Startseite The pseudosymmetric crystal structure of 3-((1R,2S)-1-methylpyrrolidin-1-ium-2-yl)pyridin-1-ium hexachloridostannate(IV), C10H16N2SnCl6
Artikel Open Access

The pseudosymmetric crystal structure of 3-((1R,2S)-1-methylpyrrolidin-1-ium-2-yl)pyridin-1-ium hexachloridostannate(IV), C10H16N2SnCl6

  • Marie Barbara Wolke und Guido J. Reiss ORCID logo EMAIL logo
Veröffentlicht/Copyright: 18. April 2022

Abstract

C10H16N2SnCl6, monoclinic, I2 (no. 5), a = 14.0477(4) Å, b = 8.9140(2) Å, c = 27.6199(6) Å, β = 93.060(2)°, Z = 8, V = 3453.67(15) Å3, R gt (F) = 0.0395, wR ref  = 0.0858, T = 290 K.

CCDC no.: 2161230

A packing diagram of the title crystal structure is shown in the figure with view along [0 1 0]. This figure contains the asymmetric unit shown as displacement ellipsoids and additional [SnCl6]2− anions documenting a layered stacking of the cationic and anionic layers in the structure along [001]. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Colorless block
Size: 0.31 × 0.13 × 0.07 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 2.39 mm−1
Diffractometer, scan mode: Xcalibur, ω
θ max, completeness: 26.8°, >99%
N(hkl)measured, N(hkl)unique, R int: 18,562, 7301, 0.044
Criterion for I obs, N(hkl)gt: I obs > 2 σ(I obs), 6213
N(param)refined: 345
Programs: CrysAlisPRO [1], SHELX [2], [3], [4], [5], Diamond [6]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
Sn1 −0.00653 (6) 0.01949 (9) 0.75381 (3) 0.01665 (14)
Sn2 0.24846 (6) 0.27716 (9) 0.50087 (3) 0.01657 (14)
Cl1 −0.0540 (2) 0.0570 (3) 0.83703 (9) 0.0232 (6)
Cl2 0.08369 (18) −0.2034 (3) 0.78080 (8) 0.0184 (5)
Cl3 0.1336 (2) 0.1710 (3) 0.77285 (10) 0.0257 (6)
Cl4 −0.1475 (2) −0.1351 (3) 0.73679 (10) 0.0263 (6)
Cl5 −0.0969 (2) 0.2395 (3) 0.72606 (9) 0.0254 (6)
Cl6 0.0380 (2) −0.0159 (3) 0.67088 (9) 0.0316 (7)
Cl7 0.1491 (2) 0.4960 (3) 0.51294 (9) 0.0247 (6)
Cl8 0.1319 (2) 0.1147 (3) 0.53921 (9) 0.0211 (6)
Cl9 0.3290 (2) 0.3230 (3) 0.57950 (9) 0.0209 (6)
Cl10 0.17165 (19) 0.2361 (3) 0.42098 (9) 0.0199 (6)
Cl11 0.36559 (19) 0.4381 (3) 0.46222 (9) 0.0193 (6)
Cl12 0.3476 (2) 0.0556 (3) 0.48830 (9) 0.0237 (6)
N1 0.1352 (6) 0.6924 (10) 0.3662 (3) 0.033 (2)
H1 0.099369 0.749257 0.340861 0.039*
N2 −0.1152 (7) 0.3285 (10) 0.3684 (3) 0.028 (2)
H2 −0.133300 0.247836 0.382316 0.033*
N3 0.5965 (6) 0.7806 (8) 0.3951 (3) 0.0231 (18)
H3 0.568927 0.732869 0.365633 0.028*
N4 0.3882 (7) 1.1919 (10) 0.3762 (3) 0.025 (2)
H4 0.365196 1.264961 0.392203 0.030*
C1 0.1870 (12) 0.803 (2) 0.4004 (5) 0.062 (5)
H1A 0.244586 0.757805 0.414929 0.074*
H1B 0.204268 0.892561 0.383086 0.074*
C2 0.1183 (11) 0.8406 (14) 0.4390 (5) 0.060 (4)
H2A 0.102276 0.946367 0.437803 0.072*
H2B 0.146729 0.817800 0.470967 0.072*
C3 0.0284 (9) 0.7444 (11) 0.4285 (4) 0.033 (3)
H3A −0.021216 0.801231 0.411042 0.039*
H3B 0.003914 0.705691 0.458242 0.039*
C4 0.0663 (8) 0.6161 (12) 0.3968 (4) 0.027 (3)
H4A 0.101755 0.545552 0.418210 0.032*
C5 −0.0086 (7) 0.5307 (13) 0.3685 (4) 0.023 (2)
C6 −0.0414 (9) 0.4023 (14) 0.3882 (4) 0.027 (3)
H6 −0.011029 0.365223 0.416434 0.033*
C7 −0.0566 (8) 0.5786 (12) 0.3256 (4) 0.024 (3)
H7 −0.035991 0.665383 0.310688 0.029*
C8 −0.1324 (8) 0.5025 (15) 0.3050 (4) 0.027 (2)
H8 −0.163309 0.535682 0.276342 0.032*
C9 −0.1624 (9) 0.3723 (14) 0.3284 (4) 0.029 (3)
H9 −0.214674 0.317998 0.315898 0.035*
C10 0.2006 (9) 0.5910 (15) 0.3430 (5) 0.045 (4)
H10A 0.164888 0.522523 0.322255 0.067*
H10B 0.236880 0.535587 0.367418 0.067*
H10C 0.243079 0.648172 0.324096 0.067*
C11 0.6987 (9) 0.7324 (14) 0.4024 (5) 0.037 (3)
H11A 0.706365 0.629582 0.391700 0.044*
H11B 0.719783 0.739310 0.436301 0.044*
C12 0.7551 (7) 0.8376 (11) 0.3723 (4) 0.031 (3)
H12A 0.780808 0.784583 0.345220 0.037*
H12B 0.807577 0.881156 0.391769 0.037*
C13 0.6851 (7) 0.9610 (11) 0.3539 (4) 0.021 (2)
H13A 0.714282 1.059379 0.356729 0.025*
H13B 0.664249 0.943856 0.320260 0.025*
C14 0.6031 (8) 0.9475 (11) 0.3864 (4) 0.023 (2)
H14 0.621425 0.996212 0.417276 0.027*
C15 0.5085 (7) 1.0113 (12) 0.3680 (3) 0.017 (2)
C16 0.4692 (8) 1.1317 (12) 0.3929 (4) 0.019 (2)
H16 0.500153 1.168934 0.420975 0.023*
C17 0.4606 (8) 0.9630 (12) 0.3255 (4) 0.022 (2)
H17 0.485622 0.885839 0.307418 0.026*
C18 0.3738 (8) 1.0318 (14) 0.3100 (3) 0.025 (2)
H18 0.340635 0.998178 0.282004 0.030*
C19 0.3389 (8) 1.1458 (12) 0.3355 (4) 0.026 (3)
H19 0.281914 1.192126 0.325324 0.031*
C20 0.5386 (8) 0.7378 (12) 0.4364 (3) 0.030 (3)
H20A 0.542115 0.631202 0.441143 0.045*
H20B 0.473499 0.766648 0.429470 0.045*
H20C 0.562923 0.787848 0.465245 0.045*

Source of material

All chemicals were obtained from commercial sources and used as purchased.

In a representative experiment 0.437 g SnCl4 (1.24 mmol; Riedel-de Haen) were dissolved in 1 ml concentrated hydrochloric acid (37%, Sigma–Aldrich). To this mixture 0.2 ml (0.202 g; 1.24 mmol) S-nicotine (Acros Organis; systematic name: S-3-[1-methylpyrrolidin-2-yl]pyridine) was added. In the next step additional hot concentrated hydrochloric acid was added until the precipitated solids are dissolved. For instant crystallization the solution was manipulated with a glass pipette. The title compound decomposes as 270 °C (monitored by differential scanning calorimetry [DSC]).

Experimental details

A crystal of the title compound was directly selected from the mother liquor and mounted on a Xcalibur four-circle diffractometer equipped with the EOS detector [1]. An absorption correction was applied [1]. The structure solution and the refinement were successfully carried out using the SHELX program system [2, 3, 5]. Hydrogen atoms were finally included in the refinement using standard riding models implemented in the SHELXL software package [2, 3]. The maximum residual peak of 0.79 e Å−3 is located near Cl2 (0.70 Å) and the deepest hole is −0.72 e Å−3, which is 0.70 Å apart from Sn2. The figure was created using the Diamond software [6].

Comment

Introduction

A recently performed survey for nicotine-containing crystal structures in the Cambridge Structural Database [7] gave approximately 50 hits. As discussed before, structural data are available for (a) metal complexes, which contain neutral nicotine ligands; (b) a small number of co-crystals containing neutral nicotine as one of the components; (c) some examples for pyrrolidinyl-monoprotonated nicotinium salts; and (d) mono-protonated nicotinium as a cationic ligand [8]. In detail only a limited number of examples of salt structures containing doubly protonated nicotinium cations NicH2 have been reported so far [8]. This contribution is part of our continuing interest in synthesis, characterization and understanding of hydrogen-bonding as well as packing schemes of nicotinium salts [8], [9], [10]. The [SnCl6]2− counterion used for this study is a bulky, medium-strong hydrogen-bond acceptor, which is often used by us [11] and many other groups [12], [13], [14], [15]. This contribution is also part of our longstanding interest in the structures and hydrogen-bonding schemes of hexahalogenidometallates, their packing schemes and associated pseudosymmetry problems [11, 16], [17], [18].

Structural comments

The title structure crystallizes in the non-centrosymmetric space group I2 (no. 5). There are two doubly protonated nicotiniums cations (systematic name: 3-((1R,2S)-1-methylpyrrolidin-1-ium-2-yl)pyridin-1-ium; NicH2) and two [SnCl6]2− anions in the asymmetric unit (see the figure). All ions are in general positions. Bond lengths and angles within the two crystallographically independent NicH2 cations are all in the expected ranges [8], [9], [10]. The same is true for the [SnCl6]2− anion [11], [12], [13], [14], [15]. In detail, the protonation at the nitrogen of the pyrrolidinyl moiety creates a chiral center with the descriptor R according to the Cahn–Ingold–Prelog priority rules. This finding came as no surprise, as all quality structure determinations containing NicH2 by now show this configuration. Thus the title structure is another example, which pronounces the preference of the enantiomeric protonation of the pyrrolidinyl moiety [8], [9], [10]. The Sn–Cl distances in the [SnCl6]2− anions range from 2.421(3)–2.469(2) Å and the cis-angles are in the range of 89.14(10)–91.73(10)°. In detail there is an internal correspondence between the weak hydrogen bonds accepted by the [SnCl6]2− anions and the Sn–Cl distances. For example the Sn2–Cl8 of 2.466(2) Å corresponds to the shortest NH⋯Cl hydrogen bonds (N⋯Cl: 3.204(9) Å).

Group-subgroup relation and pseudosymmetry

The title structure shows an almost centrosymmetric arrangement of the [SnCl6]2− anions. We have shown several times that the presence of pseudosymmetry in a structure requires special procedures of data collection and structure refinement [16, 17, 19], [20], [21]. Thus we refined the diffraction data suggesting the monoclinic space group I2/a (no. 15), even though it is quite clear that this space group is not allowed, as we used the pure enantimorphic S-nicotine as the starting material.

The test refinement in the centrosymmetric space group I2/a (no. 15) showed that the asymmetric unit contains one cation in general position and two halfs of [SnCl6]2− anions located on two inversion centers (0, 0, 0; and 0.25, 0.25, 0.75). This finding came as no surprise, as in related cases [16, 22], the hexahalogenidometallate anions reside on two different inversion centers to produce the well known stacking of alternating hexahalogenidometallate layers. In the title structure the aforementioned layer are stacked along the crystallographic c direction. These layers are characterized by the fact that the octahedra of neighboring layers are tilted towards each other (see the figure). It was more surprising that the pyridylium moiety of the cation also shows a centrosymmetric arrangement.

Thus the true non-centrosymmetric structure (space group I2) is the sub group of the hypothetic centrosymmetric structure in the space group I2/a. They are connected by a translationengleiche group-subgroup relation with the index 2 (Origin shift: 0, 0, 0.25; see Table 2) [23, 24].

The pseudosymmetry problem in this structure of cause affects the intensity distribution of the reciprocal lattice. Consequently reflections that would be absent in the case of an a-glide plane (h0l: h, l = 2n − 1) are much weaker than general reflections. Furthermore the calculated Flack parameters are near zero, but the relatively large standard uncertainties are results of pseudo-symmetrically arrangements of most atoms in the structure (Flack parameter: 0.08(4) by classical fit to all intensities; 0.05(2) from 2471 selected quotients (Parsons’ method) [5]).

Packing

As mentioned before the [SnCl6]2− anions are stacked along the crystallographic c direction. The NicH2 cations are located between these layers (see the figure). Each anionic layer consists of only one of the two crystallographically independent [SnCl6]2− anions (Sn1 at c = 0.25; 0.75; Sn2 at c = 0, 0.5; see the figure). The octahedra within both layers are tilted to each other as a consequence of the space group symmetry. The connections between cations and anions are furnished by weak NH⋯Cl hydrogen bonds. Consequently the title structure can be attributed as layered with separated cationic and anionic layers.

The Raman spectroscopy

Raman spectra were recorded using a Bruker MultiRAM FT-Raman spectrometer (apodized resolution: 4 cm−1). The typical signals [25], [26], [27] for the [SnCl6]2− anions are found at 310 cm−1 (very strong, ν 1); 238 cm−1 (medium, ν 2); 163 cm−1 (strong, ν 4/ν 5); 115 cm−1 (strong), respectively.


Corresponding author: Guido J. Reiss, Institut für Anorganische Chemie und Strukturchemie, Lehrstuhl II: Material- und Strukturforschung, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany, E-mail:

Funding source: Ministry of Innovation, Science and Research of North-Rhine Westphalia

Funding source: German Research Foundation

Award Identifier / Grant number: INST 208/533-1

Award Identifier / Grant number: 162659349

Funding source: Heinrich-Heine-Universität Düsseldorf

Award Identifier / Grant number: ULBD-22-8483

Acknowledgments

We thank E. Hammes for technical support and T. Herrmann for the DSC measurement.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This study was financially supported by the Ministry of Innovation, Science and Research of North-Rhine Westphalia and the German Research Foundation (DFG) for financial support (Xcalibur diffractometer; INST 208/533-1, project no. 162659349). Finally, funding by the open access fund of the Heinrich-Heine-Universität Düsseldorf is also gratefully acknowledged (ULBD-22-8483).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Oxford Diffraction. CrysAlispro (version 1.171.40.45a); Oxford Diffraction Ltd.: Oxford, UK, 2019.Suche in Google Scholar

2. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/S0108767307043930.Suche in Google Scholar PubMed

3. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/S2053229614024218.Suche in Google Scholar PubMed PubMed Central

4. Hübschle, C. B., Sheldrick, G. M., Dittrich, B. ShelXle: a Qt graphical user interface for SHELXL. J. Appl. Crystallogr. 2011, 44, 1281–1284; https://doi.org/10.1107/S0021889811043202.Suche in Google Scholar PubMed PubMed Central

5. Parsons, S., Flack, H. D., Wagner, T. Use of intensity quotients and differences in absolute structure refinement. Acta Crystallogr. 2013, B69, 249–259; https://doi.org/10.1107/S2052519213010014.Suche in Google Scholar PubMed PubMed Central

6. Brandenburg, K. DIAMOND. Visual Crystal Structure Information System (ver. 4.5.2); Crystal Impact: Bonn, Germany, 2018.Suche in Google Scholar

7. Groom, C. R., Allen, F. H. The Cambridge Structural Database in retrospect and prospect. Angew. Chem. Int. Ed. 2014, 53, 662–671; https://doi.org/10.1002/anie.201306438.Suche in Google Scholar PubMed

8. Reiss, G. J. The crystal structure of 3-((1R,2S)-1-methylpyrrolidin-1-ium-2-yl)pyridin-1-ium tetrachloridomanganate(II), C10H16Cl4MnN2. Z. Kristallogr. N. Cryst. Struct. 2020, 235, 415–417; https://doi.org/10.1515/ncrs-2019-0717.Suche in Google Scholar

9. Reiss, G. J., Sergeeva, A. The crystal structure of 3-((1R,2S)-1-methylpyrrolidin-1-ium-2-yl)pyridin-1-ium tetrachloridocobaltate(II) monohydrate, C10H18Cl4CoN2O. Z. Kristallogr. N. Cryst. Struct. 2017, 232, 159–161; https://doi.org/10.1515/ncrs-2016–0245.10.1515/ncrs-2016-0245Suche in Google Scholar

10. Reiss, G. J. I5− polymers with a layered arrangement: synthesis, spectroscopy, and structure of a new polyiodide salt in the nicotine/HI/I2 system. Z. Naturforsch. 2015, B70, 735–739; https://doi.org/10.1515/znb-2015-0092.Suche in Google Scholar

11. Reiss, G. J., Wyshusek, M. The layered crystal structure of bis(theophyllinium) hexachloridostannate(IV), C14H18N8O8SnCl6. Z. Kristallogr. N. Cryst. Struct. 2021, 236, 989–992; https://doi.org/10.1515/ncrs-2021-0185.Suche in Google Scholar

12. Szafrański, M., Ståhl, K. Phase transitions in layered diguanidinium hexachlorostannate(IV). Cryst. Growth Des. 2016, 16, 2157–2166; https://doi.org/10.1021/acs.cgd.5b01830.Suche in Google Scholar

13. Ndiolene, A., Diop, T., Boye, M. S., Diasse-Sarr, A., Englert, U. A new organic-inorganic compound, ethylenediammonium hexachloridostannate(IV) p-anisaldehyde disolvate. Acta Crystallogr. 2021, E77, 696–699; https://doi.org/10.1107/S205698902100579X.Suche in Google Scholar PubMed PubMed Central

14. Moussa, O. B., Chebbi, H., Arfaoui, Y., Falvello, L. R., Tomas, M., Zid, M. F. Structural study, vibrational and optical properties, Hirshfeld surface analysis and DFT investigation of a novel organic cation hexachloridostannate(IV), (C5H8N3)2[SnCl6]. J. Mol. Struct. 2019, 1195, 344–354; https://doi.org/10.1016/j.molstruc.2019.05.066.Suche in Google Scholar

15. Manonmani, M., Balakrishnan, C., Dhanalakshmi, M., Ahamed, S. R., Vinitha, G., Sockalingam, R. M. Synthesis, structure, third-order nonlinear optical properties and Hirshfeld surface analysis of tetrakis(azepanium) hexachlorostannate(IV) dichloride and tetrakis(azepanium) hexabromostannate(IV) dibromide. J. Mol. Struct. 2021, 1227, 129515; https://doi.org/10.1016/j.molstruc.2020.129515.Suche in Google Scholar

16. Reiss, G. J. The pseudosymmetric structure of bis(diisopropylammonium) hexachloroiridate(IV) and its relationship to potassium hexachloroiridate(III). Acta Crystallogr. E 2002, 58, m47–m50; https://doi.org/10.1107/S1600536802000417.Suche in Google Scholar

17. Reiss, G. J. A reinvestigation of Wilm’s salt, (NH4)4[RhCl6]NO3-structure, spectroscopy and thermal analysis. Z. Kristallogr. - Cryst. Mater. 2002, 217, 550–556; https://doi.org/10.1524/zkri.217.10.550.20794.Suche in Google Scholar

18. Ouasri, A., Rhandour, A., Schloots, S., Reiss, G. J. The crystal structure of bis(diethylammonium) hexachloridoplumbate(IV) derived from powder diffraction data and its relation to structurally related hexachloridometallate salts. J. Chem. Crystallogr. 2017, 47, 173–181; https://doi.org/10.1007/s10870-017-0695-x.Suche in Google Scholar

19. Reiss, G. J., Konietzny, S. How realistic are alternating C–C-bond lengths in s-cis-1,3-butadiene transition metal complexes? J. Chem. Soc., Dalton Trans. 2002, 862–864; https://doi.org/10.1039/B109454H.Suche in Google Scholar

20. Reiss, G. J. Redetermination of bis(h4-1,3-cyclohexadiene)monocarbonyliron. Z. Naturforsch. B Chem. Sci. 2002, 57, 479–482; https://doi.org/10.1515/znb-2002-0501.Suche in Google Scholar

21. Reiss, G. J., Engel, J. S. Hydrogen bonded 1,10-diammoniodecane - an example of an organo-template for the crystal engineering of polymeric polyiodides. CrystEngComm 2002, 4, 155–161; https://doi.org/10.1039/B203499A.Suche in Google Scholar

22. Collect, R. K., Fergusson, J. E., Penfold, B. R., Rankin, D. A., Robinson, W. T. The crystal-structures of K3[IrCl6] and Cs2[IrCl5H2O] and interpretation of the N. Q. R. data of chloroiridates(III). Aust. J. Chem. 1987, 40, 2115–2122; https://doi.org/10.1071/CH9872115.Suche in Google Scholar

23. Bärnighausen, H. Group-subgroup relations between space groups: a useful tool in crystal chemistry. Commun. Math. Chem. 1980, 9, 139–175.Suche in Google Scholar

24. Müller, U. Relating crystal structures by group-subgroup relations. In International Tables for Crystallography, Symmetry Relations Between Space Groups, 2nd ed.; Wondratschek, H., Müller, U., Eds. John Wiley & Sons: Chichester, Vol. A1, 2010; p. 44.10.1107/97809553602060000795Suche in Google Scholar

25. Reiss, G. J., Helmbrecht, C. Bis(diisopropylammonium) hexachloridostannate(IV). Acta Crystallogr. 2012, E68, m1402–m1403; https://doi.org/10.1107/S1600536812043371.Suche in Google Scholar PubMed PubMed Central

26. Brockner, W., Demiray, A. F. Raman-Spektroskopische Untersuchungen an PCl5. IV. Das System PCl5 – SnCl4. Z. Naturforsch. 1979, 34, 976–978; https://doi.org/10.1515/zna-1979-0808.Suche in Google Scholar

27. Pelzl, J., Engels, P., Florian, F. Raman spectroscopic study of the structural phase transitions in K2SnCl6. Phys. Status Solidi 1977, 82, 145–148; https://doi.org/10.1002/pssb.2220820114.Suche in Google Scholar

Received: 2022-01-11
Accepted: 2022-03-23
Published Online: 2022-04-18
Published in Print: 2022-08-26

© 2022 Marie Barbara Wolke and Guido J. Reiss, published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Artikel in diesem Heft

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of N-((3s,5s,7s)-adamantan-1-yl)-2-(3-benzoylphenyl)propanamide, C26H29NO2
  4. The crystal structure of bis(μ2-5-chloro-2-oxido-N-(1-oxidopropylidene)benzohydrazonato-κ5 N,O,O′:N′,O′′)-octakis(pyridine-κ1 N)trinickel(II) C60H56Cl2N12Ni3O6
  5. The crystal structure of 3-(4-chlorophenyl)-1,5-di-p-tolylpentane-1,5-dione, C25H23ClO2
  6. The crystal structure of 2,4,4-triphenyl-4H-benzo[b][1,4]oxaphosphinin-4-ium bromide – dichloromethane (1/1), C27H22BrCl2OP
  7. The crystal structure of 2-(3,6-di-tert-butyl-1,8-diiodo-9H-carbazol-9-yl)acetonitrile, C22H24I2N2
  8. Crystal structure of 3-phenylpropyl 2-(6-methoxynaphthalen-2-yl)propanoate, C23H24O3
  9. The crystal structure of (4-fluorophenyl)(5-(hydroxymethyl)furan-2-yl)methanol, C12H11FO3
  10. Crystal structure of the dihydrate of tetraethylammonium 1,3,5-thiadiazole-5-amido-2-carbamate, C11H27N5O4S
  11. Crystal structure of (Z)-4-[(p-tolylamino)(furan-2-yl)methylene]-3-phenyl-1-1-p-tolyl-1H-phenyl-1H-pyrazol-5(4H)-one, C28H23N3O2
  12. The crystal structure of (E)-3-(2-chlorophenyl)-1-ferrocenylprop-2-en-1-one, C19H15ClFeO
  13. The pseudosymmetric crystal structure of 3-((1R,2S)-1-methylpyrrolidin-1-ium-2-yl)pyridin-1-ium hexachloridostannate(IV), C10H16N2SnCl6
  14. Crystal structure of (2-(1-hydroxyheptyl)octahydro-8aH-chromene-5,8,8a-triol), C16H30O5
  15. The crystal structure of N-cyclohexyl-3-hydroxy-4-methoxybenzamide, C14H19NO3
  16. Crystal structure of 1-(4-hydroxybenzyl)-4-methoxy-9,10-dihydrophenanthrene-2,7-diol from Arundina graminifolia, C22H20O4
  17. The crystal structure of N-cyclopentyl-3-hydroxy-4-methoxybenzamide, C13H17NO3
  18. The crystal structure of 2,5,5-triphenyl-3,5-dihydro-4H-imidazol-4-one, C21H16N2O
  19. Crystal structure of 1H-1,2,3-Triazolo[4,5-b]-pyridin-4-ium nitrate, C5H5N5O3
  20. Crystal structure of (Z)-4-(((4-bromophenyl)amino)(furan-2-yl)methylene)-2,5-diphenyl-2,4-dihydro-3H-pyrazol-3-one, C26H18BrN3O2
  21. Crystal structure of 2-(4-methoxyphenyl)-3-methyl-1,8-naphthyridine, C16H14N2O
  22. The crystal structure of 3-([1,1′-biphenyl]-2-yl)-1,2-diphenylbenzo[b]phosphole-1-oxide, C32H23OP
  23. The crystal structure of ammonium (E)-4-((4-carboxyphenyl)diazenyl)benzoate, C14H13N3O4
  24. Crystal structure of bis(5-amino-1,2,4-triazol-4-ium-3-yl)methane sulfate, C5H10N8O4S
  25. The crystal structure of phenantroline-κ2 N,N′-bis(6-phenylpyridine-2-carboxylato-κ2 N,O)copper(II), C36H24N4O4Cu
  26. The crystal structure of tris(6-methylpyridin-2-yl)phosphine oxide, C18H18N3OP
  27. The crystal structure of N-(2′-hydroxymethyl-5′-phenyl-3′,4′-dihydro-[1,1′:3′,1″-terphenyl]- 1′(2′H)-yl)-P,P-diphenylphosphinic amide, C37H34NO2P
  28. Crystal structure of (E)-4-(6-(4-(2-(pyridin-4-yl)vinyl)phenoxy)pyrimidin-4-yl)morpholine, C21H20N4O2
  29. Crystal structure of 5-(adamantan-1-yl)-3-[(4-trifluoromethylanilino)methyl]-2,3-dihydro-1,3,4-oxadiazole-2-thione, C20H22F3N3OS
  30. Crystal structure of 2,2-dichloro-1-(4-chloro-1H-indol-1-yl)ethan-1-one, C10H6Cl3NO
  31. The crystal structure of 4-(((3-bromo-5-(trifluoromethyl)pyridin-2-yl)oxy)methyl)benzonitrile, C28H16Br2F6N4O2
  32. The crystal structure of 1H-benzimidazole-2-carboxamide, C8H7N3O
  33. The crystal structure of Histidinium hydrogensquarate, C10H11N3O6
  34. The crystal structure of 3-amino-5-carboxypyridin-1-ium iodide, C6H7IN2O2
  35. Crystal structure of (E)-amino(2-(3-ethoxy-4-hydroxybenzylidene)hydrazineyl)methaniminium nitrate hemihydrate C10H16N5O5.5
  36. Crystal structure of 1,2-bis(4,5-dinitro-1H-imidazol-1-yl)ethane, C8H6N8O8
  37. The crystal structure of diaqua-bis(pyrazolo[1,5-a]pyrimidine-3-carboxylato-κ2N,O)manganese(II), C14H12N6O6Mn
  38. The crystal structure of catena-poly[aqua-2,2′bipyridine-κ2N,N′-(μ2-5-ethoxyisophthalato-κ 4O,O:Oʺ,O′ʺ)cadmium(II)] monohydrate, C20H20CdN2O7
  39. The crystal structure of (1S,3R)-1-(4-isopropylphenyl)-3-(methoxycarbonyl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-2-iumchloride monohydrate, C22H27ClN2O3
  40. Crystal structure of 1-isopropyl-3-(prop-1-en-2-yl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine, C11H15N5
  41. The crystal structure of (2,2′-bipyridine-κ2N,N′)- bis(6-phenylpyridine-2-carboxylate-κ2N,O)manganese(II)] monohydrate, C34H26N4O5Mn
  42. Crystal structure of the cocrystal 1,3,5,7-tetranitro-1,3,5,7-tetrazoctane ─ 2,3-dihydroindole (1/1), C12H17N9O8
  43. Crystal structure of 3-acetyl-6-hydroxy-2H-chromen-2-one monohydrate, C11H10O5
  44. Crystal structure of 6,9-diamino-2-ethoxyacridinium 3,5-dinitrobenozate — dimethylsulfoxide — water (1/1/1), C24H27N5O9S
  45. The crystal structure of 4,4′-bipyridinium bis-(2-hydroxy-3-methoxybenzoate), 2(C8H7.68O4)·C10H8.64N2
  46. Crystal structure of (Z)-4-(((4-fluorophenyl)amino)(furan-2-yl)methylene)-5-methyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one
  47. The crystal structure of bis(4-chloro-2-(((2-chloroethyl)imino)methyl)phenolato-κ2N,O)-oxidovanadium(IV), C18H16Cl4N2O3V
  48. The crystal structure of 17-(bromoethynyl)-17-hydroxy-10, 13-dimethyl- 1,2,6,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-3H-cyclopenta[a]phenanthren-3-one, C21H27BrO2
  49. The crystal structure of 4-((6-fluoropyridin-2-yloxy)methyl)benzonitrile, C13H9FN2O
  50. Crystal structure of (Z)-2-(1-bromo-2-phenylvinyl)-5-ethyl-2-methyl-1,3-dioxane-5-carboxylic acid, C15H17Br1O4
  51. Crystal structure of catena-poly[tribenzyl-κ1C-(μ2-6-oxidopyridin-1-ium-3-carboxylato-κ2O:O’)tin(IV)-dichloromethane-methanol (1/1/1), C29H31Cl2NO4Sn
  52. Crystal structure of bis{2-(tert-butyl)-6-((E)-((4-((E)-1-(methoxyimino)ethyl)phenyl)imino)methyl)phenolato-κ2N,O}zinc(II), C40H46N4O4Zn
  53. Crystal structure of diaqua-bis(μ2-2-carboxy-3,4,5,6-tetrafluorobenzoato-κ2O:O′)-bis(phenanthroline-κ2N,N′)-bis(μ2-3,4,5,6-tetrafluorophthalato-κ3O:O,O′)dieuropium(III) – phenanthroline (1/2), C40H19EuF8N4O9
  54. The crystal structure of diaqua-bis(6-phenylpyridine-2-carboxylato-κ2N,O) manganese(II) — water — dimethylformamide (1/2/1), C27H31N3O9Mn
  55. The crystal structure of bis(pyrazolo[1,5-a]pyrimidine-3-carboxylato-κ2N,O)-copper(ii), C14H8N6O4Cu
  56. Crystal structure of poly[(μ2-1-(1-imidazolyl)-4-(imidazol-1-ylmethyl)benzene-κ2N:N′)-(μ3-pyridazine-4,5-dicarboxylate-κ3O:O′:N)]copper(II) hydrate, C19H16CuN6O5
  57. Crystal structure of acrinidinium tetrafluorohydrogenphthalate, C21H11F4NO4
  58. Crystal structure of 2-(1H-pyrazol-3-yl-κN)pyridine-κN-bis(2-(2,4-difluorophenyl)pyridinato-κ2C,N)iridium(III) sesquihydrate, C30H18F4IrN5·1.5[H2O]
  59. Crystal structure of 2-(2-hydroxy-5-nitrophenyl)-5-methyl-1,3-dioxane-5-carboxylic acid, C12H13N1O7
  60. The crystal structure of 1,2-bis(pyridinium-4-yl)ethane diperchlorate, C12H14N2·2ClO4 – a second polymorph
  61. The crystal structure of [(1,10-phenantroline-κ2N,N′)-bis(6-phenylpyridine-2-carboxylato-κ2N,O)manganese(II)] monohydrate, C36H26N4O5Mn
  62. Crystal structure of 1,2-bis(2,2,3,3,5,5,5-heptamethyl-1,1,4,4- tetrakis(trimethylsilyl)pentasilan-1-yl)ditellane, C38H114Si18Te2
  63. Crystal structure of 1,2-bis(2,4-dinitro-1H-imidazol-1-yl)ethane – dimethylformamide (1/1), C11H13N9O9
  64. Crystal structure of (Z)-3-((tert-butylamino) methylene)-2-(2-hydroxynaphthalen-1-yl) chroman-4-one, C24H23NO3
  65. Synthesis and crystal structure of (E)-1-(4-(((E)-3-(tert-butyl)-2-hydroxybenzylidene)amino)phenyl)ethan-1-one O-ethyl oxime, C21H26N2O2
  66. Crystal structure of the double salt bis(5-amino-1,2,4-triazol-4-ium-3-yl)methane hydrogen oxalate hemioxalate, C8H11N8O6
  67. Hydrothermal synthesis and crystal structure of catena-poly[diaqua-bis(μ2-4-[(4-pyridinylmethyl)amino]benzoato-κ2N:O)cobalt(II)]–1,2bi(4-pyridyl)ethene–water (1/1/1), C50H50N8O8Co
  68. Crystal structure of 3-(3-bromophenyl)-1′,3′-dimethyl-2′H,3H,4H-spiro[furo[3, 2-c]chromene-2,5′-pyrimidine]-2′,4,4′,6′(1′H,3′H) tetraone, C22H15BrN2O6
  69. The crystal structure of poly[aqua-(μ2-4,4′- bis(imidazolyl)biphenyl-κ2N:N′)-(μ2-3-nitrobenzene-1,2-dicarboxylato-κ2O:O′)]copper (II) hydrate, C26H21N5O8Cu
  70. The crystal structure of bis(4-(6-carboxy-8-ethyl-3-fluoro-5-oxo-5,8-dihydro-1,8-naphthyridin-2- yl)piperazin-1-ium) adipate tetrahydrate, C36H52F2N8O14
  71. Synthesis and crystal structure of poly[aqua(μ4-(1R,2S,4R)-4-hydroxy-1-((7-hydroxy-3-(4-hydroxy-3-sulfonatophenyl)-4-oxo-4H-chromen-8-yl)methyl)pyrrolidin-1-ium-2-carboxylate-κ4O:O′:O″:O‴)sodium(I)] monohydrate, C21H22NNaO12S
  72. Crystal structure of chlorido-(η6-toluene)(2,2′-bipyridine-κ2N,N′)ruthenium(II) hexafluorophosphate, C17H16ClN2RuPF6
  73. The crystal structure of (R)-6-hydroxy-8-methoxy-3-methylisochroman-1-one, C11H12O4
  74. Crystal structure of catena-poly[(5,5,7,12,12,14-hexamethyl -1,4,8,11-tetraazacyclotetradecane- κ4N,N′,Nʺ,N‴)nickel(II)-(μ2-perchlorato-κ2O:O′)] 3,5-dicarboxybenzoate – methanol (1/2), C27H49ClN4NiO12
  75. The crystal structure of 4-(chloromethyl)benzonitrile, C8H6ClN
  76. The crystal structure of dimethylammonium 8-[(7,9-dioxo-6,10-dioxaspiro[4.5]decan-8-ylidene)methyl]-9-oxo-6,10-dioxaspiro[4.5]dec-7-en-7-olate, C19H25NO8
  77. Crystal structure of (2R,3S,4S,5R,6S)-2-(acetoxymethyl)-6-((1-acetyl-5-bromo-4-chloro-1H-indol-3-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate hemihydrate C24H25BrClNO11
  78. The crystal structure of the co-crystal tetrakis[2-(tris(4-methoxyphenyl)stannyl)ethyl]silane – tetrahydrofuran – toluene – tetrahydrofurane (1/1/1), C103H116O13SiSn4
  79. Crystal structure of methyl 3-(1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)propanoate, C16H13NO4
  80. Crystal structure of ethyl (Z)-3-amino-2-cyano-3-(2-oxo-2H-chromen-3-yl)acrylate, C15H12N2O4
  81. Crystal structure of methyl 2-(1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)acetate, C15H11NO4
  82. Crystal structure of catena-poly[diaqua-bis(μ2-1,3-di(1H-imidazol-1-yl)propane-κ2N:N′)cobalt(II)] tetrafluoroterephthalate, C26H28N8O6F4Co
Heruntergeladen am 7.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2022-0010/html
Button zum nach oben scrollen