Startseite Crystal structure of 2-(1H-pyrazol-3-yl-κN)pyridine-κN-bis(2-(2,4-difluorophenyl)pyridinato-κ2C,N)iridium(III) sesquihydrate, C30H18F4IrN5·1.5[H2O]
Artikel Open Access

Crystal structure of 2-(1H-pyrazol-3-yl-κN)pyridine-κN-bis(2-(2,4-difluorophenyl)pyridinato-κ2C,N)iridium(III) sesquihydrate, C30H18F4IrN5·1.5[H2O]

  • Aqilah Abdul Latiff ORCID logo , Yan Yi Chong ORCID logo , Wun Fui Mark-Lee ORCID logo und Mohammad B. Kassim ORCID logo EMAIL logo
Veröffentlicht/Copyright: 25. Mai 2022

Abstract

C30H18F4IrN5·1.5[H2O], tetragonal, I41/a (no. 88), a = 37.5562(5) Å, b = 37.5562(5) Å, c = 9.2031(2) Å, V = 12980.7(4) Å3, Z = 16, R gt (F) = 0.0312, wRref(F2) = 0.1166, T = 300(2) K.

CCDC no.: 2169203

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Colorless block
Size: 0.17 × 0.10 × 0.10 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 6.0 mm−1
Diffractometer, scan mode: Bruker APEXII, φ and ω
θmax, completeness: 56.6°, >99%
N(hkl)measured, N(hkl)unique, Rint: 13,239, 9148, 0.025
Criterion for Iobs, N(hkl)gt: Iobs > 2 σ(Iobs), 7183
N(param)refined: 686
Programs: Bruker [1], SHELX [24], OLEX2 [5]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z Uiso*/Ueq
Ir1 0.64748 (2) 0.29196 (2) 0.03393 (2) 0.03014 (9)
C1 0.65569 (13) 0.22476 (13) 0.2093 (5) 0.0424 (9)
H1 0.631831 0.228325 0.232043 0.051*
F1 0.75746 (11) 0.35698 (13) −0.2427 (5) 0.0954 (15)
F2 0.77911 (9) 0.24709 (12) −0.0291 (5) 0.0877 (13)
C2 0.67257 (16) 0.19575 (14) 0.2657 (6) 0.0532 (12)
H2 0.660575 0.180003 0.326451 0.064*
F3 0.68777 (15) 0.33183 (13) 0.5719 (4) 0.1024 (16)
C3 0.70777 (18) 0.19030 (16) 0.2307 (7) 0.0659 (16)
H3 0.719884 0.170681 0.267520 0.079*
F4 0.63174 (13) 0.41718 (10) 0.2821 (5) 0.0847 (12)
C4 0.72486 (15) 0.21384 (16) 0.1415 (7) 0.0607 (14)
H4 0.748551 0.209951 0.116722 0.073*
N1 0.67198 (9) 0.24840 (9) 0.1225 (4) 0.0348 (7)
N2 0.62643 (9) 0.33781 (10) −0.0490 (4) 0.0363 (7)
N3 0.59654 (9) 0.27379 (10) 0.0923 (4) 0.0357 (7)
N4 0.57685 (11) 0.27745 (12) 0.2147 (4) 0.0445 (9)
N5 0.63172 (9) 0.25913 (9) −0.1479 (4) 0.0347 (7)
C5 0.70696 (11) 0.24395 (12) 0.0866 (5) 0.0409 (9)
C7 0.69758 (11) 0.30045 (12) −0.0351 (4) 0.0359 (8)
C8 0.71044 (12) 0.32917 (14) −0.1166 (5) 0.0461 (10)
H8 0.695571 0.348211 −0.138808 0.055*
C9 0.74513 (14) 0.32907 (18) −0.1637 (7) 0.0622 (15)
C10 0.76857 (14) 0.30188 (19) −0.1371 (7) 0.0682 (17)
H10 0.791865 0.302443 −0.171265 0.082*
C11 0.75579 (13) 0.27377 (17) −0.0572 (7) 0.0568 (13)
C6 0.72136 (11) 0.27235 (13) −0.0028 (5) 0.0410 (9)
C18 0.65564 (11) 0.32442 (12) 0.2028 (4) 0.0367 (8)
C12 0.61342 (13) 0.34102 (14) −0.1837 (5) 0.0470 (10)
H12 0.614090 0.321299 −0.244806 0.056*
C19 0.67119 (14) 0.31548 (14) 0.3362 (5) 0.0480 (10)
H19 0.680073 0.292693 0.352109 0.058*
C13 0.59899 (18) 0.37248 (18) −0.2362 (7) 0.0672 (16)
H13 0.589790 0.373741 −0.329876 0.081*
C20 0.67312 (19) 0.34091 (18) 0.4433 (6) 0.0649 (16)
C14 0.5986 (2) 0.40149 (17) −0.1474 (8) 0.0736 (18)
H14 0.589105 0.422896 −0.180209 0.088*
C21 0.66007 (19) 0.37524 (18) 0.4280 (7) 0.0677 (16)
H21 0.661624 0.391802 0.502903 0.081*
C15 0.61235 (18) 0.39910 (15) −0.0087 (7) 0.0635 (15)
H15 0.612183 0.418883 0.052084 0.076*
C22 0.64488 (16) 0.38352 (15) 0.2981 (6) 0.0563 (13)
C16 0.62659 (13) 0.36662 (12) 0.0405 (5) 0.0431 (10)
C17 0.64213 (12) 0.35950 (12) 0.1826 (5) 0.0411 (9)
C23 0.54855 (14) 0.25609 (16) 0.1942 (6) 0.0542 (12)
H23 0.530536 0.253044 0.262395 0.065*
C24 0.54912 (13) 0.23919 (14) 0.0613 (6) 0.0492 (11)
H24 0.532243 0.223814 0.022174 0.059*
C25 0.58086 (11) 0.25059 (11) −0.0001 (5) 0.0366 (8)
C26 0.59935 (10) 0.24331 (11) −0.1348 (5) 0.0360 (8)
C27 0.58567 (13) 0.22247 (14) −0.2467 (6) 0.0484 (11)
H27 0.563581 0.211562 −0.236529 0.058*
C28 0.60511 (15) 0.21806 (16) −0.3729 (6) 0.0595 (14)
H28 0.596573 0.203823 −0.447892 0.071*
C29 0.63769 (14) 0.23538 (16) −0.3855 (6) 0.0562 (13)
H29 0.650870 0.233614 −0.470719 0.067*
C30 0.65008 (12) 0.25491 (14) −0.2719 (5) 0.0454 (10)
H30 0.672215 0.265821 −0.280451 0.055*

Source of material

The chemicals iridium(III) trichloride hydrate (99.9%, Sigma-Aldrich), 2-(2,4-difluorophenylpyridine) (97%, Sigma-Aldrich), 3-(dimethylamino)-1-(2-pyridyl)-2-propen-1-one (95%, Sigma-Aldrich) and hydrazine hydrate (50–60%, Sigma-Aldrich) were used without further purification.

The ancillary ligand pyridylpyrazole (PyPz) was obtained by mixing 3-(dimethylamino)-1-(2-pyridyl)-2-propen-1-one (30 mmol, 5.50 g) and hydrazine hydrate (5 ml) in ethanol (7 ml). The solution was heated to 60 °C and stirred for 30 min. Next, distilled water (37.5 ml) was added into the solution and left at temperatures 4–6 °C overnight. A white precipitate was formed. The solid was filtered with Büchner filter and washed with distilled water to give a white powder (2.85 g, 63%) [6].

The precursor complex [Ir(dfppy)2Cl]2 (Di-μ-chloro-bis{bis[2-(2,4-difluorophenyl)pyridinato-κ2C, N)iridium(III)) was synthesized using Nonoyama’s reaction [7], where iridium(III) trichloride hydrate (1 mmol, 0.30 g) and 2-(2,4-difluorophenylpyridine) (2.5 mmol, 0.48 g) were poured into a round bottom flask containing 2-ethoxyethanol (30 ml) and distilled water (10 ml). The solution was brought to refluxing temperature and was heated for 24 h under inert conditions. A yellow precipitate ([Ir(dfppy)2Cl]2) was formed and collected using Büchner filtration and used for the next step.

2-(1H-pyrazol-3-yl-κN)pyridine-κ2N-bis(2-(2,4-difluorophenyl)pyridinato-κ2C,N)iridium(III), [Ir(dfppy)2PyPz] was obtained by adding PyPz into[Ir(dfppy)2Cl]2 in 30 ml dichloromethane under inert condition. The mixture was stirred and refluxed for 7 h. Crystals of the title compound were obtained through slow evaporation in a mixture of dichloromethane and acetone solvents.

Experimental details

All hydrogen atoms were positioned geometrically and allowed to ride on their respective parent atoms with C–H distances = 0.93 Å, and with Uiso(H) = 1.2Ueq for aryl H atoms. The diffuse electron density of part of the water molecule was removed with the solvent-mask procedure implemented in OLEX2 [5]. There were 240 electrons found in a volume of 3620 Å3 in two voids per unit cell. This is consistent with the presence of 1.5[H2O] per formula unit which accounts for 252 electrons per unit cell.

Comment

Iridium(III) complexes are well known that some of them are light-emitting and were used for various applications such as organic light-emitting diodes (OLEDs) [8], light-emitting electrochemical cells (LECs) [9] and sensors [10]. Previous work has demonstrated that choosing the right ancillary or cyclometalating ligand is very crucial in determining the desired photophysical properties [11] and these can be done by modifying the ligand structures [12]. Over the years, extensive studies have been made on iridium(III) complexes with various conjugated aromatic compounds especially phenylpyridyl derivatives for tuning the emission color of the complexes [13]. In the present work, the synthesis and crystal structure of 2-(1H-pyrazol-3-yl-κN)pyridine-κ2N-bis(2-(2,4-difluorophenyl)pyridinato-κ2C,N) iridium(III), [Ir(dfppy)2PyPz] is described.

The title compound shows an octahedral geometry where the iridium metal is coordinated with two difluorophenylpyridine (dfppy) groups and a PyPz ring via C, N and N, N atoms, respectively (Figure 1). The octahedral geometry of this complex is similar to the geometry of archetypal iridium(III) complexes [14]. The complex crystallizes in the tetragonal I41/a space group whereby a similar complex was reported to crystallize in the monoclinic P21/c space group [15]. The coordination of the iridium metal center with nitrogen atoms of PyPz moiety gives slightly longer Ir–N distances, ca 2.1 Å than that of dfppy moiety [Ir1–N1 = 2.046(4) Å; Ir1–N2 = 2.043(4) Å]. This observation is also associated with a smaller bite angle for the former with Ir(III) center [N3–Ir1–N5 = 76.31(14)°] compared to the latter chelating ligands [N2–Ir1–C18 = 80.54(16)°; N1–Ir1–C7 = 80.32(16)°] [16], [17], [18]. The PyPz ring is essentially planar, with a distortion of 4.24° between the two mean planes. The dfppy and PyPz moieties are twisted with a dihedral angles of 85.6–92.5°. The observed bond distances for Ir–C and Ir–N of dfppy are similar to the corresponding bond lengths of related structures [19, 21].

The packing of the title compound is dominated by weak intramolecular interactions and exhibits a column along c-axis. Two C–H⃛F interactions (C4–H4⃛F2 and C15–H15⃛F4) between fluorine atom of the phenyl ring and hydrogen atom of the pyridine ring from the same moiety, dfppy are observed (Figure). Besides, another two C–H⃛N interactions involving the dfppy moieties and pypz (C1–H1⃛N4 and C12–H12⃛N5) help to stabilize the structure. The hydrogen bonds involving the electronegative F atoms engendering two intramolecular S(6) motifs whereas the C–H⃛N interactions gave the S(6) and S(5) motifs. The presence of the electronegative F atom has influenced the X-ray structure. This hypothesis was further corroborated when an analogous crystal (2-(1H-pyrazol-1-yl-κN)pyridine-κ2N-bis(2-(2,4-difluorophenyl)πyridinato-κ2C,N) iridium(III) hexafluorophosphate), [Ir(dfppy)2(PzPy)]PF6 exhibited similar intramolecular interactions between fluorine of difluorophenyl and hydrogen atom from the adjacent pyridine rings [20]. In addition, no observable π⃛π interaction is exhibited by the complex, albeit with the presence of six heterocyclic rings. A previously study also reported no discernable π⃛π interactions for Ir(III) complex consisting of seven heterocyclic rings [18].


Corresponding author: Mohammad B. Kassim, Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia, E-mail:

Funding source: Ministry of Higher Education http://dx.doi.org/10.13039/501100003093

Funding source: Universiti Kebangsaan Malaysia http://dx.doi.org/10.13039/501100004515

Award Identifier / Grant number: FRGS/1/2018/STG01/UKM/01/3

Acknowledgments

We would like to thank the Department of Chemical Sciences, Faculty of Science and Technology (UKM) for providing the experimental facilities and Center for Research and Instrumentation Management (UKM) for the X-ray analysis.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This study was financially supported by the Ministry of Higher Education (MOHE) (http://dx.doi.org/10.13039/501100003093) and Universiti Kebangsaan Malaysia (UKM) (http://dx.doi.org/10.13039/501100004515) for FRGS/1/2018/STG01/UKM/01/3 research grant and the studentship for AAL.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Bruker. APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, WI, USA, 2016.Suche in Google Scholar

2. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.Suche in Google Scholar PubMed

3. Sheldrick, G. M. SHELXTL – integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Suche in Google Scholar PubMed PubMed Central

4. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Suche in Google Scholar PubMed PubMed Central

5. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Suche in Google Scholar

6. Mark-Lee, W. F., Chong, Y. Y., Law, K. P., Ahmad, I. B., Kassim, M. B. Synthesis, structure and density functional theory (DFT) study of a Rhenium(I) pyridylpyrazol complex as a potential photocatalyst for CO2 reduction. Sains Malays. 2018, 47, 1491–1499; https://doi.org/10.17576/jsm-2018-4707-17.Suche in Google Scholar

7. Nonoyama, M. Benzo[h]quinolin-10-yl-N iridium(III) complexes. Bull. Chem. Soc. Jpn. 1974, 47, 767–768; https://doi.org/10.1246/bcsj.47.767.Suche in Google Scholar

8. Ma, H., Liu, D., Li, J., Mei, Y., Li, D., Ding, Y., Wei, W. Sky-blue iridium complexes with pyrimidine ligands for highly efficient phosphorescent organic light-emitting diodes. New J. Chem. 2020, 44, 8743–8750; https://doi.org/10.1039/d0nj01262a.Suche in Google Scholar

9. Baranoff, E., Bolink, H. J., Constable, E. C., Delgado, M., Häussinger, D., Housecroft, C. E., Nazeeruddin, M. K., Neuburger, M., OrtíE, Schneider, G. E., Tordera, D., Walliser, R. M., Zampese, J. A. Tuning the photophysical properties of cationic iridium(III) complexes containing cyclometallated 1-(2,4-difluorophenyl)-1H-pyrazole through functionalized 2,2′-bipyridine ligands: blue but not blue enough. Dalton Trans. 2013, 42, 1073–1087; https://doi.org/10.1039/c2dt32160b.Suche in Google Scholar PubMed

10. Zhang, K. Y. Luminescent rhenium(I) and iridium(III) complexes for intracellular labeling, sensing, and photodynamic therapy applications. In Inorganic and Organometallic Transition Metal Complexes with Biological Molecules and Living Cells; Lo, K. K.-W., Ed.; Elsevier Inc., 2017; pp. 91–117.10.1016/B978-0-12-803814-7.00003-4Suche in Google Scholar

11. Huang, Y.-C., Li, Z.-B., Guo, H.-Q., Mu, D., Li, H.-Y., Lu, A.-D., Li, T.-Y. Synthesis, structures, photophysical properties, and theoretical study of four cationic iridium(III) complexes with electron-withdrawing groups on the neutral ligands. Inorg. Chim. Acta. 2019, 496, 119060; https://doi.org/10.1016/j.ica.2019.119060.Suche in Google Scholar

12. Martínez-Alonso, M., Cerdá, J., Momblona, C., Pertegás, A., Junquera-Hernández, J. M., Heras, A., Rodríguez, A. M., Espino, G., Bolink, H., Ortí E. Highly stable and efficient light-emitting electrochemical cells based on cationic iridium complexes bearing arylazole ancillary ligands. Inorg. Chem. 2017, 56, 10298–10310; https://doi.org/10.1021/acs.inorgchem.7b01167.Suche in Google Scholar PubMed

13. Giridhar, T., Lee, J. H., Cho, W., Yoo, H., Moon, C. K., Kim, J. J., Jin, S. H. Highly efficient bluish green phosphorescent organic light-emitting diodes based on heteroleptic iridium(III) complexes with phenylpyridine main skeleton. Org. Electron. 2014, 15, 1687–1694; https://doi.org/10.1016/j.orgel.2014.04.028.Suche in Google Scholar

14. Sunesh, C. D., Choe, Y. Synthesis and characterization of cationic iridium complexes for the fabrication of green and yellow light-emitting devices. Mater. Chem. Phys. 2015, 156, 206–213; https://doi.org/10.1016/j.matchemphys.2015.03.001.Suche in Google Scholar

15. Su, N., Shen, C. Z., Zheng, Y. X. Efficient electroluminescence of sky-blue iridium(III) complexes for organic light-emitting diodes. Dyes Pigments 2018, 159, 100–106; https://doi.org/10.1016/j.dyepig.2018.06.011.Suche in Google Scholar

16. Orselli, E., Albuquerque, R. Q., Fransen, P. M., Fröhlich, R., Janssen, H. M., De Cola, L. 1,2,3-Triazolyl-pyridine derivatives as chelating ligands for blue iridium(III) complexes. Photophysics and electroluminescent devices. J. Mater. Chem. 2008, 18, 4579–4590; https://doi.org/10.1039/b805324c.Suche in Google Scholar

17. Mark-Lee, W. F., Chong, Y. Y., Kassim, M. B. Supramolecular structures of rhenium(I) complexes mediated by ligand planarity via the interplay of substituents. Acta Crystallogr. 2018, C74, 997–1006; https://doi.org/10.1107/s2053229618010586.Suche in Google Scholar PubMed

18. Chong, Y. Y., Mark-Lee, W. F., Ahmad, I., Kassim, M. B. Crystal structure of 1-[3-(trifluoromethyl)cinnamoyl]-3-(pyridin-2-yl-κN) pyrazole-κ2N-bis(2-phenylpyridinato-k2C,N) iridium(III) hexafluorophosphate complex, [C40H28F3IrN5O]PF6. Z. Kristallogr. NCS 2020, 235, 825–829; https://doi.org/10.1515/ncrs-2020-0029.Suche in Google Scholar

19. Yang, C. H., Mauro, M., Polo, F., Watanabe, S., Muenster, I., Fröhlich, R., De Cola, L. Deep-blue-emitting heteroleptic iridium(III) complexes suited for highly efficient phosphorescent OLEDs. Chem. Mater. 2012, 24, 3684–3695; https://doi.org/10.1021/cm3010453.Suche in Google Scholar

20. He, L., Duan, L., Qiao, J., Wang, R., Wei, P., Wang, L., Qiu, Y. Blue-emitting cationic iridium complexes with 2-(1H-pyrazol-1-yl)pyridine as the ancillary ligand for efficient light-emitting electrochemical cells. Adv. Funct. Mater. 2008, 18, 2123–2131; https://doi.org/10.1002/adfm.200701505.Suche in Google Scholar

21. Sykes, D., Parker, S. C., Sazanovich, I. V., Stephenson, A., Weinstein, J. A., Ward, M. D. d→f energy transfer in Ir(III)/Eu(III) dyads: use of a naphthyl spacer as a spatial and energetic “stepping stone”. Inorg. Chem. 2013, 52, 10500–10511; https://doi.org/10.1021/ic401410g.Suche in Google Scholar PubMed PubMed Central

Received: 2022-02-17
Accepted: 2022-04-28
Published Online: 2022-05-25
Published in Print: 2022-08-26

© 2022 Aqilah Abdul Latiff et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Artikel in diesem Heft

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of N-((3s,5s,7s)-adamantan-1-yl)-2-(3-benzoylphenyl)propanamide, C26H29NO2
  4. The crystal structure of bis(μ2-5-chloro-2-oxido-N-(1-oxidopropylidene)benzohydrazonato-κ5 N,O,O′:N′,O′′)-octakis(pyridine-κ1 N)trinickel(II) C60H56Cl2N12Ni3O6
  5. The crystal structure of 3-(4-chlorophenyl)-1,5-di-p-tolylpentane-1,5-dione, C25H23ClO2
  6. The crystal structure of 2,4,4-triphenyl-4H-benzo[b][1,4]oxaphosphinin-4-ium bromide – dichloromethane (1/1), C27H22BrCl2OP
  7. The crystal structure of 2-(3,6-di-tert-butyl-1,8-diiodo-9H-carbazol-9-yl)acetonitrile, C22H24I2N2
  8. Crystal structure of 3-phenylpropyl 2-(6-methoxynaphthalen-2-yl)propanoate, C23H24O3
  9. The crystal structure of (4-fluorophenyl)(5-(hydroxymethyl)furan-2-yl)methanol, C12H11FO3
  10. Crystal structure of the dihydrate of tetraethylammonium 1,3,5-thiadiazole-5-amido-2-carbamate, C11H27N5O4S
  11. Crystal structure of (Z)-4-[(p-tolylamino)(furan-2-yl)methylene]-3-phenyl-1-1-p-tolyl-1H-phenyl-1H-pyrazol-5(4H)-one, C28H23N3O2
  12. The crystal structure of (E)-3-(2-chlorophenyl)-1-ferrocenylprop-2-en-1-one, C19H15ClFeO
  13. The pseudosymmetric crystal structure of 3-((1R,2S)-1-methylpyrrolidin-1-ium-2-yl)pyridin-1-ium hexachloridostannate(IV), C10H16N2SnCl6
  14. Crystal structure of (2-(1-hydroxyheptyl)octahydro-8aH-chromene-5,8,8a-triol), C16H30O5
  15. The crystal structure of N-cyclohexyl-3-hydroxy-4-methoxybenzamide, C14H19NO3
  16. Crystal structure of 1-(4-hydroxybenzyl)-4-methoxy-9,10-dihydrophenanthrene-2,7-diol from Arundina graminifolia, C22H20O4
  17. The crystal structure of N-cyclopentyl-3-hydroxy-4-methoxybenzamide, C13H17NO3
  18. The crystal structure of 2,5,5-triphenyl-3,5-dihydro-4H-imidazol-4-one, C21H16N2O
  19. Crystal structure of 1H-1,2,3-Triazolo[4,5-b]-pyridin-4-ium nitrate, C5H5N5O3
  20. Crystal structure of (Z)-4-(((4-bromophenyl)amino)(furan-2-yl)methylene)-2,5-diphenyl-2,4-dihydro-3H-pyrazol-3-one, C26H18BrN3O2
  21. Crystal structure of 2-(4-methoxyphenyl)-3-methyl-1,8-naphthyridine, C16H14N2O
  22. The crystal structure of 3-([1,1′-biphenyl]-2-yl)-1,2-diphenylbenzo[b]phosphole-1-oxide, C32H23OP
  23. The crystal structure of ammonium (E)-4-((4-carboxyphenyl)diazenyl)benzoate, C14H13N3O4
  24. Crystal structure of bis(5-amino-1,2,4-triazol-4-ium-3-yl)methane sulfate, C5H10N8O4S
  25. The crystal structure of phenantroline-κ2 N,N′-bis(6-phenylpyridine-2-carboxylato-κ2 N,O)copper(II), C36H24N4O4Cu
  26. The crystal structure of tris(6-methylpyridin-2-yl)phosphine oxide, C18H18N3OP
  27. The crystal structure of N-(2′-hydroxymethyl-5′-phenyl-3′,4′-dihydro-[1,1′:3′,1″-terphenyl]- 1′(2′H)-yl)-P,P-diphenylphosphinic amide, C37H34NO2P
  28. Crystal structure of (E)-4-(6-(4-(2-(pyridin-4-yl)vinyl)phenoxy)pyrimidin-4-yl)morpholine, C21H20N4O2
  29. Crystal structure of 5-(adamantan-1-yl)-3-[(4-trifluoromethylanilino)methyl]-2,3-dihydro-1,3,4-oxadiazole-2-thione, C20H22F3N3OS
  30. Crystal structure of 2,2-dichloro-1-(4-chloro-1H-indol-1-yl)ethan-1-one, C10H6Cl3NO
  31. The crystal structure of 4-(((3-bromo-5-(trifluoromethyl)pyridin-2-yl)oxy)methyl)benzonitrile, C28H16Br2F6N4O2
  32. The crystal structure of 1H-benzimidazole-2-carboxamide, C8H7N3O
  33. The crystal structure of Histidinium hydrogensquarate, C10H11N3O6
  34. The crystal structure of 3-amino-5-carboxypyridin-1-ium iodide, C6H7IN2O2
  35. Crystal structure of (E)-amino(2-(3-ethoxy-4-hydroxybenzylidene)hydrazineyl)methaniminium nitrate hemihydrate C10H16N5O5.5
  36. Crystal structure of 1,2-bis(4,5-dinitro-1H-imidazol-1-yl)ethane, C8H6N8O8
  37. The crystal structure of diaqua-bis(pyrazolo[1,5-a]pyrimidine-3-carboxylato-κ2N,O)manganese(II), C14H12N6O6Mn
  38. The crystal structure of catena-poly[aqua-2,2′bipyridine-κ2N,N′-(μ2-5-ethoxyisophthalato-κ 4O,O:Oʺ,O′ʺ)cadmium(II)] monohydrate, C20H20CdN2O7
  39. The crystal structure of (1S,3R)-1-(4-isopropylphenyl)-3-(methoxycarbonyl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-2-iumchloride monohydrate, C22H27ClN2O3
  40. Crystal structure of 1-isopropyl-3-(prop-1-en-2-yl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine, C11H15N5
  41. The crystal structure of (2,2′-bipyridine-κ2N,N′)- bis(6-phenylpyridine-2-carboxylate-κ2N,O)manganese(II)] monohydrate, C34H26N4O5Mn
  42. Crystal structure of the cocrystal 1,3,5,7-tetranitro-1,3,5,7-tetrazoctane ─ 2,3-dihydroindole (1/1), C12H17N9O8
  43. Crystal structure of 3-acetyl-6-hydroxy-2H-chromen-2-one monohydrate, C11H10O5
  44. Crystal structure of 6,9-diamino-2-ethoxyacridinium 3,5-dinitrobenozate — dimethylsulfoxide — water (1/1/1), C24H27N5O9S
  45. The crystal structure of 4,4′-bipyridinium bis-(2-hydroxy-3-methoxybenzoate), 2(C8H7.68O4)·C10H8.64N2
  46. Crystal structure of (Z)-4-(((4-fluorophenyl)amino)(furan-2-yl)methylene)-5-methyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one
  47. The crystal structure of bis(4-chloro-2-(((2-chloroethyl)imino)methyl)phenolato-κ2N,O)-oxidovanadium(IV), C18H16Cl4N2O3V
  48. The crystal structure of 17-(bromoethynyl)-17-hydroxy-10, 13-dimethyl- 1,2,6,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-3H-cyclopenta[a]phenanthren-3-one, C21H27BrO2
  49. The crystal structure of 4-((6-fluoropyridin-2-yloxy)methyl)benzonitrile, C13H9FN2O
  50. Crystal structure of (Z)-2-(1-bromo-2-phenylvinyl)-5-ethyl-2-methyl-1,3-dioxane-5-carboxylic acid, C15H17Br1O4
  51. Crystal structure of catena-poly[tribenzyl-κ1C-(μ2-6-oxidopyridin-1-ium-3-carboxylato-κ2O:O’)tin(IV)-dichloromethane-methanol (1/1/1), C29H31Cl2NO4Sn
  52. Crystal structure of bis{2-(tert-butyl)-6-((E)-((4-((E)-1-(methoxyimino)ethyl)phenyl)imino)methyl)phenolato-κ2N,O}zinc(II), C40H46N4O4Zn
  53. Crystal structure of diaqua-bis(μ2-2-carboxy-3,4,5,6-tetrafluorobenzoato-κ2O:O′)-bis(phenanthroline-κ2N,N′)-bis(μ2-3,4,5,6-tetrafluorophthalato-κ3O:O,O′)dieuropium(III) – phenanthroline (1/2), C40H19EuF8N4O9
  54. The crystal structure of diaqua-bis(6-phenylpyridine-2-carboxylato-κ2N,O) manganese(II) — water — dimethylformamide (1/2/1), C27H31N3O9Mn
  55. The crystal structure of bis(pyrazolo[1,5-a]pyrimidine-3-carboxylato-κ2N,O)-copper(ii), C14H8N6O4Cu
  56. Crystal structure of poly[(μ2-1-(1-imidazolyl)-4-(imidazol-1-ylmethyl)benzene-κ2N:N′)-(μ3-pyridazine-4,5-dicarboxylate-κ3O:O′:N)]copper(II) hydrate, C19H16CuN6O5
  57. Crystal structure of acrinidinium tetrafluorohydrogenphthalate, C21H11F4NO4
  58. Crystal structure of 2-(1H-pyrazol-3-yl-κN)pyridine-κN-bis(2-(2,4-difluorophenyl)pyridinato-κ2C,N)iridium(III) sesquihydrate, C30H18F4IrN5·1.5[H2O]
  59. Crystal structure of 2-(2-hydroxy-5-nitrophenyl)-5-methyl-1,3-dioxane-5-carboxylic acid, C12H13N1O7
  60. The crystal structure of 1,2-bis(pyridinium-4-yl)ethane diperchlorate, C12H14N2·2ClO4 – a second polymorph
  61. The crystal structure of [(1,10-phenantroline-κ2N,N′)-bis(6-phenylpyridine-2-carboxylato-κ2N,O)manganese(II)] monohydrate, C36H26N4O5Mn
  62. Crystal structure of 1,2-bis(2,2,3,3,5,5,5-heptamethyl-1,1,4,4- tetrakis(trimethylsilyl)pentasilan-1-yl)ditellane, C38H114Si18Te2
  63. Crystal structure of 1,2-bis(2,4-dinitro-1H-imidazol-1-yl)ethane – dimethylformamide (1/1), C11H13N9O9
  64. Crystal structure of (Z)-3-((tert-butylamino) methylene)-2-(2-hydroxynaphthalen-1-yl) chroman-4-one, C24H23NO3
  65. Synthesis and crystal structure of (E)-1-(4-(((E)-3-(tert-butyl)-2-hydroxybenzylidene)amino)phenyl)ethan-1-one O-ethyl oxime, C21H26N2O2
  66. Crystal structure of the double salt bis(5-amino-1,2,4-triazol-4-ium-3-yl)methane hydrogen oxalate hemioxalate, C8H11N8O6
  67. Hydrothermal synthesis and crystal structure of catena-poly[diaqua-bis(μ2-4-[(4-pyridinylmethyl)amino]benzoato-κ2N:O)cobalt(II)]–1,2bi(4-pyridyl)ethene–water (1/1/1), C50H50N8O8Co
  68. Crystal structure of 3-(3-bromophenyl)-1′,3′-dimethyl-2′H,3H,4H-spiro[furo[3, 2-c]chromene-2,5′-pyrimidine]-2′,4,4′,6′(1′H,3′H) tetraone, C22H15BrN2O6
  69. The crystal structure of poly[aqua-(μ2-4,4′- bis(imidazolyl)biphenyl-κ2N:N′)-(μ2-3-nitrobenzene-1,2-dicarboxylato-κ2O:O′)]copper (II) hydrate, C26H21N5O8Cu
  70. The crystal structure of bis(4-(6-carboxy-8-ethyl-3-fluoro-5-oxo-5,8-dihydro-1,8-naphthyridin-2- yl)piperazin-1-ium) adipate tetrahydrate, C36H52F2N8O14
  71. Synthesis and crystal structure of poly[aqua(μ4-(1R,2S,4R)-4-hydroxy-1-((7-hydroxy-3-(4-hydroxy-3-sulfonatophenyl)-4-oxo-4H-chromen-8-yl)methyl)pyrrolidin-1-ium-2-carboxylate-κ4O:O′:O″:O‴)sodium(I)] monohydrate, C21H22NNaO12S
  72. Crystal structure of chlorido-(η6-toluene)(2,2′-bipyridine-κ2N,N′)ruthenium(II) hexafluorophosphate, C17H16ClN2RuPF6
  73. The crystal structure of (R)-6-hydroxy-8-methoxy-3-methylisochroman-1-one, C11H12O4
  74. Crystal structure of catena-poly[(5,5,7,12,12,14-hexamethyl -1,4,8,11-tetraazacyclotetradecane- κ4N,N′,Nʺ,N‴)nickel(II)-(μ2-perchlorato-κ2O:O′)] 3,5-dicarboxybenzoate – methanol (1/2), C27H49ClN4NiO12
  75. The crystal structure of 4-(chloromethyl)benzonitrile, C8H6ClN
  76. The crystal structure of dimethylammonium 8-[(7,9-dioxo-6,10-dioxaspiro[4.5]decan-8-ylidene)methyl]-9-oxo-6,10-dioxaspiro[4.5]dec-7-en-7-olate, C19H25NO8
  77. Crystal structure of (2R,3S,4S,5R,6S)-2-(acetoxymethyl)-6-((1-acetyl-5-bromo-4-chloro-1H-indol-3-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate hemihydrate C24H25BrClNO11
  78. The crystal structure of the co-crystal tetrakis[2-(tris(4-methoxyphenyl)stannyl)ethyl]silane – tetrahydrofuran – toluene – tetrahydrofurane (1/1/1), C103H116O13SiSn4
  79. Crystal structure of methyl 3-(1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)propanoate, C16H13NO4
  80. Crystal structure of ethyl (Z)-3-amino-2-cyano-3-(2-oxo-2H-chromen-3-yl)acrylate, C15H12N2O4
  81. Crystal structure of methyl 2-(1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)acetate, C15H11NO4
  82. Crystal structure of catena-poly[diaqua-bis(μ2-1,3-di(1H-imidazol-1-yl)propane-κ2N:N′)cobalt(II)] tetrafluoroterephthalate, C26H28N8O6F4Co
Heruntergeladen am 6.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2022-0076/html
Button zum nach oben scrollen