Home Crystal structure of (E)-ethyl 2-((4-oxo-4H-chromen-3-yl)methyleneaminooxy)acetate, C14H13NO5
Article Open Access

Crystal structure of (E)-ethyl 2-((4-oxo-4H-chromen-3-yl)methyleneaminooxy)acetate, C14H13NO5

  • Miri Yoo and Dongsoo Koh ORCID logo EMAIL logo
Published/Copyright: July 29, 2021

Abstract

C14H13NO5, monoclinic, P21 (no. 4), a = 4.6967(7) Å, b = 10.7175(16) Å, c = 12.945(2) Å, β = 94.827(8)°, V = 649.30(17) Å3, Z = 2, R gt (F) = 0.0577, wR ref (F2) = 0.1302, T = 223(2) K.

CCDC no.: 2096412

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Colourless plate
Size: 0.14 × 0.12 × 0.05 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.11 mm−1
Diffractometer, scan mode: PHOTON 100 CMOS, φ and ω
θmax, completeness: 28.4°, >99%
N(hkl)measured, N(hkl)unique, Rint: 26,931, 3254, 0.137
Criterion for Iobs, N(hkl)gt: Iobs > 2 σ(Iobs), 1835
N(param)refined: 182
Programs: Bruker [1], SHELX [2, 3], Olex2 [4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z Uiso*/Ueq
C1 0.1748 (6) 0.0642 (3) 0.4571 (2) 0.0320 (7)
O1 0.2163 (4) 0.1571 (2) 0.51261 (16) 0.0406 (5)
C2 −0.0446 (7) 0.0647 (3) 0.3685 (2) 0.0344 (7)
C3 −0.2081 (6) 0.1703 (3) 0.3418 (2) 0.0401 (8)
H3 −0.1774 0.2444 0.3801 0.048*
C4 −0.4142 (7) 0.1666 (4) 0.2598 (3) 0.0491 (9)
H4 −0.5247 0.2379 0.2426 0.059*
C5 −0.4597 (8) 0.0588 (4) 0.2025 (3) 0.0532 (10)
H5 −0.6013 0.0576 0.1466 0.064*
C6 −0.3004 (8) −0.0470 (4) 0.2259 (3) 0.0487 (9)
H6 −0.3307 −0.1204 0.1867 0.058*
C7 −0.0941 (6) −0.0423 (3) 0.3090 (2) 0.0375 (8)
O2 0.0594 (5) −0.1498 (2) 0.32907 (18) 0.0441 (6)
C8 0.2634 (7) −0.1500 (3) 0.4085 (3) 0.0417 (8)
H8 0.3667 −0.2243 0.4213 0.050*
C9 0.3316 (6) −0.0519 (3) 0.4714 (2) 0.0326 (7)
C10 0.5677 (7) −0.0726 (3) 0.5499 (3) 0.0368 (8)
H10 0.6522 −0.1522 0.5534 0.044*
N1 0.6678 (6) 0.0101 (3) 0.6143 (2) 0.0397 (7)
O3 0.9037 (5) −0.0459 (2) 0.67441 (19) 0.0482 (6)
C11 1.0344 (7) 0.0452 (3) 0.7422 (2) 0.0410 (8)
H11A 1.0473 0.1242 0.7047 0.049*
H11B 1.2291 0.0185 0.7651 0.049*
C12 0.8707 (8) 0.0653 (4) 0.8346 (3) 0.0517 (9)
O4 0.6764 (6) 0.0028 (3) 0.8604 (2) 0.0822 (10)
O5 0.9754 (7) 0.1624 (3) 0.88836 (19) 0.0763 (9)
C13 0.8423 (15) 0.1892 (6) 0.9839 (4) 0.129 (3)
H13A 0.6413 0.1638 0.9753 0.155*
H13B 0.9369 0.1397 1.0404 0.155*
C14 0.8570 (19) 0.3090 (6) 1.0096 (5) 0.158 (3)
H14A 1.0552 0.3325 1.0258 0.237*
H14B 0.7513 0.3231 1.0698 0.237*
H14C 0.7752 0.3591 0.9521 0.237*

Source of material

The starting material 4-oxo-4H-chromene-3-carbaldehyde (522 mg, 3 mmol), purchased from Aldrich, was dissolved in 40 mL of methanol to give a clear solution. Two equivalents of hydroxyl amine (6 mmol, 420 mg) and sodium acetate (6 mmol, 490 mg) in 15 mL of water were added to the above solution, and reaction mixture was stirred at 70 °C for 5 h. The reaction mixture was cooled down to room temperature to furnish precipitation of the corresponding oxime compound. The solid was filtered and washed with cold methanol. The oxime compound (2 mmol, 380 mg) and K2CO3 (3 mmol, 415 mg) were dissolved in 30 mL of DMF to give a clear solution. To the solution, was added ethylbromoacetate (3 mmol, 0.4 mL) and the reaction mixture was stirred at 50 °C. After the completion of the reaction (checked by TLC), the reaction mixture was cooled down to room temperature and poured into 100 mL of ice-water to form a precipitate. Crystals of the title compound were obtained by recrystallization from an ethanol solution.

Experimental details

Data collections and reduction were carried out using the Bruker software APEX2 and SAINT including SADABS [1]. Hydrogen atoms were placed in their geometrically idealized positions and constrained to ride on their parent atoms.

Comment

Oxime esters are one of the most important moiety in a large number of bioactive compounds with a wide range of activities [5, 6]. In addition they have been known as photoinitiators in the field of photochemistry [7, 8]. Chromenon is an indispensable structure in flavonoids which have demonstrated diverse biological activities in medicinal chemistry [9], [10], [11], [12]. Isoflavonoids have substituent at three-position of the chromenone structure and they have shown structural difference from other flavonoids which have substituent at two-position. Because of the critical structural differences, isoflavones exhibit physiological functions that are different to those of other flavonoids [13]. Recent research has shown that isoflavones have broad biological activities including an influence on osteoporosis [14], cardiovascular diseases [15], and it has been shown that an inhibition of thyroid peroxidase is possible [16]. In an extension of our previous studies on isoflavones [17], [18], [19], chromenone was combined with an oxime ester to obtain isoflavone analogs.

In the title compound (see the Figure), the chromenone ring (C1–C9/O2) is almost planar, with a maximum deviation of 0.023 Å at C1 (r.m.s. deviation = 0.010 Å). The chromenone ring and the C10=N1 double bond of the oxime unit lie in the same plane [N1–C10–C9–C1 = −1.3(5)]. The C10=N1 imine double bond adopts an E-configuration, which was defined by a dihedral angle of −177.6(3)° for C9–C10–N1–O3. In the oxime unit, the ethylacetate group attached to the oxygen forms an anti-conformation with the imine C10=N1 double bond as it moves away from the hydrogen attached to the imine carbon [C11–O3–N1–C10 = 176.0(3)°]. In the crystal, the carbonyl oxygen (O1) forms weak and branched C(10)–H(10)⃛O(1) and C(8)–H(8)⃛O(1) hydrogen bonds to form a six-membered ring, which propagates along the b-axis by a C(11)–H(11A)⃛O(2) hydrogen bond. The chain is further stabilized by additional C(11)–H(11B)⃛O(4) interactions.


Corresponding author: Dongsoo Koh, Department of Applied Chemistry, Dongduk Women’s University, Seoul 136-714, Republic of Korea, E-mail:

Funding source: Basic Science Research Program

Award Identifier / Grant number: NRF-2019R1F1A1058747

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: Basic Science Research Program (award No. NRF-2019R1F1A1058747).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Bruker. SAINT, APEX2 and SADABS; Bruker AXS Inc.: Madison, WI, USA, 2012.Search in Google Scholar

2. Sheldrick, G. M. SHELXTL – integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Search in Google Scholar

3. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

4. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

5. Vessally, E., Saeidian, H., Hosseinian, A., Edjlali, L., Bekhradnia, A. A. Review on synthetic applications of oxime esters. Curr. Org. Chem. 2017, 21, 249–271.10.2174/1385272820666161018150925Search in Google Scholar

6. Wang, X., Zhong, X., Zhu, X., Wang, H., Li, Q., Zhang, J., Ruan, X., Xue, W. Synthesis and antibacterial activity of oxime ester derivatives containing 1,2,4-triazole or 1,3,4-oxadiazole moiety. Chem. Pap. 2017, 71, 1953–1960; https://doi.org/10.1007/s11696-017-0189-5.Search in Google Scholar

7. Fast, D. E., Lauer, A., Menzel, J. P., Kelterer, A. M., Gescheidt, G., Barner-Kowollik, C. Wavelength-dependent photochemistry of oxime ester photoinitiators. Macromolecules 2017, 50, 1815–1823; https://doi.org/10.1021/acs.macromol.7b00089.Search in Google Scholar

8. Qiu, W., Zhu, J., Dietliker, K., Li, Z. Polymerizable oxime esters: an efficient photoinitiator with low migration ability for 3D printing to fabricate luminescent devices. ChemPhotoChem 2020, 4, 5296–5303; https://doi.org/10.1002/cptc.202000146.Search in Google Scholar

9. Medzhitov, R Inflammation 2010: new adventures of an old flame. Cell 2010, 140, 771–776; https://doi.org/10.1016/j.cell.2010.03.006.Search in Google Scholar

10. Cushnie, T. P. T., Lamb, A. J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 2005, 26, 343–356; https://doi.org/10.1016/j.ijantimicag.2005.09.002.Search in Google Scholar

11. Lebeau, J., Furman, C., Bernier, J. L., Duriez, P., Teissier, E., Cotelle, N. Antioxidant properties of di-tert-butylhydroxylated flavonoids. Free Radical Biol. Med. 2000, 29, 900–912; https://doi.org/10.1016/s0891-5849(00)00390-7.Search in Google Scholar

12. Shukla, S., Gupta, S. Apigenin: a promising molecule for cancer prevention. Pharm. Res. 2010, 27, 962–978; https://doi.org/10.1007/s11095-010-0089-7.Search in Google Scholar

13. Tikkanen, M. J., Adlercreutz, H. Dietary soy-derived isoflavone phytoestrogens: could they have a role in coronary heart disease prevention? Biochem. Pharmacol. 2000, 60, 1–5; https://doi.org/10.1016/s0006-2952(99)00409-8.Search in Google Scholar

14. Ye, Y.-B., Tang, X.-Y., Verbruggen, M. A., Su, Y.-X. Soy isoflavones attenuate bone loss in early postmenopausal Chinese women: a single-blind randomized, placebo-controlled trial. Eur. J. Nutr. 2006, 45, 327–334; https://doi.org/10.1007/s00394-006-0602-2.Search in Google Scholar PubMed

15. Zhan, S., Ho, S. C. Meta-analysis of the effects of soy protein containing isoflavones on the lipid profile. Am. J. Clin. Nutr. 2005, 81, 397–408; https://doi.org/10.1093/ajcn.81.2.397.Search in Google Scholar PubMed

16. Chang, H. C., Doerge, D. R. Dietary genistein inactivates rat thyroid peroxidase in vivo without an apparent hypothyroid effect. Toxicol. Appl. Pharmacol. 2000, 168, 244–252; https://doi.org/10.1006/taap.2000.9019.Search in Google Scholar PubMed

17. Shin, S. Y., Lee, Y. H., Lim, Y., Lee, H. J., Lee, J. H., Yoo, M., Ahn, S., Koh, D. Single crystal X-ray structure for the disordered two independent molecules of novel isoflavone: synthesis, hirshfeld surface analysis, inhibition and docking studies on IKKβ of 3-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-6,7-dimethoxy-4H- chromen-4-one. Crystals 2020, 10, 911; https://doi.org/10.3390/cryst10100911.Search in Google Scholar

18. Jeong, M., Jung, E., Lee, Y. H., Seo, J. K., Ahn, S., Koh, D., Lim, Y., Shin, S. Y. A novel synthetic compound (E)-5-((4-oxo-4H-chromen-3-yl)methyleneamino)-1-phenyl- 1H-pyrazole-4-carbonitrile inhibits TNFα-induced MMP9 expression via EGR-1 downregulation in MDA-MB-231 human breast cancer cells. Int. J. Mol. Sci. 2020, 21, 5080; https://doi.org/10.3390/ijms21145080.Search in Google Scholar PubMed PubMed Central

19. Ahn, S., Sung, J., Lee, J. H., Yoo, M., Lim, Y., Shin, S. Y., Koh, D. Synthesis, single crystal X-ray structure, Hirshfeld surface analysis, DFT computations, docking studies on aurora kinases and an anticancer property of 3-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-6-methoxy-4H-chromen-4- one. Crystals 2020, 10, 413; https://doi.org/10.3390/cryst10050413.Search in Google Scholar

Received: 2021-06-16
Accepted: 2021-07-14
Published Online: 2021-07-29
Published in Print: 2021-12-20

© 2021 Miri Yoo and Dongsoo Koh, published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. Redetermination of the crystal structure of 3-bromonitrobenzene at 200 K, C6H4BrNO2 – temperature effects on cell constants
  4. Crystal structure of (E)-ethyl 2-((4-oxo-4H-chromen-3-yl)methyleneaminooxy)acetate, C14H13NO5
  5. Crystal structure of (8R,10R,14R, Z)-2-((3–Fluoropyridin-4-yl) methylene)-12-hydroxy-4,4,8,10,14-pentamethyl-17-((R)-2,6, 6-trimethyltetrahydro-2H-pyran-2-yl) hexadecahydro-3H-cyclopenta[a] phenanthren-3-one, C36H52FNO3
  6. Crystal structure of [6,6′-((1E,1′E)-(propane-1,3- diylbis(azaneylylidene))bis(methaneylylidene)) bis(3-chlorophenol)-κ4N,N′,O,O′] copper(II), C17H14Cl2CuN2O2
  7. The crystal structure of 6-amino-2-carboxypyridin-1-ium bromide, C6H7BrN2O2
  8. Redetermination of the crystal structure of bis[N,N′-ethylenebis(acetylacetoniminato)nickel(II)] sodium perchlorate, C24H36ClN4NaNi2O8
  9. The crystal structure of 3-methyl-2,6-dinitrophenol, C7H6N2O5
  10. The crystal structure of 5-chloro-2-(quinolin-8-yl)isoindoline-1,3-dione, C17H9ClN2O2
  11. Crystal structure of trans-tetraaqua-bis{2-carboxy-4-((5-carboxypyridin-3-yl)oxy)benzoato-κ1 N}cobalt(II) dihydrate C28H28O20N2Co
  12. Crystal structure of 3-allyl-4-(2-bromoethyl)-5-(4-methoxyphenyl)-2-(p-tolyl)furan, C23H23BrO2
  13. The crystal structure of 6,6′-(((2-(dimethylamino)ethyl)azanediyl)bis(methylene))bis(benzo[d][1,3]dioxol-5-ol ato-κ4N,N′,O,O′)-(pyridine-2,6-dicarboxylato-N,O,O′)-titanium(IV)-dichloromethane(1/1), C27H25N3O10Ti
  14. Crystal structure of (((1E,1′E)-1,2-phenylenebis(methaneylylidene))bis(hydrazin-1-yl-2-ylidene))bis(aminomethaniminium) dinitrate C10H16N10O6
  15. Crystal structure of catena-poly[triaqua-(μ 2-1,3-di(1H-imidazol-1-yl)propane-κ 2 N:N′)-(4,4′-(1H-1,2,4-triazole-3,5-diyl)dibenzoato-κ 1 O)nickel(II)]N,N′-dimethylformamide (1/1), C28H35N8O8Ni
  16. The crystal structure of 3,3′-[1,4-phenylenebis(methylene)]bis(1-ethenyl-1H-imidazol-3-ium) dichloride – dichloromethane – water (1/1/1), C19H24Cl4N4O1
  17. Crystal structure of 1,1′-(methane-1,1-diyl)bis(3-propyl-1H-imidazol-3-ium) bis(hexafluoridophosphate), C13H22F12N4P2
  18. Crystal structure of dichlorido-bis(4-chlorophenyl-κC 1)tin(IV), C12H8Cl4Sn
  19. Synthesis and crystal structure of 4-acetylpyrene, C18H12O
  20. Crystal structure of 2,2′-(butane-1,4-diylbis(azanylylidene))bis(methanylylidene))bis(4-methoxyphenol), C20H24N2O4
  21. The crystal structure of (E)-2-(((5-((triphenylstannyl)thio)-1,3,4-thiadiazol-2-yl)imino)methyl)phenol, C27H21N3OS2Sn
  22. Crystal structure of diaqua-bis(μ2-6-phenylpyridine-2-carboxylate-κ3N,O:O)-bis(6-phenylpyridine-2-carboxylato-κ2N,O)lead(II) – N,N-dimethylformamide – water (1/2/4), C54H58N6O16Pb2
  23. Crystal structure of methyl 4-acetoxy-3-methoxybenzoate, C11H12O5
  24. Crystal structure of 2,2′-(propane-1,3-dilylbis(azaneylylidene))bis(methanylylidene)bis(4-methylphenol), C19H22N2O2
  25. Crystal structure of dichlorido-bis(4-methylphenyl-κC1)tin(IV), C14H14Cl2Sn
  26. Crystal structure of methyl (E)-3-(4-acetoxyphenyl)acrylate, C12H12O4
  27. The crystal structure of bis(benzoato-κ2 O,O′)-(2,9-dimethyl-1,10-phenanthroline-κ2 N,N′)-copper(II), C28H22CuN2O4
  28. Crystal structure of (8R,10R,14R,Z)-12-hydroxy-2-((6-methoxypyridin-2-yl)methylene)-4,4,8,10,14-pentamethyl-17-((R)-2,6,6-trimethyltetrahydro-2H-pyran-2-yl)hexadecahydro-3H-cyclopenta[a]phenanthren-3-one–water (2/1), C37H56NO4.5
  29. Crystal structure of dimethyl-bis(4-bromophenyl-κC1)tin(IV), C14H14Br2Sn
  30. The crystal structure of the cocrystal di-μ2-chlorido-octamethyl-di-μ3-oxido-bis(2,3,4,5-tetrafluorobenzoato-κ2 O,O′)tetratin(IV) ─ octamethyl-di-μ3-oxido-bis(μ2-2,3,4,5-tetrafluorobenzoato-κ2 O:O′)-bis(μ2-2,3,4,5-tetrafluorobenzoato-κ2 O:O;O′)tetratin(IV) C58H54Cl2F24O16Sn8
  31. Crystal structure of 3-iodo-N 2-(2-methyl-1-(methylsulfonyl)propan-2-yl)-N 1-(2-methyl-4-(perfluoropropan-2-yl)phenyl)phthalamide, C23H22F7I1N2O4S1
  32. Crystal structure of 1-(2-(4-bromophenyl)-2,3-dihydro-1H-benzo[e]indol-1-yl)-naphthalen-2-ol – dichloromethane – dimethyl sulfoxide (1/1/1), C28H18BrNO·CH2Cl2·C2H6SO
  33. Crystal structure of [meso-5,7,7,12,14,14,-hexamethyl-1,4,8,11-tetraazacyclotetradecane]nickel(II) diperchlorate – dimethylsulphoxide (1/2), C20H48Cl2N4NiO10S2
  34. Crystal structure of 1,1′-(1,3-phenylenebis(methylene))bis(pyridin-1-ium) bis(1,2-dicyanoethene-1,2-dithiolato-κ2 S:S) palladium(II), C26H18N6PdS4
  35. The crystal structure of bis(6-phenylpyridine-2-carboxylato-κ2 N,O)copper(II), C24H16N2O4Cu
  36. Crystal structure of dichlorido-bis(4-chlorophenyl-κC)-bis(triphenylarsine oxide-κO)tin(IV), C48H38As2Cl4O2Sn
  37. Crystal structure of (4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane-κ 8 N 2, O 6) potassium cyclopentadienide, [K([2.2.2]crypt)]Cp, C23H41KN2O6
  38. The crystal structure of bis(2-oxidopyridin-1-ium-3-carboxylato-κ2O,O′)-(phenantroline-κ2N,N′)manganese(II) - methanol (1/3), C27H28N4O9Mn
  39. Crystal structure of 4-(dimethylamino)pyridinium dibromido-tris(4-chlorophenyl-κC)stannate(IV), C25H23Br2Cl3N2Sn
  40. Crystal structure of (3E,5E)-1-(4-cyanobenzenesulfonyl)-3,5-bis(3-fluorobenzylidene)piperidin-4-one-dichloromethane (1/1), C27H20Cl2F2N2O3S
  41. Crystal structure of (3E,5E)-3,5-bis(4-fluorobenzylidene)-1-((4-trifluoromethyl)benzenesulfonyl)piperidin-4-one, C26H18F5NO3S
  42. Crystal structure of chlorido-(4-methyl-2-((phenylimino)methyl)phenolato-κ2 N,O)-(pyridine-κ1 N)platinum(II), C19H17ClN2OPt
  43. Crystal structure of (4-methylbenzyl)(triphenyl)phosphonium chloride dihydrate, C26H28ClO2P
  44. The crystal structure of poly[μ2-chlorido-(μ2-1,2-bis(4-pyridyl)ethane-κ2N:N′silver(I)], C12H12AgClN2
  45. Crystal structure of poly[(μ4-benzene-1,2,4,5-tetracarboxylato)-bis(μ2-adipohydrazide)dicadmium], C11H15N4O6Cd
  46. The crystal structure of (E)-N′-(butan-2-ylidene)isonicotinohydrazide 0.5 hydrate C10H13N3O·0.5H2O
  47. The crystal structure of bis(6-phenylpyridine-2-carboxylate-κ2 N,O)-(2,2′-bipyridine-κ2 N,N′)zinc(II) monohydrate, C34H26N4O5Zn
  48. The crystal structure of (1R *,2S *)-1,2-bis(2-fluorophenyl)-3,8-dimethoxyacenaphthene-1,2-diol, C26H20F2O4
  49. Crystal structure of catena-poly[(μ2-1-((2-ethyl-4-methyl-1H-imidazol-1-yl)methyl)-1H-benzotriazole-κ2N:N′)-(nitrato-κ2O,O′)silver (I)], C13H15Ag1N6O3
  50. The crystal structure of [(phenantroline-κ2 N,N′)-bis(6-phenylpyridine-2-carboxylate-κ2 N,O)cobalt(II)]monohydrate, C36H26N4O5Co
  51. Crystal structure of (1E)-N-[(1E)-1-(4-chlorophenyl)ethylidene]-2-[1-(4-chlorophenyl)ethylidene]hydrazine-1-carbohydrazonamide, C 17 H 17 Cl 2 N 5
  52. The crystal structure of (E)-2-((tert-butylimino)methyl)-4-chlorophenol, C11H14ClNO
  53. Crystal structure of all-cis-2,4,6-trihydroxycyclohexane- 1,3,5-triaminium chloride sulfate, C6H18ClN3O7S
  54. Crystal structure of dichlorido-bis(dimethyl sulfoxide-κO)bis(4-methylphenyl-κC 1)tin(IV), C18H26Cl2O2S2Sn
  55. Crystal structure of dichlorido-bis(4-chlorophenyl-κC 1)(2,2′-bipyridyl-κ 2 N,N′)tin(IV), C22H16Cl4N2Sn
  56. Redetermination of the crystal structure of (E)-5-bromo-2-hydroxybenzaldehyde oxime, C 7 H 6 BrNO 2
  57. The crystal structure of (E)-amino(2-(4-methylbenzylidene)hydrazineyl)methaniminium 4-methylbenzoate, C9H13N4 + C8H7O2
  58. Crystal structure of 2-chloro-3-(isopentylamino)naphthalene-1,4-dione, C 15 H 16 ClNO 2
  59. The crystal structure of bis(2-acetyl-5-methoxyphenyl)carbonate 1.5 hydrate, C19H18O7
  60. The crystal structure of poly[(μ 4-4,4′-(azanediylbis(methylene))dibenzoato-κ 4 O:N:O′:Oʺ)zinc(II)], C16H13NO4Zn
  61. The crystal structure of catena-poly[(1,10-phenanthroline-k2N,N′)-(μ3-tetraoxidomoybdato(VI)-k3O:O′:O″)manganese(II)] C12H8N2O4MoMn
  62. Crystal structure of catena-poly[(4-hydroxyl-5-(methoylcarbonyl)thiophene-2-carboxylato-κ1 O)-(μ2-piperazine-1,4-diylbis(pyridin-4-ylmethanone)-κ2 N:N′)silver(I)] monohydrate, C23H23AgN4O8S
  63. Crystal structure of bis(4-bromo-2-(((3-bromopropyl)imino)methyl)phenolato-κ2N,O)-oxido-vanadium(IV), C20H20Br4N2O3V
  64. The crystal structure of (2a′S,2a1′S,3R,5a′S,7′R)-5-(furan-3-yl)-2a′,2a1′-dihydroxy-7′-methyldecahydro-2H-spiro[furan-3,6′-naphtho[1,8-bc]furan]-2,2′(2a′H)-dione, C19H22O7
  65. The crystal structure of 3-bromopicolinic acid, C6H4BrNO2
  66. Crystal structure of 1,1′-(1,4-phenylenebis(methylene))bis(pyridin-1-ium) bis(1,2-dicyanoethene-1,2-dithiolato-κ2 S,S) platinum(II), C26H18N6PtS4
  67. Synthesis and crystal structure of 5-(8-((3-carboxyazetidin-1-ium-1-yl)methyl)-7-hydroxy-4-oxo-4H-chromen-3-yl)-2-hydroxybenzenesulfonate monohydrate, C20H19NO10S
  68. The crystal structure of 3-amino-5-carboxypyridin-1-ium bromide, C6H7BrN2O2
  69. The crystal structure of (2-hydroxy-5-methyl-phenyl)-(1H-pyrazol-4-yl)-methanone hemihydrate, C11H10.5N2O2.5
  70. Crystal structure of tetraaqua-(2-(4-formylphenoxy)acetato-k1O)cadmium(II), C18H22O12Cd
  71. Crystal structure of diethyl 6,12-dimethyl-3,9-di-p-tolyl-3,9-diazapentacyclo[6.4.0.02,7.04,11.05,10]dodecane-1,5-dicarboxylate, C32H38N2O4
  72. Crystal structure of (E)-N′-(1-(3-chloro-4-fluorophenyl)ethylidene)-4-hydroxy – tetrahydrofuran (2/1), C17H16ClFN2O2.5
Downloaded on 2.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2021-0247/html?srsltid=AfmBOoq_3WsjvRAccclWUoJqqVymkg9I_ioBnaLEhSxEVH6vnApAqKf8
Scroll to top button