Home Influence of different test gases in a non-destructive 100% quality control system for medical devices
Article Open Access

Influence of different test gases in a non-destructive 100% quality control system for medical devices

  • Thomas Pollack EMAIL logo and Hermann Seitz
Published/Copyright: September 30, 2016

Abstract

The purpose of this research is to evaluate the detectability of defect membranes in intravenous (IV) infusion filter systems. The device under test (DUT) protects critical ill patients and has a high priority for the risk management of intensive care units. The developed quality control system stands out from other filter integrity methods because no method located on this topic represents such a simple, reliable, fast and non-destructive technique, examined without liquid. The invented method works as a pressure driven test and uses gas to identify defects. Previous studies have demonstrated the capability of detecting various types of errors. In this paper the influence of different test gases on the detectability of smallest defects is presented.

1 Introduction

The infusion therapy is a medical treatment which corrects the water and electrolyte balance of a patient, is used as total parenteral nutrition and delivers drugs rapidly. Intravenous infusion filters ensure the purity of such solutions and restrain particles, air bubbles, bacteria and bacterial endotoxins. Infusion therapy is operated from emergency medical service, nursing staff and doctors. It handles fluid from some millilitre up to 3–4 litres per hour. Unfortunately it is an inherent but critical issue of the IV system that it provides a direct route to the blood stream and thereby to all vital parts of the patient. Backhouse et al. reported in the late 1980’s about large numbers of particles contained in infusion solutions. Furthermore he stated that the source of particles is divided in extrinsic and intrinsic contaminants. Extrinsic result from manufacturing and packaging and intrinsic are introduced while preparing and dispensing the infusion and medicine. His proposed answer to this issue was the integration of a microfiltration process in form of an infusion filter in the fluid system right before the catheter [1].

De Jong et al. conduct research which show that particles, introduced through infusion therapy without filtering, recover in brain, lung, liver and kidney [2]. Sasse et al. present findings which indicate a decrease of infection rate by using infusion filters [3], which can be linked to a lower duration of hospital stay, nursing time and consequentially costs. By contrast Foster et al. reference surveys which do not prove any evidence on reduced morbidity and mortality [4]. A summary of the medical need, pros and cons and benefits of filter systems is discussed in [5].

Infusion filters are purposed for single use and produced million times a year. In the present case their period of use is 120 h. They consist of an air-venting 0.02 μm ePTFE-membrane and a liquid filtering membrane with a pore size of 0.2 μm positive charged Nylon, see Figure 1.

Figure 1 Longitudinal-section of the infusion filter system.
Figure 1

Longitudinal-section of the infusion filter system.

At present these filters are quality controlled by random sample using the bubble point test [6]. In a previous paper we presented a new invented test method and rig which works with air instead of liquid and is non-contaminating and thereby non-destructive. The quality control system is designed to control a DUT within 10 s or less, has a high reliability of the appropriated measurement equipment, detects a wide variety of defects and fulfils all requirements on a 100% quality control [7].

This paper examines the influence of different test gases instead of air to detect one of the most challenging fault errors, laser drilled holes in the fluid filtering membrane with a diameter of 2 μm.

2 Methods

Before detecting faulty systems a plenty of supposed operative filters is measured. These results represent the baseline for the quality control. A plenty of filters with known faults, like holes in the membrane, is investigated the same way. The measured volume flow of these filters is then opposed to the baseline. If the measured flow through a defect system deviates sufficiently from the supposed operatives the DUT is considered as inoperable.

2.1 The test rig and gas

The test rig, shown in Figure 2, is developed as a pneumatic system. The volume flow is induced by gauge pressure (1–5) and controlled by a high-precision pressure regulator (6). The controller can be substituted. The presented studies are carried out within a range of 0–500 mbar inlet pressure. The adjusted pressure is read off at the pressure sensor (7) which is arranged right before the closed valve (8). The volume flow through the investigated filter system (9) is measured approximately 10 s by the flowmeter (10), which operates on the principal of a laminar flow element. It consists of an air filter (11) to protect the system and an absolute pressure sensor (12) additionally. The reservoir (13) serves as a connecting point for a dewpoint transmitter (14) and a temperature sensor (15).

Figure 2 Pneumatic diagram of the test system.
Figure 2

Pneumatic diagram of the test system.

Synthetic air, argon and nitrogen are applied as test gases, which are provided as bottled gas (Linde AG). The investigations are examined to compare the influence of different atomic mass and viscosity on the detectability of defect filters.

2.2 Volume flow and prediction model

The volume flow in litre per minute (lpm) is stated under standard temperature and pressure conditions (STP), which means 1013 mbar absolute pressure (1 atm) and 0°C (273.15°K), to ensure comparability of the measurement results within different dates, ambient conditions and places.

With an inlet pressure of 500 mbar the flow regime of an IV infusion filter is assumed to be turbulent. Regarding its longitudinal-section (Figure 1) it gets obvious that the flow path is not a pipe with a long and continuous diameter, which is necessary to establish a laminar flow profile. Immediately after the housing entry a change in flow direction in form of an elbow occurs. After that the volume flow reaches the interior housing, which means a sudden expansion of the flow area. At this point it has to be assumed that the flow separates from the wall and forms vortices, right before it arrives the flat sheet membrane in form of porous structure and manages its way through the laser drilled holes in form of an orifice [11]. The measurement results confirm that the pressure decay of a compromised membrane is less than the undamaged and let more gas passing through.

The focus of this paper is in the presentation of the experimental results. Further work will focus on the required formulas which will be used to calculate the turbulent volume flow of gas through the operative and faulty filter systems.

2.3 Investigated membrane systems and types of failure

As mentioned above investigations are executed on one typical filter system, the RoweFil 120 (RF120; RoweMed AG, Parchim, Germany). The volume flow of three different gases through 24 supposed operative systems is measured to define the baseline. The fault error ‘hole in membrane’ is produced in two modes, shown in Table 2. Before assembling the filter system, the positive charged Nylon membrane is perforated one or five times by a picosecond laser (TruMicro 5 × 50, TRUMPF Laser- und Systemtechnik GmbH & Co. KG, Ditzingen, Germany) using a high-precision micromachining system (GL.5, GFH GmbH, Deggendorf, Germany).

Table 1

Properties of test gases at 1 bar and 0°C [8], [9], [10].

Test gasAtomic mass [u]Density [kg/m3]Dyn. viscosity [10E-6 Pa*s]
Synth. air1.27517.2
Argon39.9481.78421.0
Nitrogen (N2)28.0131.23416.6
Table 2

Quantity and description of investigated systems.

NameCharacteristicQty.
RF1200.2 Nylon ± 0.02 ePTFE24
RF120/11 laser drilled hole in 0.2 Nylon+ membrane18
RF120/55 laser drilled holes in 0.2 Nylon+ membrane17

3 Results and discussion

As mentioned above extensive tests with assumed operative filters were conducted before identifying filter systems with controlled defects under influence of different test gases.

3.1 Operative filter systems

Figure 3 presents the results of tests with assumed operative filter systems using synthetic air, argon and nitrogen.

Figure 3 Average volume flow from 0 to 500 mbar.
Figure 3

Average volume flow from 0 to 500 mbar.

As expected the volume flow is linear dependent on the inlet pressure. The test gases differ in their viscosity which results in different gradients of flow curves.

Within a range of < 2.0% at 500 mbar the relative standard deviation, presented in Figure 4, seems small enough for a distinct identification of defect systems and demonstrates a high reproducibility of the volume flow.

Figure 5 illustrates the measured values of 24 operative systems at 500 mbar inlet pressure fitted as histogram. The mean value is 4.98 lpm dry and clear air (STP) and the standard deviation is ± 0.07 lpm.

Figure 4 Relative standard deviation from 0 to 500 mbar.
Figure 4

Relative standard deviation from 0 to 500 mbar.

Figure 5 Histogram of 24 RF120 at 500 mbar; synth. Air.
Figure 5

Histogram of 24 RF120 at 500 mbar; synth. Air.

3.2 Detecting smallest defects

As mentioned before the measurement results of operatives and knowingly defect filters are opposed to one another to demonstrate the capability of detecting faulty systems.

Figures 68 present the test results. Every defect system is detected independent of the applied test gas. The volume flow of all knowingly fault error systems has a higher flow instead of the supposed operatives.

Figure 6 Histogram of 59 RF120 at 500 mbar; synth. Air.
Figure 6

Histogram of 59 RF120 at 500 mbar; synth. Air.

Figure 7 Histogram of 59 RF120 at 500 mbar; argon.
Figure 7

Histogram of 59 RF120 at 500 mbar; argon.

Figure 8 Histogram f 59 RF120 at 500 mbar; nitrogen.
Figure 8

Histogram f 59 RF120 at 500 mbar; nitrogen.

While argon has the lowest volume flow at 500 mbar inlet pressure it has the largest gap between operatives andinoperable with 0.11 lpm (STP). Table 3 displays the measured values at 500 mbar.

Table 3

Measured values of volume flow of different test gases.

GasAvg. flow

[lpm] STP
Rel. std. dev.

[%]
Gap

[lpm] STP
Synth. air4.981.50.07
Argon4.291.50.11
Nitrogen5.221.50.07

4 Conclusion

Previous studies with synthetic air have shown a growing gap between operatives and faulty systems with an increase of inlet pressure. The present paper investigated the influence of test gases with different viscosity and atomic mass on the reliability of detecting errors.

The examined tests demonstrate the well-known relationship between viscosity and volume flow. The higher viscosity of argon compared to nitrogen and air leads to a lower average volume flow. A greater gap when using nitrogen was expected. It is assumed that the higher volume flow of nitrogen leads to a greater turbulent flow regime and therewith reduced flow through the laser drilled holes.

The presented test method and rig have shown its capability of detecting smallest defects. The potential of changing the test gas and widen the measurement range makes the presented quality control system suitable for a wide variety of measurement tasks and devices under test.

Acknowledgement

The authors would like to thank Dr. Rigo Peters and Paul Oldorf (SLV-MV GmbH, Rostock, Germany) for the perforation (laser drilled holes) of the membrane material.

Author’s Statement

Research funding: This project is funded by the Bundesministerium für Bildung und Forschung (FKZ: 03WKCC 10; Innovative Regional Growth Cores “Centifluidic Technologies”) and is part of the BMBF-initiative “Entrepreneurial Regions” “The BMBF Innovation Initiative for the New German Länder”. Conflict of interest: Authors state no conflict of interest. Material and Methods: Informed consent: Informed consent is not applicable. Ethical approval: The conducted research is not related to either human or animal use.

References

[1] Backhouse CM, Ball PR, Booth S, Kelshaw MA, Potter SR, McCollum CN. Particulate contaminants of intravenous medications and infusions. J Pharm Pharmacol. 1987;39:241–5.10.1111/j.2042-7158.1987.tb06260.xSearch in Google Scholar PubMed

[2] De Jong WH, Hagens WI, Krystek P, Burger MC, Sips AJ, Geertsma RE. Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials 2008;29:1912–9.10.1016/j.biomaterials.2007.12.037Search in Google Scholar PubMed

[3] Sasse M, Dziuba F, Jack T, Köditz H, Kaussen T, Bertram H, et al. In-line filtration decreases systemic inflammatory response syndrome, renal and hematologic dysfunction in pediatric cardiac intensive care patients. Pediatr Cardiol. 2015;36:1270–8.10.1007/s00246-015-1157-xSearch in Google Scholar PubMed PubMed Central

[4] Foster JP, Richards R, Showell MG, Jones LJ. Intravenous in-line filters for preventing morbidity and mortality in neonates. Cochrane Database Syst Rev. 2015;8:CD005248.10.1002/14651858.CD005248.pub3Search in Google Scholar PubMed

[5] Ball PA. Intravenous in-line filters: filtering the evidence. Curr Opin Clin Nutr Metab Care 2003;6:319–325.10.1097/01.mco.0000068969.34812.5dSearch in Google Scholar PubMed

[6] Meltzer TH, Madsen, RE, Jornitz MW. The filter integrity tests. In: Jornitz MW, Meltzer TH, editors. Filtration and Purification in the Biopharmaceutical Industry. New York: Informa Healthcare; 2008. p. 297–349.Search in Google Scholar

[7] Pollack T, Seitz H. Experimental investigations on medical devices for the development of a Non-destructive quality control. Biomed Eng. 2014;59:1253–6.Search in Google Scholar

[8] Span R. D2 Stoffwerte von bedeutenden reinen Fluiden: D2.2 Trockene Luft. In: Verein Deutscher Ingenieure, editor. VDI-Wärmeatlas. Berlin: Springer Vieweg; 2013. p. 196–217.Search in Google Scholar

[9] Span R. D2 Stoffwerte von bedeutenden reinen Fluiden: D2.3 Stickstoff. In: Verein Deutscher Ingenieure, editor. VDI-Wärmeatlas. Berlin: Springer Vieweg; 2013. p. 218–39.Search in Google Scholar

[10] Kleiber M, Joh R. D3 Stoffwerte von sonstigen reinen Fluiden: D3.1 Flüssigkeiten und Gase. In: Verein Deutscher Ingenieure, editor. VDI-Wärmeatlas. Berlin: Springer Vieweg; 2013. p. 357–464.10.1007/978-3-642-19981-3_20Search in Google Scholar

[11] Idelchik IE. Handbook of hydraulic resistance. 3rd ed. Mumbai: Jaico Publ. House; 2008.Search in Google Scholar

Published Online: 2016-9-30
Published in Print: 2016-9-1

©2016 Thomas Pollack et al., licensee De Gruyter.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

Articles in the same Issue

  1. Synthesis and characterization of PIL/pNIPAAm hybrid hydrogels
  2. Novel blood protein based scaffolds for cardiovascular tissue engineering
  3. Cell adhesion and viability of human endothelial cells on electrospun polymer scaffolds
  4. Effects of heat treatment and welding process on superelastic behaviour and microstructure of micro electron beam welded NiTi
  5. Long-term stable modifications of silicone elastomer for improved hemocompatibility
  6. The effect of thermal treatment on the mechanical properties of PLLA tubular specimens
  7. Biocompatible wear-resistant thick ceramic coating
  8. Protection of active implant electronics with organosilicon open air plasma coating for plastic overmolding
  9. Examination of dielectric strength of thin Parylene C films under various conditions
  10. Open air plasma deposited antimicrobial SiOx/TiOx composite films for biomedical applications
  11. Systemic analysis about residual chloroform in PLLA films
  12. A macrophage model of osseointegration
  13. Towards in silico prognosis using big data
  14. Technical concept and evaluation of a novel shoulder simulator with adaptive muscle force generation and free motion
  15. Usability evaluation of a locomotor therapy device considering different strategies
  16. Hypoxia-on-a-chip
  17. Integration of a semi-automatic in-vitro RFA procedure into an experimental setup
  18. Fabrication of MEMS-based 3D-μECoG-MEAs
  19. High speed digital interfacing for a neural data acquisition system
  20. Bionic forceps for the handling of sensitive tissue
  21. Experimental studies on 3D printing of barium titanate ceramics for medical applications
  22. Patient specific root-analogue dental implants – additive manufacturing and finite element analysis
  23. 3D printing – a key technology for tailored biomedical cell culture lab ware
  24. 3D printing of hydrogels in a temperature controlled environment with high spatial resolution
  25. Biocompatibility of photopolymers for additive manufacturing
  26. Biochemical piezoresistive sensors based on pH- and glucose-sensitive hydrogels for medical applications
  27. Novel wireless measurement system of pressure dedicated to in vivo studies
  28. Portable auricular device for real-time swallow and chew detection
  29. Detection of miRNA using a surface plasmon resonance biosensor and antibody amplification
  30. Simulation and evaluation of stimulation scenarios for targeted vestibular nerve excitation
  31. Deep brain stimulation: increasing efficiency by alternative waveforms
  32. Prediction of immediately occurring microsleep events from brain electric signals
  33. Determining cardiac vagal threshold from short term heart rate complexity
  34. Classification of cardiac excitation patterns during atrial fibrillation
  35. An algorithm to automatically determine the cycle length coverage to identify rotational activity during atrial fibrillation – a simulation study
  36. Deriving respiration from high resolution 12-channel-ECG during cycling exercise
  37. Reducing of gradient induced artifacts on the ECG signal during MRI examinations using Wilcoxon filter
  38. Automatic detection and mapping of double potentials in intracardiac electrograms
  39. Modeling the pelvic region for non-invasive pelvic intraoperative neuromonitoring
  40. Postprocessing algorithm for automated analysis of pelvic intraoperative neuromonitoring signals
  41. Best practice: surgeon driven application in pelvic operations
  42. Vasomotor assessment by camera-based photoplethysmography
  43. Classification of morphologic changes in photoplethysmographic waveforms
  44. Novel computation of pulse transit time from multi-channel PPG signals by wavelet transform
  45. Efficient design of FIR filter based low-pass differentiators for biomedical signal processing
  46. Nonlinear causal influences assessed by mutual compression entropy
  47. Comparative study of methods for solving the correspondence problem in EMD applications
  48. fNIRS for future use in auditory diagnostics
  49. Semi-automated detection of fractional shortening in zebrafish embryo heart videos
  50. Blood pressure measurement on the cheek
  51. Derivation of the respiratory rate from directly and indirectly measured respiratory signals using autocorrelation
  52. Left cardiac atrioventricular delay and inter-ventricular delay in cardiac resynchronization therapy responder and non-responder
  53. An automatic systolic peak detector of blood pressure waveforms using 4th order cumulants
  54. Real-time QRS detection using integrated variance for ECG gated cardiac MRI
  55. Preprocessing of unipolar signals acquired by a novel intracardiac mapping system
  56. In-vitro experiments to characterize ventricular electromechanics
  57. Continuous non-invasive monitoring of blood pressure in the operating room: a cuffless optical technology at the fingertip
  58. Application of microwave sensor technology in cardiovascular disease for plaque detection
  59. Artificial blood circulatory and special Ultrasound Doppler probes for detecting and sizing gaseous embolism
  60. Detection of microsleep events in a car driving simulation study using electrocardiographic features
  61. A method to determine the kink resistance of stents and stent delivery systems according to international standards
  62. Comparison of stented bifurcation and straight vessel 3D-simulation with a prior simulated velocity profile inlet
  63. Transient Euler-Lagrange/DEM simulation of stent thrombosis
  64. Automated control of the laser welding process of heart valve scaffolds
  65. Automation of a test bench for accessing the bendability of electrospun vascular grafts
  66. Influence of storage conditions on the release of growth factors in platelet-rich blood derivatives
  67. Cryopreservation of cells using defined serum-free cryoprotective agents
  68. New bioreactor vessel for tissue engineering of human nasal septal chondrocytes
  69. Determination of the membrane hydraulic permeability of MSCs
  70. Climate retainment in carbon dioxide incubators
  71. Multiple factors influencing OR ventilation system effectiveness
  72. Evaluation of an app-based stress protocol
  73. Medication process in Styrian hospitals
  74. Control tower to surgical theater
  75. Development of a skull phantom for the assessment of implant X-ray visibility
  76. Surgical navigation with QR codes
  77. Investigation of the pressure gradient of embolic protection devices
  78. Computer assistance in femoral derotation osteotomy: a bottom-up approach
  79. Automatic depth scanning system for 3D infrared thermography
  80. A service for monitoring the quality of intraoperative cone beam CT images
  81. Resectoscope with an easy to use twist mechanism for improved handling
  82. In vitro simulation of distribution processes following intramuscular injection
  83. Adjusting inkjet printhead parameters to deposit drugs into micro-sized reservoirs
  84. A flexible standalone system with integrated sensor feedback for multi-pad electrode FES of the hand
  85. Smart control for functional electrical stimulation with optimal pulse intensity
  86. Tactile display on the remaining hand for unilateral hand amputees
  87. Effects of sustained electrical stimulation on spasticity assessed by the pendulum test
  88. An improved tracking framework for ultrasound probe localization in image-guided radiosurgery
  89. Improvement of a subviral particle tracker by the use of a LAP-Kalman-algorithm
  90. Learning discriminative classification models for grading anal intraepithelial neoplasia
  91. Regularization of EIT reconstruction based on multi-scales wavelet transforms
  92. Assessing MRI susceptibility artefact through an indicator of image distortion
  93. EyeGuidance – a computer controlled system to guide eye movements
  94. A framework for feedback-based segmentation of 3D image stacks
  95. Doppler optical coherence tomography as a promising tool for detecting fluid in the human middle ear
  96. 3D Local in vivo Environment (LivE) imaging for single cell protein analysis of bone tissue
  97. Inside-Out access strategy using new trans-vascular catheter approach
  98. US/MRI fusion with new optical tracking and marker approach for interventional procedures inside the MRI suite
  99. Impact of different registration methods in MEG source analysis
  100. 3D segmentation of thyroid ultrasound images using active contours
  101. Designing a compact MRI motion phantom
  102. Cerebral cortex classification by conditional random fields applied to intraoperative thermal imaging
  103. Classification of indirect immunofluorescence images using thresholded local binary count features
  104. Analysis of muscle fatigue conditions using time-frequency images and GLCM features
  105. Numerical evaluation of image parameters of ETR-1
  106. Fabrication of a compliant phantom of the human aortic arch for use in Particle Image Velocimetry (PIV) experimentation
  107. Effect of the number of electrodes on the reconstructed lung shape in electrical impedance tomography
  108. Hardware dependencies of GPU-accelerated beamformer performances for microwave breast cancer detection
  109. Computer assisted assessment of progressing osteoradionecrosis of the jaw for clinical diagnosis and treatment
  110. Evaluation of reconstruction parameters of electrical impedance tomography on aorta detection during saline bolus injection
  111. Evaluation of open-source software for the lung segmentation
  112. Automatic determination of lung features of CF patients in CT scans
  113. Image analysis of self-organized multicellular patterns
  114. Effect of key parameters on synthesis of superparamagnetic nanoparticles (SPIONs)
  115. Radiopacity assessment of neurovascular implants
  116. Development of a desiccant based dielectric for monitoring humidity conditions in miniaturized hermetic implantable packages
  117. Development of an artifact-free aneurysm clip
  118. Enhancing the regeneration of bone defects by alkalizing the peri-implant zone – an in vitro approach
  119. Rapid prototyping of replica knee implants for in vitro testing
  120. Protecting ultra- and hyperhydrophilic implant surfaces in dry state from loss of wettability
  121. Advanced wettability analysis of implant surfaces
  122. Patient-specific hip prostheses designed by surgeons
  123. Plasma treatment on novel carbon fiber reinforced PEEK cages to enhance bioactivity
  124. Wear of a total intervertebral disc prosthesis
  125. Digital health and digital biomarkers – enabling value chains on health data
  126. Usability in the lifecycle of medical software development
  127. Influence of different test gases in a non-destructive 100% quality control system for medical devices
  128. Device development guided by user satisfaction survey on auricular vagus nerve stimulation
  129. Empirical assessment of the time course of innovation in biomedical engineering: first results of a comparative approach
  130. Effect of left atrial hypertrophy on P-wave morphology in a computational model
  131. Simulation of intracardiac electrograms around acute ablation lesions
  132. Parametrization of activation based cardiac electrophysiology models using bidomain model simulations
  133. Assessment of nasal resistance using computational fluid dynamics
  134. Resistance in a non-linear autoregressive model of pulmonary mechanics
  135. Inspiratory and expiratory elastance in a non-linear autoregressive model of pulmonary mechanics
  136. Determination of regional lung function in cystic fibrosis using electrical impedance tomography
  137. Development of parietal bone surrogates for parietal graft lift training
  138. Numerical simulation of mechanically stimulated bone remodelling
  139. Conversion of engineering stresses to Cauchy stresses in tensile and compression tests of thermoplastic polymers
  140. Numerical examinations of simplified spondylodesis models concerning energy absorption in magnetic resonance imaging
  141. Principle study on the signal connection at transabdominal fetal pulse oximetry
  142. Influence of Siluron® insertion on model drug distribution in the simulated vitreous body
  143. Evaluating different approaches to identify a three parameter gas exchange model
  144. Effects of fibrosis on the extracellular potential based on 3D reconstructions from histological sections of heart tissue
  145. From imaging to hemodynamics – how reconstruction kernels influence the blood flow predictions in intracranial aneurysms
  146. Flow optimised design of a novel point-of-care diagnostic device for the detection of disease specific biomarkers
  147. Improved FPGA controlled artificial vascular system for plethysmographic measurements
  148. Minimally spaced electrode positions for multi-functional chest sensors: ECG and respiratory signal estimation
  149. Automated detection of alveolar arches for nasoalveolar molding in cleft lip and palate treatment
  150. Control scheme selection in human-machine- interfaces by analysis of activity signals
  151. Event-based sampling for reducing communication load in realtime human motion analysis by wireless inertial sensor networks
  152. Automatic pairing of inertial sensors to lower limb segments – a plug-and-play approach
  153. Contactless respiratory monitoring system for magnetic resonance imaging applications using a laser range sensor
  154. Interactive monitoring system for visual respiratory biofeedback
  155. Development of a low-cost senor based aid for visually impaired people
  156. Patient assistive system for the shoulder joint
  157. A passive beating heart setup for interventional cardiology training
Downloaded on 15.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/cdbme-2016-0130/html
Scroll to top button