Startseite The crystal structure of the co-crystal tetrakis[2-(tris(4-methoxyphenyl)stannyl)ethyl]silane – tetrahydrofuran – toluene – tetrahydrofurane (1/1/1), C103H116O13SiSn4
Artikel Open Access

The crystal structure of the co-crystal tetrakis[2-(tris(4-methoxyphenyl)stannyl)ethyl]silane – tetrahydrofuran – toluene – tetrahydrofurane (1/1/1), C103H116O13SiSn4

  • Yilmaz Aksu ORCID logo EMAIL logo , Elisabeth Irran und Sevil Aksu
Veröffentlicht/Copyright: 10. Juni 2022

Abstract

C103H116O13SiSn4, triclinic, P 1 (no. 2), a = 14.8676(4) Å, b = 17.6664(4) Å, c = 20.8357(6) Å, α = 106.430(2)°, β = 107.192(2)°, γ = 100.898(2)°, V = 4787.5(2) Å3, Z = 2, R gt (F) = 0.0325, wR ref (F2) = 0.0845, T = 150 K.

CCDC no.: 2169716

The molecular structure is shown in the figure (The DMF molecule as well as the toluene molecule are both not shown for clarity). Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Colourless block
Size: 0.44 × 0.37 × 0.32 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 1.10 mm−1
Diffractometer, scan mode: Xcalibur, ω
θmax, completeness: 25.0°, >99%
N(hkl)measured, N(hkl)unique, Rint: 37,597, 16,825, 0.021
Criterion for Iobs, N(hkl)gt: Iobs > 2 σ(Iobs), 14,534
N(param)refined: 1103
Programs: WinGX/ORTEP [1], SHELX [2], Mercury [3]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z Uiso*/Ueq
Sn1 0.463086 (17) 0.665111 (14) 0.439683 (12) 0.02608 (6)
Sn2 0.875448 (17) 0.919248 (14) 0.574697 (13) 0.02726 (6)
Sn3 0.787364 (18) 0.629606 (14) 0.839769 (12) 0.02771 (7)
Sn4 0.614274 (18) 0.943457 (15) 0.889013 (13) 0.02999 (7)
Si1 0.68738 (7) 0.78356 (5) 0.68810 (5) 0.02201 (18)
O1 0.0969 (2) 0.38438 (19) 0.39913 (16) 0.0578 (8)
O2 0.2628 (2) 0.87890 (16) 0.27855 (14) 0.0417 (6)
O3 0.7583 (2) 0.52011 (18) 0.31405 (17) 0.0559 (8)
O4 0.57430 (18) 1.06794 (14) 0.40286 (13) 0.0332 (6)
O5 1.0416 (2) 0.72702 (17) 0.35449 (15) 0.0479 (7)
O6 1.1731 (3) 1.19859 (18) 0.86854 (17) 0.0578 (8)
O7 1.0929 (2) 0.42722 (18) 0.82442 (17) 0.0522 (8)
O8 1.0558 (2) 0.94760 (16) 1.11227 (14) 0.0440 (7)
O9 0.4448 (2) 0.42605 (18) 0.90062 (17) 0.0558 (8)
O10 0.9324 (3) 1.1834 (2) 1.19529 (19) 0.0817 (11)
O11 0.3144 (2) 0.63865 (19) 0.8888 (2) 0.0620 (9)
O12 0.3944 (3) 1.17991 (19) 0.77599 (16) 0.0638 (10)
C1 0.5953 (2) 0.70304 (19) 0.60042 (17) 0.0255 (7)
H1A 0.6308 0.6725 0.5741 0.031*
H1B 0.5507 0.6629 0.6107 0.031*
C2 0.5332 (3) 0.7413 (2) 0.55211 (17) 0.0271 (7)
H2A 0.5765 0.7941 0.5567 0.032*
H2B 0.4816 0.7543 0.5705 0.032*
C3 0.3451 (3) 0.5630 (2) 0.42338 (18) 0.0278 (7)
C4 0.2539 (3) 0.5422 (2) 0.36838 (18) 0.0314 (7)
H4 0.2474 0.5705 0.3354 0.038*
C5 0.1812 (3) 0.4411 (2) 0.4085 (2) 0.0362 (8)
C6 0.1725 (3) 0.4819 (2) 0.36014 (19) 0.0365 (8)
H6 0.1114 0.4686 0.3218 0.044*
C7 0.2711 (3) 0.4584 (2) 0.4627 (2) 0.0377 (8)
H7 0.2775 0.4293 0.4950 0.045*
C8 0.3518 (3) 0.5187 (2) 0.4695 (2) 0.0354 (8)
H8 0.4134 0.5301 0.5066 0.042*
C9 0.0951 (4) 0.3620 (3) 0.4587 (3) 0.0704 (15)
H9A 0.0278 0.3308 0.4493 0.106*
H9B 0.1174 0.4120 0.5017 0.106*
H9C 0.1390 0.3278 0.4664 0.106*
C10 0.4009 (3) 0.7374 (2) 0.38254 (18) 0.0281 (7)
C11 0.3622 (3) 0.7971 (2) 0.41531 (19) 0.0329 (7)
H11 0.3675 0.8068 0.4637 0.040*
C12 0.3163 (3) 0.8424 (2) 0.3791 (2) 0.0356 (8)
H12 0.2903 0.8822 0.4025 0.043*
C13 0.3083 (3) 0.8296 (2) 0.30869 (19) 0.0329 (7)
C14 0.3464 (3) 0.7724 (2) 0.2750 (2) 0.0397 (8)
H14 0.3415 0.7637 0.2268 0.048*
C15 0.3927 (3) 0.7272 (2) 0.31214 (19) 0.0380 (8)
H15 0.4193 0.6881 0.2885 0.046*
C16 0.2522 (4) 0.8686 (3) 0.2064 (2) 0.0531 (12)
H16A 0.2157 0.9049 0.1906 0.080*
H16B 0.2160 0.8110 0.1752 0.080*
H16C 0.3175 0.8828 0.2035 0.080*
C17 0.5665 (3) 0.6196 (2) 0.39863 (18) 0.0288 (7)
C18 0.5512 (3) 0.5339 (2) 0.36903 (19) 0.0335 (7)
H18 0.4955 0.4965 0.3683 0.040*
C19 0.6161 (3) 0.5034 (2) 0.3410 (2) 0.0387 (8)
H19 0.6036 0.4454 0.3201 0.046*
C20 0.6988 (3) 0.5566 (2) 0.3431 (2) 0.0379 (8)
C21 0.7168 (3) 0.6417 (2) 0.3732 (2) 0.0370 (8)
H21 0.7738 0.6789 0.3753 0.044*
C22 0.6499 (3) 0.6715 (2) 0.40012 (19) 0.0324 (7)
H22 0.6620 0.7296 0.4202 0.039*
C23 0.8477 (4) 0.5737 (3) 0.3189 (3) 0.0654 (14)
H23A 0.8824 0.5406 0.2949 0.098*
H23B 0.8900 0.6040 0.3697 0.098*
H23C 0.8318 0.6129 0.2955 0.098*
C24 0.7599 (2) 0.8654 (2) 0.66564 (17) 0.0255 (7)
H24A 0.7171 0.8980 0.6489 0.031*
H24B 0.8160 0.9035 0.7099 0.031*
C25 0.7998 (3) 0.8291 (2) 0.60722 (18) 0.0285 (7)
H25A 0.7439 0.7882 0.5643 0.034*
H25B 0.8456 0.7994 0.6254 0.034*
C26 0.7703 (3) 0.9666 (2) 0.51552 (18) 0.0273 (7)
C27 0.8018 (3) 1.0351 (2) 0.49733 (18) 0.0301 (7)
H27 0.8704 1.0602 0.5112 0.036*
C28 0.7349 (3) 1.0668 (2) 0.45970 (18) 0.0305 (7)
H28 0.7579 1.1133 0.4482 0.037*
C29 0.6342 (3) 1.0308 (2) 0.43872 (18) 0.0276 (7)
C30 0.6005 (3) 0.9617 (2) 0.45428 (19) 0.0308 (7)
H30 0.5319 0.9357 0.4391 0.037*
C31 0.6695 (3) 0.9313 (2) 0.49261 (19) 0.0308 (7)
H31 0.6464 0.8844 0.5035 0.037*
C32 0.4702 (3) 1.0277 (3) 0.3749 (2) 0.0429 (10)
H32A 0.4351 1.0589 0.3498 0.064*
H32B 0.4489 1.0253 0.4147 0.064*
H32C 0.4556 0.9715 0.3412 0.064*
C33 0.9409 (3) 0.8601 (2) 0.50396 (19) 0.0303 (7)
C34 0.9134 (3) 0.8576 (2) 0.43314 (19) 0.0311 (7)
H34 0.8697 0.8873 0.4179 0.037*
C35 0.9477 (3) 0.8133 (2) 0.3845 (2) 0.0339 (7)
H35 0.9275 0.8129 0.3367 0.041*
C36 1.0120 (3) 0.7693 (2) 0.4059 (2) 0.0344 (7)
C37 1.0414 (3) 0.7712 (2) 0.4759 (2) 0.0354 (8)
H37 1.0854 0.7415 0.4910 0.043*
C38 1.0064 (3) 0.8163 (2) 0.5239 (2) 0.0336 (7)
H38 1.0278 0.8176 0.5720 0.040*
C39 1.1080 (3) 0.6815 (3) 0.3741 (3) 0.0592 (13)
H39A 1.1262 0.6568 0.3332 0.089*
H39B 1.0760 0.6377 0.3874 0.089*
H39C 1.1674 0.7188 0.4152 0.089*
C40 0.9820 (3) 1.0153 (2) 0.6703 (2) 0.0338 (7)
C41 0.9515 (3) 1.0730 (2) 0.7138 (2) 0.0409 (8)
H41 0.8839 1.0709 0.6980 0.049*
C42 1.0158 (3) 1.1326 (2) 0.7787 (2) 0.0442 (8)
H42 0.9926 1.1712 0.8064 0.053*
C43 1.1136 (3) 1.1361 (2) 0.8031 (2) 0.0441 (8)
C44 1.1482 (3) 1.0816 (2) 0.7626 (2) 0.0460 (9)
H44 1.2160 1.0845 0.7794 0.055*
C45 1.0821 (3) 1.0213 (2) 0.6957 (2) 0.0436 (9)
H45 1.1062 0.9841 0.6674 0.052*
C46 1.2656 (4) 1.1923 (3) 0.9043 (3) 0.0643 (14)
H46A 1.2972 1.2370 0.9515 0.096*
H46B 1.3068 1.1966 0.8757 0.096*
H46C 1.2575 1.1388 0.9106 0.096*
C47 0.7715 (2) 0.7348 (2) 0.73876 (18) 0.0261 (7)
H47A 0.8125 0.7157 0.7116 0.031*
H47B 0.8162 0.7768 0.7862 0.031*
C48 0.7130 (3) 0.6613 (2) 0.74994 (18) 0.0294 (7)
H48A 0.6915 0.6121 0.7055 0.035*
H48B 0.6528 0.6731 0.7556 0.035*
C49 0.8871 (3) 0.5588 (2) 0.82693 (18) 0.0297 (7)
C50 0.9819 (3) 0.5933 (2) 0.82992 (19) 0.0345 (7)
H50 1.0013 0.6493 0.8336 0.041*
C51 1.0479 (3) 0.5479 (2) 0.82758 (19) 0.0365 (8)
H51 1.1116 0.5725 0.8293 0.044*
C52 1.0205 (3) 0.4662 (2) 0.8227 (2) 0.0369 (8)
C53 0.9267 (3) 0.4298 (2) 0.8177 (2) 0.0379 (8)
H53 0.9071 0.3734 0.8127 0.045*
C54 0.8614 (3) 0.4761 (2) 0.82011 (19) 0.0345 (7)
H54 0.7971 0.4507 0.8170 0.041*
C55 1.0708 (4) 0.3458 (3) 0.8267 (3) 0.0616 (13)
H55A 1.1279 0.3251 0.8285 0.092*
H55B 1.0138 0.3090 0.7835 0.092*
H55C 1.0556 0.3475 0.8697 0.092*
C56 0.8714 (3) 0.7388 (2) 0.93269 (18) 0.0309 (7)
C57 0.9579 (3) 0.7387 (2) 0.9827 (2) 0.0392 (8)
H57 0.9770 0.6895 0.9756 0.047*
C58 1.0162 (3) 0.8085 (2) 1.0423 (2) 0.0432 (9)
H58 1.0740 0.8064 1.0760 0.052*
C59 0.9911 (3) 0.8815 (2) 1.05346 (19) 0.0342 (8)
C60 0.9044 (3) 0.8826 (2) 1.0058 (2) 0.0363 (8)
H60 0.8847 0.9315 1.0134 0.044*
C61 0.8463 (3) 0.8113 (2) 0.9465 (2) 0.0363 (8)
H61 0.7867 0.8127 0.9142 0.044*
C62 1.0251 (3) 1.0200 (2) 1.1296 (2) 0.0486 (11)
H62A 1.0767 1.0631 1.1728 0.073*
H62B 0.9641 1.0070 1.1388 0.073*
H62C 1.0135 1.0397 1.0893 0.073*
C63 0.6733 (3) 0.5582 (2) 0.86088 (19) 0.0311 (7)
C64 0.6688 (3) 0.5769 (2) 0.9295 (2) 0.0380 (8)
H64 0.7189 0.6216 0.9690 0.046*
C65 0.5922 (3) 0.5310 (2) 0.9408 (2) 0.0422 (8)
H65 0.5904 0.5441 0.9878 0.051*
C66 0.5182 (3) 0.4661 (2) 0.8835 (2) 0.0401 (8)
C67 0.5210 (3) 0.4466 (2) 0.8153 (2) 0.0414 (8)
H67 0.4707 0.4022 0.7758 0.050*
C68 0.5983 (3) 0.4929 (2) 0.8055 (2) 0.0378 (8)
H68 0.5998 0.4792 0.7585 0.045*
C69 0.3626 (4) 0.3628 (3) 0.8427 (3) 0.0692 (15)
H69A 0.3131 0.3430 0.8613 0.104*
H69B 0.3848 0.3168 0.8208 0.104*
H69C 0.3334 0.3854 0.8064 0.104*
C70 0.6205 (2) 0.8299 (2) 0.74558 (18) 0.0271 (7)
H70A 0.5702 0.8490 0.7168 0.033*
H70B 0.5854 0.7860 0.7580 0.033*
C71 0.6871 (3) 0.9028 (2) 0.81588 (18) 0.0299 (7)
H71A 0.7139 0.9500 0.8034 0.036*
H71B 0.7435 0.8865 0.8410 0.036*
C72 0.7184 (3) 1.0197 (2) 0.9956 (2) 0.0398 (8)
C73 0.7970 (3) 1.0849 (3) 1.0040 (2) 0.0517 (10)
H73 0.8033 1.0929 0.9622 0.062*
C74 0.8647 (4) 1.1375 (3) 1.0702 (2) 0.0607 (11)
H74 0.9163 1.1813 1.0738 0.073*
C75 0.8572 (4) 1.1264 (3) 1.1300 (3) 0.0588 (10)
C76 0.7827 (4) 1.0651 (3) 1.1267 (2) 0.0556 (10)
H76 0.7781 1.0590 1.1696 0.067*
C77 0.7106 (4) 1.0093 (3) 1.0567 (2) 0.0499 (9)
H77 0.6585 0.9660 1.0533 0.060*
C78 0.9315 (6) 1.1711 (5) 1.2560 (3) 0.101 (2)
H78A 0.9729 1.2212 1.2978 0.151*
H78B 0.9572 1.1247 1.2598 0.151*
H78C 0.8637 1.1585 1.2547 0.151*
C79 0.5180 (3) 0.8392 (2) 0.8914 (2) 0.0364 (8)
C80 0.4271 (3) 0.8421 (3) 0.8958 (2) 0.0459 (9)
H80 0.4095 0.8916 0.8988 0.055*
C81 0.3613 (3) 0.7751 (3) 0.8958 (3) 0.0513 (9)
H81 0.3003 0.7796 0.8999 0.062*
C82 0.3845 (3) 0.7016 (3) 0.8900 (2) 0.0468 (9)
C83 0.4744 (3) 0.6966 (3) 0.8858 (2) 0.0447 (9)
H83 0.4914 0.6467 0.8823 0.054*
C84 0.5398 (3) 0.7651 (2) 0.8868 (2) 0.0418 (8)
H84 0.6015 0.7611 0.8842 0.050*
C85 0.3365 (4) 0.5621 (3) 0.8832 (3) 0.0632 (13)
H85A 0.2798 0.5212 0.8809 0.095*
H85B 0.3941 0.5707 0.9255 0.095*
H85C 0.3507 0.5420 0.8395 0.095*
C86 0.5305 (3) 1.0189 (2) 0.85138 (19) 0.0344 (8)
C87 0.5418 (3) 1.0986 (3) 0.8957 (2) 0.0519 (10)
H87 0.5822 1.1177 0.9453 0.062*
C88 0.4958 (4) 1.1504 (3) 0.8694 (2) 0.0577 (11)
H88 0.5054 1.2046 0.9007 0.069*
C89 0.4356 (3) 1.1235 (3) 0.7976 (2) 0.0452 (9)
C90 0.4200 (3) 1.0447 (3) 0.7531 (2) 0.0462 (9)
H90 0.3772 1.0252 0.7040 0.055*
C91 0.4671 (3) 0.9934 (2) 0.7803 (2) 0.0431 (9)
H91 0.4555 0.9387 0.7490 0.052*
C92 0.3467 (4) 1.1602 (3) 0.7009 (2) 0.0645 (14)
H92A 0.3214 1.2054 0.6927 0.097*
H92B 0.2919 1.1091 0.6809 0.097*
H92C 0.3940 1.1525 0.6771 0.097*
O13 0.1527 (4) 0.6799 (3) 0.0591 (2) 0.1061 (14)
C100 0.1066 (5) 0.5940 (4) 0.0231 (3) 0.0869 (15)
H10A 0.0603 0.5826 −0.0261 0.104*
H10B 0.0689 0.5726 0.0496 0.104*
C101 0.2401 (6) 0.6986 (5) 0.0437 (4) 0.1161 (19)
H10C 0.2863 0.7531 0.0778 0.139*
H10D 0.2244 0.6975 −0.0062 0.139*
C102 0.2817 (6) 0.6285 (5) 0.0538 (4) 0.123 (2)
H10E 0.3168 0.6391 0.1054 0.147*
H10F 0.3269 0.6194 0.0277 0.147*
C103 0.1847 (6) 0.5531 (5) 0.0197 (3) 0.1052 (19)
H10G 0.1734 0.5204 −0.0307 0.126*
H10H 0.1878 0.5165 0.0480 0.126*
C93 0.7983 (5) 0.3304 (4) 0.3307 (3) 0.0979 (17)
C94 0.7236 (6) 0.2598 (5) 0.3123 (4) 0.134 (2)
H94 0.6929 0.2229 0.2636 0.160*
C95 0.6931 (6) 0.2422 (5) 0.3635 (4) 0.134 (2)
H95 0.6441 0.1918 0.3508 0.161*
C96 0.7327 (5) 0.2965 (5) 0.4323 (3) 0.111 (2)
H96 0.7095 0.2856 0.4676 0.133*
C97 0.8056 (5) 0.3665 (4) 0.4506 (3) 0.1010 (18)
H97 0.8334 0.4044 0.4990 0.121*
C98 0.8396 (5) 0.3836 (4) 0.4013 (3) 0.1009 (17)
H98 0.8920 0.4323 0.4154 0.121*
C99 0.8357 (7) 0.3493 (5) 0.2748 (4) 0.128 (3)
H99A 0.9076 0.3732 0.2961 0.193*
H99B 0.8057 0.3888 0.2586 0.193*
H99C 0.8179 0.2982 0.2335 0.193*

Source of material

Tri(4-methoxyphenyl)tin hydride (33.08 g; 75.0 mmol) was treated with tetravinylsilane (2.04 g; 15.0 mmol) and five drops of a 0.1 M solution of hexachloroplatinic acid in 2-propanol. After vigorously stirring the reaction mixture at room temperature for 12 h, pentane was added to the viscous product to give a solid, which was filtered and washed with pentane. Recrystallization from toluene-tetrahydrofuran yielded the product as colorless crystals.

Experimental details

Hydrogen atoms were placed in their geometrically idealized positions and constrained to ride on their parent atoms. Some disordered C atoms (C72–C77 and C93–C98) were refined using tools available from SHELXL [2].

Comment

The synthesis and characterization of well-defined heteroatomic macromolecules such as single-source organometallic precursors [4], [5], [6], [7], [8], [9], [10], [11] or metallodendrimers has developed very rapidly in recent years due to their diverse application possibilities in combination with very special properties [4]. Metallodendrimers are specified by the incorporation of metal atoms as the central unit, as branching centers, in the branches themselves or at the periphery of the dendritic skeleton [12]. We systematically study the synthesis and properties of dendritic organotin compounds [13], [14], [15], [16], [17]. The title compound tetrakis[2-(tris(4-methoxyphenyl)stannyl)ethyl]silane combines the properties of a dendritic molecule with the potential functionalizable organotin moities by replacing peripheral 4-methoxyphenyl groups with halogens and other modifications. The title compoud thereby is an appreciable key intermediate for new approaches to further derivatization and syntheses of higher-order organotin dendrimers with metal atoms as branch sites.

X-ray structure analysis reveals crystallographic data of a first-generation Si–Sn dendrimer. Four dendritic molecules are present in the unit cell. The central Si atom is tetrahedrally coordinated by four dendritic branches. The title compound shows a twisted internal geometry instead of an elongated dendritic backbone, indicating a conformational restriction that is likely due to the tendency to utilize the interior of the dendrimer when large substituents are present on the surface. The C–Si–C angles in the range from 107.37(14)° to 110.81(15)° evidence further an increased conformational restriction. All Sn–C bond lengths are comparable with that of closely related tetrakis[2-(triphenylstannyl)-ethylene]silane (2.144 Å(mean)) [18] and other similar compounds in literature [18, 19]. In addition, all bond lengths and bond angles are in the normal range. The structure of the title compound contains tetrahydrofuran and toluene as independent molecules.


Corresponding author: Yilmaz Aksu, Department of Materials Science and Engineering, Faculty of Engineering, Akdeniz University, Dumlupinar Bulvari, 07058 Antalya, Turkey, E-mail:

Funding source: Scientific Research Projects Coordination Unit of Akdeniz University (BAP) http://dx.doi.org/10.13039/501100005703

Award Identifier / Grant number: FBA-2021-5531

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by the Scientific Research Projects Coordination Unit of Akdeniz University (BAP) (Grant No. FBA-2021–5531).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Farrugia, L. J. WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr. 2012, 45, 849–854; https://doi.org/10.1107/s0021889812029111.Suche in Google Scholar

2. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Suche in Google Scholar

3. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J., Wood, P. A. Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures. J. Appl. Crystallogr. 2008, 41, 466–470; https://doi.org/10.1107/s0021889807067908.Suche in Google Scholar

4. Kirste, R., Aksu, Y., Wagner, M. R., Khachadorian, S., Jana, S., Driess, M., Thomsen, C., Hoffmann, A. A Raman and photoluminescence spectroscopic detection of surface-bound Li+O−2 defect sites in Li-doped ZnO nanocrystals derived from molecular precursors. ChemPhysChem 2011, 12, 1189–1195; https://doi.org/10.1002/cphc.201000852.Suche in Google Scholar PubMed

5. Samedov, K., Aksu, Y., Driess, M. Heterotermetallic Indium lithium halostannates: low-temperature single-source precursors for tin-rich indium tin oxides and their application for thin-film transistors. Chem. Eur J. 2012, 18, 7766–7779; https://doi.org/10.1002/chem.201103594.Suche in Google Scholar PubMed

6. Heitz, S., Aksu, Y., Merschjann, C., Driess, M. Unprecedented alkylzinc- magnesium alkoxide clusters as suitable organometallic precursors for magnesium- containing ZnO nanoparticles. Chem. Eur J. 2011, 17, 3904–3910; https://doi.org/10.1002/chem.201002743.Suche in Google Scholar PubMed

7. Krackl, S., Company, A., Aksu, Y., Avnir, D., Driess, M. Entrapment of heteropolyacids in metallic silver matrices: unique heterogenized acid catalysts. ChemCatChem 2011, 3, 227–232; https://doi.org/10.1002/cctc.201000239.Suche in Google Scholar

8. Arndt, S., Aksu, Y., Driess, M., Schomacker, R. The catalytic activity of zinc oxides from single source pecursors with additives for the C–H acitivation of lower alkanes. Catal. Lett. 2009, 131, 258–265; https://doi.org/10.1007/s10562-009-0055-3.Suche in Google Scholar

9. Samedov, K., Aksu, Y., Driess, M. Facile molecular approach to transparent thin-film field-effect transistors with high-performance using new homo- and heteroleptic indium(III)-tin(II) single-source precursors. Chem. Mater. 2012, 24, 2078–2090; https://doi.org/10.1021/cm300510y.Suche in Google Scholar

10. Tsaroucha, M., Aksu, Y., Epping, J. D., Driess, M. Facile low-temperature approach to tin-containing ZnO nanocrystals with tunable tin concentrations using heterobimetallic Sn–Zn single source precursors. ChemPlusChem 2013, 78, 62–69; https://doi.org/10.1002/cplu.201200259.Suche in Google Scholar

11. Krackl, S., Ma, J. G., Aksu, Y., Driess, M. Facile access to homo- and heteroleptic, triply bonded dimolybdenum hexaalkoxides with unsaturated alkoxide ligands. Eur. J. Inorg. Chem. 2011, 11, 1725–1732; https://doi.org/10.1002/ejic.201001236.Suche in Google Scholar

12. Bosmann, A. W., Janssen, H. M., Meijer, E. W. About dendrimers: structure, physical properties and applications. Chem. Rev. 1999, 99, 1665–1688; https://doi.org/10.1021/cr970069y.Suche in Google Scholar PubMed

13. Aksu, Y., Aksu, S., Schumann, H. Synthesis and characterization of alpha, omega-bis[tri-(w-triphenylstannyl)butylstannyl]alkanes as starting materials for organotin dendrimers. Appl. Organomet. Chem. 2007, 7, 521–530; https://doi.org/10.1002/aoc.1251.Suche in Google Scholar

14. Schumann, H., Wassermann, B. C., Schutte, S., Velder, J., Aksu, Y., Krause, W., Raduchel, B. Synthesis and characterization of water-soluble tin-based metallodendrimers. Organometallics 2003, 22, 2034–2041; https://doi.org/10.1021/om021011z.Suche in Google Scholar

15. Schumann, H., Aksu, Y., Schutte, S., Wassermann, B. C., Muehle, S. H. Synthesis and characterization of new silicon-centred tin-dendrimers Si[CH2CH2SnR3]4 Single-crystal X-ray structure of the tetrahydrofuran adduct of tetrakis [2-(tribromostannyl)ethyl]silane. J. Organomet. Chem. 2006, 691, 4717–4724; https://doi.org/10.1016/j.jorganchem.2006.07.017.Suche in Google Scholar

16. Schumann, H., Aksu, Y., Wassermann, B. C. Convergent synthesis and characterization of organotindendrimers Sn{(CH2)nSn[(CH2)4SnPh3]}4 (n = 3, 4). Organometallics 2006, 25, 3428–3434; https://doi.org/10.1021/om0602005.Suche in Google Scholar

17. Schumann, H., Wassermann, B. C., Frackowiak, M., Omotowa, B., Schutte, S., Velder, J., Muehle, S. H., Krause, W. Si(CH2CH2SnH3)4—a unique organotin hydride featuring 12 SnH units in a dendritic molecule. Single- crystal X-ray structures of tetrakis(2-stannylethylene)silane and tetrakis[2- (triphenylstannyl)ethylene]silane. J. Organomet. Chem. 2000, 609, 189–195; https://doi.org/10.1016/s0022-328x(00)00188-1.Suche in Google Scholar

18. Schager, F., Goddard, R., Seevogel, K., Poerschke, K.-R. Synthesis, structure and properties of {(Me3Si)2CH}2SnH(OH). Organometallics 1998, 17, 1546–1551; https://doi.org/10.1021/om970997n.Suche in Google Scholar

19. Blom, R., Haaland, A. A modification of the Schomaker—Stevenson rule for prediction of single bond distances. J. Mol. Struct. 1985, 128, 21–27; https://doi.org/10.1016/0022-2860(85)85036-5.Suche in Google Scholar

Received: 2022-04-30
Accepted: 2022-05-30
Published Online: 2022-06-10
Published in Print: 2022-08-26

© 2022 Yilmaz Aksu et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Artikel in diesem Heft

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of N-((3s,5s,7s)-adamantan-1-yl)-2-(3-benzoylphenyl)propanamide, C26H29NO2
  4. The crystal structure of bis(μ2-5-chloro-2-oxido-N-(1-oxidopropylidene)benzohydrazonato-κ5 N,O,O′:N′,O′′)-octakis(pyridine-κ1 N)trinickel(II) C60H56Cl2N12Ni3O6
  5. The crystal structure of 3-(4-chlorophenyl)-1,5-di-p-tolylpentane-1,5-dione, C25H23ClO2
  6. The crystal structure of 2,4,4-triphenyl-4H-benzo[b][1,4]oxaphosphinin-4-ium bromide – dichloromethane (1/1), C27H22BrCl2OP
  7. The crystal structure of 2-(3,6-di-tert-butyl-1,8-diiodo-9H-carbazol-9-yl)acetonitrile, C22H24I2N2
  8. Crystal structure of 3-phenylpropyl 2-(6-methoxynaphthalen-2-yl)propanoate, C23H24O3
  9. The crystal structure of (4-fluorophenyl)(5-(hydroxymethyl)furan-2-yl)methanol, C12H11FO3
  10. Crystal structure of the dihydrate of tetraethylammonium 1,3,5-thiadiazole-5-amido-2-carbamate, C11H27N5O4S
  11. Crystal structure of (Z)-4-[(p-tolylamino)(furan-2-yl)methylene]-3-phenyl-1-1-p-tolyl-1H-phenyl-1H-pyrazol-5(4H)-one, C28H23N3O2
  12. The crystal structure of (E)-3-(2-chlorophenyl)-1-ferrocenylprop-2-en-1-one, C19H15ClFeO
  13. The pseudosymmetric crystal structure of 3-((1R,2S)-1-methylpyrrolidin-1-ium-2-yl)pyridin-1-ium hexachloridostannate(IV), C10H16N2SnCl6
  14. Crystal structure of (2-(1-hydroxyheptyl)octahydro-8aH-chromene-5,8,8a-triol), C16H30O5
  15. The crystal structure of N-cyclohexyl-3-hydroxy-4-methoxybenzamide, C14H19NO3
  16. Crystal structure of 1-(4-hydroxybenzyl)-4-methoxy-9,10-dihydrophenanthrene-2,7-diol from Arundina graminifolia, C22H20O4
  17. The crystal structure of N-cyclopentyl-3-hydroxy-4-methoxybenzamide, C13H17NO3
  18. The crystal structure of 2,5,5-triphenyl-3,5-dihydro-4H-imidazol-4-one, C21H16N2O
  19. Crystal structure of 1H-1,2,3-Triazolo[4,5-b]-pyridin-4-ium nitrate, C5H5N5O3
  20. Crystal structure of (Z)-4-(((4-bromophenyl)amino)(furan-2-yl)methylene)-2,5-diphenyl-2,4-dihydro-3H-pyrazol-3-one, C26H18BrN3O2
  21. Crystal structure of 2-(4-methoxyphenyl)-3-methyl-1,8-naphthyridine, C16H14N2O
  22. The crystal structure of 3-([1,1′-biphenyl]-2-yl)-1,2-diphenylbenzo[b]phosphole-1-oxide, C32H23OP
  23. The crystal structure of ammonium (E)-4-((4-carboxyphenyl)diazenyl)benzoate, C14H13N3O4
  24. Crystal structure of bis(5-amino-1,2,4-triazol-4-ium-3-yl)methane sulfate, C5H10N8O4S
  25. The crystal structure of phenantroline-κ2 N,N′-bis(6-phenylpyridine-2-carboxylato-κ2 N,O)copper(II), C36H24N4O4Cu
  26. The crystal structure of tris(6-methylpyridin-2-yl)phosphine oxide, C18H18N3OP
  27. The crystal structure of N-(2′-hydroxymethyl-5′-phenyl-3′,4′-dihydro-[1,1′:3′,1″-terphenyl]- 1′(2′H)-yl)-P,P-diphenylphosphinic amide, C37H34NO2P
  28. Crystal structure of (E)-4-(6-(4-(2-(pyridin-4-yl)vinyl)phenoxy)pyrimidin-4-yl)morpholine, C21H20N4O2
  29. Crystal structure of 5-(adamantan-1-yl)-3-[(4-trifluoromethylanilino)methyl]-2,3-dihydro-1,3,4-oxadiazole-2-thione, C20H22F3N3OS
  30. Crystal structure of 2,2-dichloro-1-(4-chloro-1H-indol-1-yl)ethan-1-one, C10H6Cl3NO
  31. The crystal structure of 4-(((3-bromo-5-(trifluoromethyl)pyridin-2-yl)oxy)methyl)benzonitrile, C28H16Br2F6N4O2
  32. The crystal structure of 1H-benzimidazole-2-carboxamide, C8H7N3O
  33. The crystal structure of Histidinium hydrogensquarate, C10H11N3O6
  34. The crystal structure of 3-amino-5-carboxypyridin-1-ium iodide, C6H7IN2O2
  35. Crystal structure of (E)-amino(2-(3-ethoxy-4-hydroxybenzylidene)hydrazineyl)methaniminium nitrate hemihydrate C10H16N5O5.5
  36. Crystal structure of 1,2-bis(4,5-dinitro-1H-imidazol-1-yl)ethane, C8H6N8O8
  37. The crystal structure of diaqua-bis(pyrazolo[1,5-a]pyrimidine-3-carboxylato-κ2N,O)manganese(II), C14H12N6O6Mn
  38. The crystal structure of catena-poly[aqua-2,2′bipyridine-κ2N,N′-(μ2-5-ethoxyisophthalato-κ 4O,O:Oʺ,O′ʺ)cadmium(II)] monohydrate, C20H20CdN2O7
  39. The crystal structure of (1S,3R)-1-(4-isopropylphenyl)-3-(methoxycarbonyl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-2-iumchloride monohydrate, C22H27ClN2O3
  40. Crystal structure of 1-isopropyl-3-(prop-1-en-2-yl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine, C11H15N5
  41. The crystal structure of (2,2′-bipyridine-κ2N,N′)- bis(6-phenylpyridine-2-carboxylate-κ2N,O)manganese(II)] monohydrate, C34H26N4O5Mn
  42. Crystal structure of the cocrystal 1,3,5,7-tetranitro-1,3,5,7-tetrazoctane ─ 2,3-dihydroindole (1/1), C12H17N9O8
  43. Crystal structure of 3-acetyl-6-hydroxy-2H-chromen-2-one monohydrate, C11H10O5
  44. Crystal structure of 6,9-diamino-2-ethoxyacridinium 3,5-dinitrobenozate — dimethylsulfoxide — water (1/1/1), C24H27N5O9S
  45. The crystal structure of 4,4′-bipyridinium bis-(2-hydroxy-3-methoxybenzoate), 2(C8H7.68O4)·C10H8.64N2
  46. Crystal structure of (Z)-4-(((4-fluorophenyl)amino)(furan-2-yl)methylene)-5-methyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one
  47. The crystal structure of bis(4-chloro-2-(((2-chloroethyl)imino)methyl)phenolato-κ2N,O)-oxidovanadium(IV), C18H16Cl4N2O3V
  48. The crystal structure of 17-(bromoethynyl)-17-hydroxy-10, 13-dimethyl- 1,2,6,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-3H-cyclopenta[a]phenanthren-3-one, C21H27BrO2
  49. The crystal structure of 4-((6-fluoropyridin-2-yloxy)methyl)benzonitrile, C13H9FN2O
  50. Crystal structure of (Z)-2-(1-bromo-2-phenylvinyl)-5-ethyl-2-methyl-1,3-dioxane-5-carboxylic acid, C15H17Br1O4
  51. Crystal structure of catena-poly[tribenzyl-κ1C-(μ2-6-oxidopyridin-1-ium-3-carboxylato-κ2O:O’)tin(IV)-dichloromethane-methanol (1/1/1), C29H31Cl2NO4Sn
  52. Crystal structure of bis{2-(tert-butyl)-6-((E)-((4-((E)-1-(methoxyimino)ethyl)phenyl)imino)methyl)phenolato-κ2N,O}zinc(II), C40H46N4O4Zn
  53. Crystal structure of diaqua-bis(μ2-2-carboxy-3,4,5,6-tetrafluorobenzoato-κ2O:O′)-bis(phenanthroline-κ2N,N′)-bis(μ2-3,4,5,6-tetrafluorophthalato-κ3O:O,O′)dieuropium(III) – phenanthroline (1/2), C40H19EuF8N4O9
  54. The crystal structure of diaqua-bis(6-phenylpyridine-2-carboxylato-κ2N,O) manganese(II) — water — dimethylformamide (1/2/1), C27H31N3O9Mn
  55. The crystal structure of bis(pyrazolo[1,5-a]pyrimidine-3-carboxylato-κ2N,O)-copper(ii), C14H8N6O4Cu
  56. Crystal structure of poly[(μ2-1-(1-imidazolyl)-4-(imidazol-1-ylmethyl)benzene-κ2N:N′)-(μ3-pyridazine-4,5-dicarboxylate-κ3O:O′:N)]copper(II) hydrate, C19H16CuN6O5
  57. Crystal structure of acrinidinium tetrafluorohydrogenphthalate, C21H11F4NO4
  58. Crystal structure of 2-(1H-pyrazol-3-yl-κN)pyridine-κN-bis(2-(2,4-difluorophenyl)pyridinato-κ2C,N)iridium(III) sesquihydrate, C30H18F4IrN5·1.5[H2O]
  59. Crystal structure of 2-(2-hydroxy-5-nitrophenyl)-5-methyl-1,3-dioxane-5-carboxylic acid, C12H13N1O7
  60. The crystal structure of 1,2-bis(pyridinium-4-yl)ethane diperchlorate, C12H14N2·2ClO4 – a second polymorph
  61. The crystal structure of [(1,10-phenantroline-κ2N,N′)-bis(6-phenylpyridine-2-carboxylato-κ2N,O)manganese(II)] monohydrate, C36H26N4O5Mn
  62. Crystal structure of 1,2-bis(2,2,3,3,5,5,5-heptamethyl-1,1,4,4- tetrakis(trimethylsilyl)pentasilan-1-yl)ditellane, C38H114Si18Te2
  63. Crystal structure of 1,2-bis(2,4-dinitro-1H-imidazol-1-yl)ethane – dimethylformamide (1/1), C11H13N9O9
  64. Crystal structure of (Z)-3-((tert-butylamino) methylene)-2-(2-hydroxynaphthalen-1-yl) chroman-4-one, C24H23NO3
  65. Synthesis and crystal structure of (E)-1-(4-(((E)-3-(tert-butyl)-2-hydroxybenzylidene)amino)phenyl)ethan-1-one O-ethyl oxime, C21H26N2O2
  66. Crystal structure of the double salt bis(5-amino-1,2,4-triazol-4-ium-3-yl)methane hydrogen oxalate hemioxalate, C8H11N8O6
  67. Hydrothermal synthesis and crystal structure of catena-poly[diaqua-bis(μ2-4-[(4-pyridinylmethyl)amino]benzoato-κ2N:O)cobalt(II)]–1,2bi(4-pyridyl)ethene–water (1/1/1), C50H50N8O8Co
  68. Crystal structure of 3-(3-bromophenyl)-1′,3′-dimethyl-2′H,3H,4H-spiro[furo[3, 2-c]chromene-2,5′-pyrimidine]-2′,4,4′,6′(1′H,3′H) tetraone, C22H15BrN2O6
  69. The crystal structure of poly[aqua-(μ2-4,4′- bis(imidazolyl)biphenyl-κ2N:N′)-(μ2-3-nitrobenzene-1,2-dicarboxylato-κ2O:O′)]copper (II) hydrate, C26H21N5O8Cu
  70. The crystal structure of bis(4-(6-carboxy-8-ethyl-3-fluoro-5-oxo-5,8-dihydro-1,8-naphthyridin-2- yl)piperazin-1-ium) adipate tetrahydrate, C36H52F2N8O14
  71. Synthesis and crystal structure of poly[aqua(μ4-(1R,2S,4R)-4-hydroxy-1-((7-hydroxy-3-(4-hydroxy-3-sulfonatophenyl)-4-oxo-4H-chromen-8-yl)methyl)pyrrolidin-1-ium-2-carboxylate-κ4O:O′:O″:O‴)sodium(I)] monohydrate, C21H22NNaO12S
  72. Crystal structure of chlorido-(η6-toluene)(2,2′-bipyridine-κ2N,N′)ruthenium(II) hexafluorophosphate, C17H16ClN2RuPF6
  73. The crystal structure of (R)-6-hydroxy-8-methoxy-3-methylisochroman-1-one, C11H12O4
  74. Crystal structure of catena-poly[(5,5,7,12,12,14-hexamethyl -1,4,8,11-tetraazacyclotetradecane- κ4N,N′,Nʺ,N‴)nickel(II)-(μ2-perchlorato-κ2O:O′)] 3,5-dicarboxybenzoate – methanol (1/2), C27H49ClN4NiO12
  75. The crystal structure of 4-(chloromethyl)benzonitrile, C8H6ClN
  76. The crystal structure of dimethylammonium 8-[(7,9-dioxo-6,10-dioxaspiro[4.5]decan-8-ylidene)methyl]-9-oxo-6,10-dioxaspiro[4.5]dec-7-en-7-olate, C19H25NO8
  77. Crystal structure of (2R,3S,4S,5R,6S)-2-(acetoxymethyl)-6-((1-acetyl-5-bromo-4-chloro-1H-indol-3-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate hemihydrate C24H25BrClNO11
  78. The crystal structure of the co-crystal tetrakis[2-(tris(4-methoxyphenyl)stannyl)ethyl]silane – tetrahydrofuran – toluene – tetrahydrofurane (1/1/1), C103H116O13SiSn4
  79. Crystal structure of methyl 3-(1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)propanoate, C16H13NO4
  80. Crystal structure of ethyl (Z)-3-amino-2-cyano-3-(2-oxo-2H-chromen-3-yl)acrylate, C15H12N2O4
  81. Crystal structure of methyl 2-(1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)acetate, C15H11NO4
  82. Crystal structure of catena-poly[diaqua-bis(μ2-1,3-di(1H-imidazol-1-yl)propane-κ2N:N′)cobalt(II)] tetrafluoroterephthalate, C26H28N8O6F4Co
Heruntergeladen am 6.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2022-0224/html?lang=de
Button zum nach oben scrollen