lung information (e.g. derived from CT) to functional images of the lungs (from EIT) is necessary for a comprehensive diagnosis. Therefore, EIT images should preserve the position and the shape of the lungs.

Typically the number of measured voltages is by orders of magnitude lower than the number of pixels depicting the reconstructed impedance changes. Thus, it seems obvious to increase the number of electrodes (and as a result the number of measured voltages) to increase image quality. The objective of this study is to compare different quantities of electrodes used for current injection and voltage measurement regarding their preservation of lung shape in reconstructed images.

2 Methods

2.1 Simulation of voltages

Calculations have been carried out with MATLAB 2015a (Mathworks, Natick, MA) and the EIDORS toolbox [6]. Meshes of the used finite element models (FEM) were generated using NETGEN [7].

Usually the EIT problem, i.e. reconstructing internal changes in impedance (or conductivity) from voltage measurements on the surface is solved on a discretized domain. For voltage simulations we used 3D FEM models. The height of the models was set to 1.5, the semi major axis of the elliptical base area was set to 1, the semi minor axis to 0.8. Two elliptical cylinders with a semi minor axis of 0.5 and a semi major axis of 0.9 were placed inside the virtual phantom to simulate the lungs. The centre positions of the “lung cylinders” were set to −0.45 and 0.45 on the x-axis. Circular electrodes were attached equidistantly around the circumference at a height of 0.75. An exemplarily illustration of the FEM model with 32 electrodes is depicted in Figure 1.

Figure 1 Simulation model with 32 circularly attached electrodes and elliptical cylinders to simulate the lungs.
Figure 1

Simulation model with 32 circularly attached electrodes and elliptical cylinders to simulate the lungs.

The conductivity of FEM elements belonging to the “lung cylinders” was varied between σexp = 74 mS/m and σinsp =43 mS/m to simulate conductivity changes during breathing. Elements not belonging to the “lungs” were set to a constant value of σbkg = 480 mS/m. The number of electrodes was varied systematically in steps of four from n = 8 to n = 32. The “adjacent injection pattern” was used to simulate voltage vectors vexp and vinsp, where neighbouring electrodes are used for current injection or voltage measurement, respectively. Current injecting and measuring electrodes are changed in a rotating manner. Voltages are not measured on the electrodes used for current injection, such that v(n(n3))×1.

2.2 Image reconstruction

A one-step Gauss-Newton solver was used to reconstruct conductivity changes from simulated voltage changes.

(1)x^=B(λ)z

where x^ is the vector of reconstructed conductivity changes and z contains normalized relative voltage changes such that zi=(vinsp,ivexp,i)/vexp,i, where i denotes the i-th component of the voltage vector. The reconstruction matrix B(λ) depends on the hyperparameter λ which controls the amount of regularization that is used to solve the ill-posed EIT problem. A detailed description of how to obtain the reconstruction matrix B(λ) can be found e.g. in [8]. To account for current propagation above and below the electrode plane a “dual-model 2.5D” reconstruction approach was used for image reconstruction [9].

To enable a comparison between reconstructed images with different quantities of electrodes, we chose the hyperparameter λ such that a noise amplification of 0.5, 0.75 or 1 was achieved. The noise amplification NF is defined to be

(2)NF=SNRinSNRout=mean(|z|)var(n)/mean(|Bz|)var(Bn)

where n is a noisy signal of voltage changes and Bn is a reconstruction using the noisy voltage signal [10].

2.3 Evaluation of lung shape

To evaluate the shape of the reconstructed lungs we developed the shape mismatch measure (SMM) which is defined as

(3)SMM=(bipi)(bi¬pi)pi=A^insideA^outsideAorg

with

pi={10,,ifFEMelementbelongtothelungelsebi={10,,ifx^i<0.3min(x^)else

SMM values range from 1 to −1, where SMM = 1 indicates that the area of the reconstructed lung is equal to the area of the lung used in the simulation. Therefore, A^inside=Aorg. In this case A^outside=0, which can be considered as a perfect reconstruction of the lung shape. A value of SMM = −1 indicates that the reconstruction is not useful, since no parts of the reconstructed lungs coincide with the original lung. Since reconstruction artefacts at the boundary of the domain affect the SMM calculation, elements in the outer three rings of the FEM mesh were not considered.

3 Results

An exemplary illustration of reconstructed images of conductivity changes with different number of electrodes is depicted in Figure 2.

Figure 2 Reconstruction of lung shapes with different numbers of electrodes. Left: eight electrodes; Right: 28 electrodes.
Figure 2

Reconstruction of lung shapes with different numbers of electrodes. Left: eight electrodes; Right: 28 electrodes.

The more electrodes are used for voltage measurement, the more pronounced is the extension of the reconstructed lung shape in anterior-posterior direction (y-direction), whereas the reconstructions with only few electrodes leads to compressed lungs regarding the extension in this direction (see Figure 2). Additionally, the contours of the lungs are less blurred if more electrodes are used.

However, more electrodes do not necessarily improve the image quality, as measured with the above described SMM value. In all reconstructions the lowest SMM value was obtained for n = 8. Highest SMM values are obtained for n = 16. Figure 3 reveals that SMM values decrease if more than 16 electrodes are used for current injection and voltage measurement.

Figure 3 SMM values for different quantities of electrodes. Blue circle: NF = 0.5; Red X-marks: NF = 0.75; Yellow Diamond: NF = 1.
Figure 3

SMM values for different quantities of electrodes. Blue circle: NF = 0.5; Red X-marks: NF = 0.75; Yellow Diamond: NF = 1.

4 Discussion

In this paper, we demonstrated with a simulation study that the number of electrodes used for current injection and voltage measurement influences the shape of the reconstructed images of conductivity changes. Thereby more electrodes do not necessarily improve the image quality. For the used model the reconstructions made with 16 electrodes best preserved the shape of the lungs.

In this simulation study we used the “adjacent stimulation pattern”, which is the most often used pattern for current injection and voltage measurement. Several other patterns have been developed. The effect of the quantity of electrodes needs to be examined with other patterns in future work. Additionally, simulations were carried out on a simple ellipse shaped model and electrodes were spaced equidistantly. Further research should try to answer the question how many electrodes are necessary and where they should be placed to best depict the lung shapes of individual patients? Lung shapes might be obtained from CT data, which would lead to a patient specific EIT configuration, where quantity and placement of electrodes are determined individually. This could enable an easier correlation and allocation of anomalies in the EIT images with morphological imaging techniques and thus improve the interpretability of EIT images.

Author’s Statement

Research funding: This work was partially supported by the Federal Ministry of Education and Research (BMBF) under grant no. 03FH038I3 (MOSES). Conflict of interest: Authors state no conflict of interest. Material and Methods: Informed consent: Informed consent has been obtained from all individuals included in this study. Ethical approval: The research related to human use complies with all the relevant national regulations, institutional policies and was performed in accordance with the tenets of the Helsinki Declaration, and has been approved by the authors’ institutional review board or equivalent committee.

References

[1] Frerichs I. Electrical impedance tomography (EIT) in applications related to lung and ventilation: a review of experimental and clinical activities. Physiol Meas. 2000;21:R1–21.10.1088/0967-3334/21/2/201Search in Google Scholar PubMed

[2] Vogt B, Pulletz S, Elke G, Zhao Z, Zabel P, Weiler N, et al. Spatial and temporal heterogeneity of regional lung ventilation determined by electrical impedance tomography during pulmonary function testing. J Appl Physiol. 2012;113:1154–61.10.1152/japplphysiol.01630.2011Search in Google Scholar PubMed

[3] Zhao Z, Fischer R, Frerichs I, Muller-Lisse U, Moller K. Regional ventilation in cystic fibrosis measured by electrical impedance tomography. J Cyst Fibros. 2012;11:412–8.10.1016/j.jcf.2012.03.011Search in Google Scholar PubMed

[4] Karsten J, Luepschen H, Grossherr M, Bruch HP, Leonhardt S, Gehring H, et al. Effect of PEEP on regional ventilation during laparoscopic surgery monitored by electrical impedance tomography. Acta Anaesthesiol Scand. 2011;55:878–86.10.1111/j.1399-6576.2011.02467.xSearch in Google Scholar PubMed

[5] Zhao Z, Möller K, Steinmann D, Frerichs I, Guttmann J. Evaluation of an electrical impedance tomography-based global inhomogeneity index for pulmonary ventilation distribution. Intensive Care Med. 2009;35:1900–6.10.1007/s00134-009-1589-ySearch in Google Scholar PubMed

[6] Adler A, Lionheart WR. Uses and abuses of EIDORS: an extensible software base for EIT. Physiol Meas. 2006;27:S25–42.10.1088/0967-3334/27/5/S03Search in Google Scholar PubMed

[7] Schöberl J. NETGEN An advancing front 2D/3D-mesh generator based on abstract rules. Comput Vis Sci. 1997;1:41–52.10.1007/s007910050004Search in Google Scholar

[8] Javaherian A, Movafeghi A, Faghihi R, Yahaghi E. An exhaustive criterion for estimating quality of images in electrical impedance tomography with application to clinical imaging. J Vis Commun Image Represent. 2013;24:773–85.10.1016/j.jvcir.2013.05.003Search in Google Scholar

[9] Adler A, Borsic A, Polydorides N, Lionheart WR. Simple FEMs aren’t as good as we thought: experiences developing EIDORS v3. 3. Hannover, NH, USA: Proc. Conf. EIT; 2008.Search in Google Scholar

[10] Adler A, Guardo R, Berthiaume Y. Impedance imaging of lung ventilation: do we need to account for chest expansion? IEEE Trans Biomed Eng. 1996;43:414–20.10.1109/IEMBS.1994.411917Search in Google Scholar

Published Online: 2016-9-30
Published in Print: 2016-9-1

©2016 Benjamin Schullcke et al., licensee De Gruyter.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

Articles in the same Issue

  1. Synthesis and characterization of PIL/pNIPAAm hybrid hydrogels
  2. Novel blood protein based scaffolds for cardiovascular tissue engineering
  3. Cell adhesion and viability of human endothelial cells on electrospun polymer scaffolds
  4. Effects of heat treatment and welding process on superelastic behaviour and microstructure of micro electron beam welded NiTi
  5. Long-term stable modifications of silicone elastomer for improved hemocompatibility
  6. The effect of thermal treatment on the mechanical properties of PLLA tubular specimens
  7. Biocompatible wear-resistant thick ceramic coating
  8. Protection of active implant electronics with organosilicon open air plasma coating for plastic overmolding
  9. Examination of dielectric strength of thin Parylene C films under various conditions
  10. Open air plasma deposited antimicrobial SiOx/TiOx composite films for biomedical applications
  11. Systemic analysis about residual chloroform in PLLA films
  12. A macrophage model of osseointegration
  13. Towards in silico prognosis using big data
  14. Technical concept and evaluation of a novel shoulder simulator with adaptive muscle force generation and free motion
  15. Usability evaluation of a locomotor therapy device considering different strategies
  16. Hypoxia-on-a-chip
  17. Integration of a semi-automatic in-vitro RFA procedure into an experimental setup
  18. Fabrication of MEMS-based 3D-μECoG-MEAs
  19. High speed digital interfacing for a neural data acquisition system
  20. Bionic forceps for the handling of sensitive tissue
  21. Experimental studies on 3D printing of barium titanate ceramics for medical applications
  22. Patient specific root-analogue dental implants – additive manufacturing and finite element analysis
  23. 3D printing – a key technology for tailored biomedical cell culture lab ware
  24. 3D printing of hydrogels in a temperature controlled environment with high spatial resolution
  25. Biocompatibility of photopolymers for additive manufacturing
  26. Biochemical piezoresistive sensors based on pH- and glucose-sensitive hydrogels for medical applications
  27. Novel wireless measurement system of pressure dedicated to in vivo studies
  28. Portable auricular device for real-time swallow and chew detection
  29. Detection of miRNA using a surface plasmon resonance biosensor and antibody amplification
  30. Simulation and evaluation of stimulation scenarios for targeted vestibular nerve excitation
  31. Deep brain stimulation: increasing efficiency by alternative waveforms
  32. Prediction of immediately occurring microsleep events from brain electric signals
  33. Determining cardiac vagal threshold from short term heart rate complexity
  34. Classification of cardiac excitation patterns during atrial fibrillation
  35. An algorithm to automatically determine the cycle length coverage to identify rotational activity during atrial fibrillation – a simulation study
  36. Deriving respiration from high resolution 12-channel-ECG during cycling exercise
  37. Reducing of gradient induced artifacts on the ECG signal during MRI examinations using Wilcoxon filter
  38. Automatic detection and mapping of double potentials in intracardiac electrograms
  39. Modeling the pelvic region for non-invasive pelvic intraoperative neuromonitoring
  40. Postprocessing algorithm for automated analysis of pelvic intraoperative neuromonitoring signals
  41. Best practice: surgeon driven application in pelvic operations
  42. Vasomotor assessment by camera-based photoplethysmography
  43. Classification of morphologic changes in photoplethysmographic waveforms
  44. Novel computation of pulse transit time from multi-channel PPG signals by wavelet transform
  45. Efficient design of FIR filter based low-pass differentiators for biomedical signal processing
  46. Nonlinear causal influences assessed by mutual compression entropy
  47. Comparative study of methods for solving the correspondence problem in EMD applications
  48. fNIRS for future use in auditory diagnostics
  49. Semi-automated detection of fractional shortening in zebrafish embryo heart videos
  50. Blood pressure measurement on the cheek
  51. Derivation of the respiratory rate from directly and indirectly measured respiratory signals using autocorrelation
  52. Left cardiac atrioventricular delay and inter-ventricular delay in cardiac resynchronization therapy responder and non-responder
  53. An automatic systolic peak detector of blood pressure waveforms using 4th order cumulants
  54. Real-time QRS detection using integrated variance for ECG gated cardiac MRI
  55. Preprocessing of unipolar signals acquired by a novel intracardiac mapping system
  56. In-vitro experiments to characterize ventricular electromechanics
  57. Continuous non-invasive monitoring of blood pressure in the operating room: a cuffless optical technology at the fingertip
  58. Application of microwave sensor technology in cardiovascular disease for plaque detection
  59. Artificial blood circulatory and special Ultrasound Doppler probes for detecting and sizing gaseous embolism
  60. Detection of microsleep events in a car driving simulation study using electrocardiographic features
  61. A method to determine the kink resistance of stents and stent delivery systems according to international standards
  62. Comparison of stented bifurcation and straight vessel 3D-simulation with a prior simulated velocity profile inlet
  63. Transient Euler-Lagrange/DEM simulation of stent thrombosis
  64. Automated control of the laser welding process of heart valve scaffolds
  65. Automation of a test bench for accessing the bendability of electrospun vascular grafts
  66. Influence of storage conditions on the release of growth factors in platelet-rich blood derivatives
  67. Cryopreservation of cells using defined serum-free cryoprotective agents
  68. New bioreactor vessel for tissue engineering of human nasal septal chondrocytes
  69. Determination of the membrane hydraulic permeability of MSCs
  70. Climate retainment in carbon dioxide incubators
  71. Multiple factors influencing OR ventilation system effectiveness
  72. Evaluation of an app-based stress protocol
  73. Medication process in Styrian hospitals
  74. Control tower to surgical theater
  75. Development of a skull phantom for the assessment of implant X-ray visibility
  76. Surgical navigation with QR codes
  77. Investigation of the pressure gradient of embolic protection devices
  78. Computer assistance in femoral derotation osteotomy: a bottom-up approach
  79. Automatic depth scanning system for 3D infrared thermography
  80. A service for monitoring the quality of intraoperative cone beam CT images
  81. Resectoscope with an easy to use twist mechanism for improved handling
  82. In vitro simulation of distribution processes following intramuscular injection
  83. Adjusting inkjet printhead parameters to deposit drugs into micro-sized reservoirs
  84. A flexible standalone system with integrated sensor feedback for multi-pad electrode FES of the hand
  85. Smart control for functional electrical stimulation with optimal pulse intensity
  86. Tactile display on the remaining hand for unilateral hand amputees
  87. Effects of sustained electrical stimulation on spasticity assessed by the pendulum test
  88. An improved tracking framework for ultrasound probe localization in image-guided radiosurgery
  89. Improvement of a subviral particle tracker by the use of a LAP-Kalman-algorithm
  90. Learning discriminative classification models for grading anal intraepithelial neoplasia
  91. Regularization of EIT reconstruction based on multi-scales wavelet transforms
  92. Assessing MRI susceptibility artefact through an indicator of image distortion
  93. EyeGuidance – a computer controlled system to guide eye movements
  94. A framework for feedback-based segmentation of 3D image stacks
  95. Doppler optical coherence tomography as a promising tool for detecting fluid in the human middle ear
  96. 3D Local in vivo Environment (LivE) imaging for single cell protein analysis of bone tissue
  97. Inside-Out access strategy using new trans-vascular catheter approach
  98. US/MRI fusion with new optical tracking and marker approach for interventional procedures inside the MRI suite
  99. Impact of different registration methods in MEG source analysis
  100. 3D segmentation of thyroid ultrasound images using active contours
  101. Designing a compact MRI motion phantom
  102. Cerebral cortex classification by conditional random fields applied to intraoperative thermal imaging
  103. Classification of indirect immunofluorescence images using thresholded local binary count features
  104. Analysis of muscle fatigue conditions using time-frequency images and GLCM features
  105. Numerical evaluation of image parameters of ETR-1
  106. Fabrication of a compliant phantom of the human aortic arch for use in Particle Image Velocimetry (PIV) experimentation
  107. Effect of the number of electrodes on the reconstructed lung shape in electrical impedance tomography
  108. Hardware dependencies of GPU-accelerated beamformer performances for microwave breast cancer detection
  109. Computer assisted assessment of progressing osteoradionecrosis of the jaw for clinical diagnosis and treatment
  110. Evaluation of reconstruction parameters of electrical impedance tomography on aorta detection during saline bolus injection
  111. Evaluation of open-source software for the lung segmentation
  112. Automatic determination of lung features of CF patients in CT scans
  113. Image analysis of self-organized multicellular patterns
  114. Effect of key parameters on synthesis of superparamagnetic nanoparticles (SPIONs)
  115. Radiopacity assessment of neurovascular implants
  116. Development of a desiccant based dielectric for monitoring humidity conditions in miniaturized hermetic implantable packages
  117. Development of an artifact-free aneurysm clip
  118. Enhancing the regeneration of bone defects by alkalizing the peri-implant zone – an in vitro approach
  119. Rapid prototyping of replica knee implants for in vitro testing
  120. Protecting ultra- and hyperhydrophilic implant surfaces in dry state from loss of wettability
  121. Advanced wettability analysis of implant surfaces
  122. Patient-specific hip prostheses designed by surgeons
  123. Plasma treatment on novel carbon fiber reinforced PEEK cages to enhance bioactivity
  124. Wear of a total intervertebral disc prosthesis
  125. Digital health and digital biomarkers – enabling value chains on health data
  126. Usability in the lifecycle of medical software development
  127. Influence of different test gases in a non-destructive 100% quality control system for medical devices
  128. Device development guided by user satisfaction survey on auricular vagus nerve stimulation
  129. Empirical assessment of the time course of innovation in biomedical engineering: first results of a comparative approach
  130. Effect of left atrial hypertrophy on P-wave morphology in a computational model
  131. Simulation of intracardiac electrograms around acute ablation lesions
  132. Parametrization of activation based cardiac electrophysiology models using bidomain model simulations
  133. Assessment of nasal resistance using computational fluid dynamics
  134. Resistance in a non-linear autoregressive model of pulmonary mechanics
  135. Inspiratory and expiratory elastance in a non-linear autoregressive model of pulmonary mechanics
  136. Determination of regional lung function in cystic fibrosis using electrical impedance tomography
  137. Development of parietal bone surrogates for parietal graft lift training
  138. Numerical simulation of mechanically stimulated bone remodelling
  139. Conversion of engineering stresses to Cauchy stresses in tensile and compression tests of thermoplastic polymers
  140. Numerical examinations of simplified spondylodesis models concerning energy absorption in magnetic resonance imaging
  141. Principle study on the signal connection at transabdominal fetal pulse oximetry
  142. Influence of Siluron® insertion on model drug distribution in the simulated vitreous body
  143. Evaluating different approaches to identify a three parameter gas exchange model
  144. Effects of fibrosis on the extracellular potential based on 3D reconstructions from histological sections of heart tissue
  145. From imaging to hemodynamics – how reconstruction kernels influence the blood flow predictions in intracranial aneurysms
  146. Flow optimised design of a novel point-of-care diagnostic device for the detection of disease specific biomarkers
  147. Improved FPGA controlled artificial vascular system for plethysmographic measurements
  148. Minimally spaced electrode positions for multi-functional chest sensors: ECG and respiratory signal estimation
  149. Automated detection of alveolar arches for nasoalveolar molding in cleft lip and palate treatment
  150. Control scheme selection in human-machine- interfaces by analysis of activity signals
  151. Event-based sampling for reducing communication load in realtime human motion analysis by wireless inertial sensor networks
  152. Automatic pairing of inertial sensors to lower limb segments – a plug-and-play approach
  153. Contactless respiratory monitoring system for magnetic resonance imaging applications using a laser range sensor
  154. Interactive monitoring system for visual respiratory biofeedback
  155. Development of a low-cost senor based aid for visually impaired people
  156. Patient assistive system for the shoulder joint
  157. A passive beating heart setup for interventional cardiology training
Downloaded on 9.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/cdbme-2016-0110/html
Scroll to top button