Home Synthesis and crystal structure of tert-butyl (2′R,3R,3′R,4a′R,9a′S)-1-acetyl-5-chloro-3″-methyl-2,5″,9′-trioxo-1″-phenyl-1″,4a′,5″,9a′-tetrahydro-1′H,3′H,9′H-dispiro[indoline-3,4′-xanthene-2′,4″-pyrazole]-3′-carboxylate, C36H32ClN3O7
Article Open Access

Synthesis and crystal structure of tert-butyl (2′R,3R,3′R,4aR,9aS)-1-acetyl-5-chloro-3″-methyl-2,5″,9′-trioxo-1″-phenyl-1″,4a′,5″,9a′-tetrahydro-1′H,3′H,9′H-dispiro[indoline-3,4′-xanthene-2′,4″-pyrazole]-3′-carboxylate, C36H32ClN3O7

  • Wu-Wu Li ORCID logo EMAIL logo , Yuan-Zi Gu and Lei Cao
Published/Copyright: October 4, 2020

Abstract

C36H32ClN3O7, orthorhombic, P212121 (no. 19), a = 11.4608(5) Å, b = 12.1489(5) Å, c = 23.1684(7) Å, V = 3225.9(2) Å3, Z = 4, Rgt(F) = 0.0588, wRref(F2) = 0.1546, T = 293 K.

CCDC no.: 2032806

The molecular structure is shown in Figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal:Colourless block
Size:0.13 × 0.11 × 0.10 mm
Wavelength:Cu Kα radiation (1.54184 Å)
μ:1.51 mm−1
Diffractometer, scan mode:SuperNova, ω
θmax, completeness:74.3°, 99%
N(hkl)measured, N(hkl)unique, Rint:11,377, 5861, 0.035
Criterion for Iobs, N(hkl)gt:Iobs > 2 σ(Iobs), 5154
N(param)refined:429
Programs:SHELX [1], Bruker [2]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
C10.2794(5)0.4550(5)0.8815(2)0.0282(12)
C20.2686(5)0.5156(5)0.9330(2)0.0342(13)
H20.3295900.5601070.9455110.041*
C30.1677(6)0.5088(6)0.9647(2)0.0410(15)
H30.1599480.5500310.9982640.049*
C40.0769(5)0.4405(6)0.9470(2)0.0378(14)
H40.0106250.4337930.9698450.045*
C50.0841(5)0.3824(5)0.8956(2)0.0308(12)
H50.0224290.3387700.8830840.037*
C60.1858(5)0.3909(5)0.8633(2)0.0275(11)
C70.2816(4)0.3646(4)0.7739(2)0.0226(11)
H70.2674630.4409400.7621470.027*
C80.3984(4)0.3598(4)0.8047(2)0.0239(11)
H80.4037380.2879830.8238440.029*
C90.3928(5)0.4472(5)0.8516(2)0.0278(11)
C100.5056(5)0.3717(5)0.7656(2)0.0277(11)
H10A0.5591690.3120810.7741550.033*
H10B0.5446780.4401050.7751680.033*
C110.4796(4)0.3710(4)0.6996(2)0.0236(11)
C120.3868(4)0.2825(4)0.6868(2)0.0225(11)
H120.4217130.2128290.6991790.027*
C130.2694(4)0.2911(4)0.7204(2)0.0220(10)
C140.2391(5)0.1713(5)0.7387(2)0.0252(11)
C150.0813(4)0.2389(4)0.6875(2)0.0238(10)
C160.1621(4)0.3225(4)0.6870(2)0.0244(11)
C170.1366(5)0.4232(5)0.6606(2)0.0265(11)
H170.1900970.4806960.6604240.032*
C180.0288(5)0.4335(5)0.6347(2)0.0297(12)
C19−0.0512(5)0.3486(5)0.6331(2)0.0308(12)
H19−0.1222510.3582300.6143800.037*
C20−0.0255(5)0.2480(5)0.6597(2)0.0293(12)
H20−0.0779960.1895990.6588310.035*
C210.5894(4)0.3482(5)0.6662(2)0.0263(11)
C220.4518(4)0.4870(4)0.6776(2)0.0247(11)
C230.6564(5)0.2432(5)0.6687(3)0.0363(14)
H23A0.7196990.2460130.6415590.055*
H23B0.6058580.1828510.6591730.055*
H23C0.6869380.2330160.7069000.055*
C240.5480(5)0.6067(4)0.6028(2)0.0266(11)
C250.6561(5)0.6313(5)0.5790(2)0.0319(13)
H250.7208470.5879440.5872130.038*
C260.6659(6)0.7218(5)0.5427(2)0.0385(15)
H260.7377480.7387620.5263470.046*
C270.5705(6)0.7866(5)0.5306(2)0.0402(15)
H270.5781790.8465660.5059690.048*
C280.4637(6)0.7631(5)0.5549(3)0.0410(15)
H280.3996980.8075880.5468690.049*
C290.4512(5)0.6716(5)0.5917(2)0.0338(13)
H290.3793650.6551890.6083000.041*
C300.3621(5)0.2683(4)0.6226(2)0.0244(11)
C310.2764(5)0.1299(5)0.5567(2)0.0309(13)
C320.2283(7)0.0171(6)0.5721(3)0.0450(16)
H32A0.286159−0.0237170.5929970.068*
H32B0.208421−0.0216890.5373320.068*
H32C0.1598260.0255180.5955370.068*
C330.1837(6)0.2035(6)0.5300(3)0.0422(15)
H33A0.1178560.2081750.5555250.063*
H33B0.1593340.1730730.4937290.063*
H33C0.2153580.2757270.5239430.063*
C340.3847(6)0.1202(6)0.5199(2)0.0441(16)
H34A0.4095910.1922160.5081670.066*
H34B0.3677340.0765920.4864030.066*
H34C0.4456240.0855620.5418260.066*
C350.0680(5)0.0449(5)0.7250(2)0.0321(13)
C360.1404(6)−0.0537(5)0.7378(3)0.0436(15)
H36A0.173319−0.0469660.7757360.065*
H36B0.202048−0.0593200.7098990.065*
H36C0.092595−0.1185220.7360370.065*
O10.4761(4)0.5057(3)0.86414(16)0.0363(9)
O20.1892(3)0.3315(3)0.81252(14)0.0257(8)
O30.3027(3)0.1105(3)0.76560(16)0.0310(9)
O4−0.0364(4)0.0428(4)0.71914(19)0.0448(11)
O50.3083(3)0.1728(3)0.61473(14)0.0256(8)
O60.3864(4)0.3352(3)0.58597(15)0.0358(10)
O70.3726(3)0.5478(3)0.69324(16)0.0310(9)
N10.1276(4)0.1462(4)0.71786(18)0.0253(9)
N20.5377(4)0.5122(4)0.63875(18)0.0239(9)
N30.6207(4)0.4275(4)0.63294(19)0.0268(10)
Cl1−0.00963(13)0.56086(13)0.60524(6)0.0416(4)

Source of material

To a mixture of 3-methyl-4-((4-oxo-4H-chromen-3-yl)methyl)-1-phenyl-1H-pyrazol-5(4H)-one (0.1 mmol) and quinine-derived thiourea (20 mol%) in 1.0 mL of freshly distilled Et2O was added tert-butyl 2-(1-acetyl-5-chloro-2-oxoindolin-3-ylidene)acetate. The reaction mixture was stirred at room temperature for 4 days and the progress of the reaction was monitored by TLC. Upon completion, the solvent was removed under reduced pressure and the residue was taken in water and extracted with ethyl acetate. Finally, the organic layer was washed with water and then dried over anhydrous sodium sulfate. The solvent was evaporated. The crude product was purified by column chromatography using hexane/ethylacetate (10/1, v/v) as an eluent. Crystals were obtained from slow evaporation of its ethyl acetate solution.

Experimental details

All hydrogen atoms were placed in geometrically idealized positions. The Uiso values of the hydrogen atoms of methyl groups were set to 1.5 Ueq(C) and the Uiso values of all other hydrogen atoms were set to 1.2 Ueq(C).

Comment

Oxindoles are part of many natural and biological compounds isolated from plant, marine sources [3], [4], [5] and can be converted in to advanced intermediates for complex and natural molecules [6], [,7]. The synthetic indolin-2-ones are reported for anticancer [8], [,9], antimicrobial, anticonvulsant [10], spermicidal [11] properties. Chromones are widely distributed in nature [12] and exhibit low toxicity along with a wide range of biological and pharmacological activities including antiinflammatory [13], anti–HIV [14], anticancer [15], antibacterial [16], antimalarial [17], and antitumor [18], as well as treatment of Alzheimer’s disease [19]. In addition, pyrazole derivatives are reported to have various biological activities including antidiabetic [20], anaesthetic [21], antimicrobial and antioxidant [22]. Herein we combine the oxindoles, chromones and pyrazole moieties in the same molecules (hybrid drug concept) via Michael cycloaddition reaction.

As shown in the figure (cf. the figure; the hydrogen atom is omitted for clarity), there is one crystallographically independent molecule in the asymmetric unit. The structure of the title compound has one dihydrochromone skeleton, a cyclohexane ring, a indolin-2-one skeleton, one 1-phenyl-pyrazolone ring and one t-butyloxy carbonyl. Chromone skeleton and cyclohexane ring form a condensed ring structure through C7 and C8, pyrone ring adopts an envelope conformation with the C8 atom deviating from the plane of the remaining five atoms [23], cyclohexane ring exhibits a chair conformation. The spiro atom C13 connects the cyclohexane ring and the indolin-2-one ring system, indolin-2-one ring is almost planar [24] and the dihedral angle between the dihydrochromone ring and the indolin-2-one ring is 88°. The 1-phenyl-pyrazolone ring and cyclohexane ring form a spiro structure through C11, the 1-phenyl-pyrazolone ring is almost in a vertical position with the dihydrochromone ring which is evident by the dihedral angle value of 88°. The structure of the molecule is stabilized by the hydrogen bonds of the type C–H⋯O, adjacent molecules are connected via hydrogen bonds C3–H3⋯O6, C23–H23B⋯O1 and C34–H34C⋯O1 into a two-dimensional plane running along the crystallographic [100] direction.


Corresponding author: Wu-Wu Li, College of Chemistry & Chemical Engineering, Xianyang Normal University, Xianyang, 712000, PR China, E-mail:

Funding source: Education Department of Shaanxi Province

Award Identifier / Grant number: 18JK0837

Funding source: Xianyang Normal University

Award Identifier / Grant number: XSYK18006

Award Identifier / Grant number: XSYQL201904

Funding source: Natural Science Basic Research Plan Funded by Shaanxi Province of China

Award Identifier / Grant number: 2018JM2045

Funding source: Science and Technology Projects of Xianyang City

Award Identifier / Grant number: 2017k02-19

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This research was supported by Scientific Research Program Funded by Shaanxi Provincial Education Department (No. 18JK0837), Natural Science Basic Research Plan Funded by Shaanxi Province of China (No. 2018JM2045), Science and Technology Projects of Xianyang City (No. 2017k02-19), Scientific Research Project Funded by Xianyang Normal University (No. XSYK18006) and Qing-Lan Talents Project Funded by Xianyang Normal University (No. XSYQL201904).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

2. Bruker. APEX2 and SAINT; Bruker AXS Inc.: Madison, Wisconsin, USA, 2012.Search in Google Scholar

3. Peddibhotla, S. 3-Substituted-3-hydroxyl-2-oxindole, an emerging new scaffold for drug discovery with potential anticancer and other biological activities. Curr. Bioact. Compd. 2009, 5, 20–38; https://doi.org/10.2174/157340709787580900.Search in Google Scholar

4. Nagamine, J., Nagata, R., Seki, H., Nomura-Akimaru, N., Ueki, Y., Kumagai, K., Taiji, M., Noguchi, H. J. 3-Pharmacological profile of a new orally active growth hormone secretagogue, SM-130686. J. Endocrinol. 2001, 171, 481–489; https://doi.org/10.1677/joe.0.1710481.Search in Google Scholar

5. Hewawasam, P., Meanwell, N. A., Gribkoff, V. K., Dworetzky, S. I., Boissard, C. G. Discovery of a novel class of BK channel openers: enantiospecific synthesis and BK channel opening activity of 3-(5-chloro-2-hydroxyphenyl)-1,3-dihydro-3-hydroxy-6-trifluoromethyl-2H-indol-2-one. Bioorg. Med. Chem. Lett. 1997, 7, 1255–1260; https://doi.org/10.1016/s0960-894x(97)00202-3.Search in Google Scholar

6. Babu, K. N., Kariyandi, N. R., Saheeda, M. K. S., Kinthada, L. K., Bisai, A. Lewis acid-catalyzed malonate addition onto 3-hydroxy-2-oxindoles: mechanistic consideration and synthetic approaches to the pyrroloindoline alkaloids. J. Org. Chem. 2018, 83, 12664–12682. https://doi.org/10.1021/acs.joc.8b02017.s001.Search in Google Scholar

7. Kinthada, L. K., Medisetty, S. R., Parida, A., Babu, K. N., Bisai, A. FeCl∼3∼–Catalyzed allylation reactions onto 3-hydroxy-2-oxindoles: formal total syntheses of bis-cyclotryptamine alkaloids, (+-)-chimonanthine, and (+-)-folicanthine. J. Org. Chem. 2017, 82, 8548–8567; https://doi.org/10.1021/acs.joc.7b01232.Search in Google Scholar

8. Natarajan, A., Fan, Y. H., Chen, H., Guo, Y., Iyasere, J., Harbinski, F., Christ, W. J., Aktas, H., Halperin, J. A. 3,3-Diaryl-1,3-dihydroindol-2-ones as antiproliferatives mediated by translation initiation inhibition. J. Med. Chem. 2004, 47, 1882–1885; https://doi.org/10.1021/jm0499716.Search in Google Scholar

9. Kamal, A., Srikanth, Y. V. V., Khan, M. N. A., Shaik, T. B., Ashraf, M. Synthesis of 3,3-diindolyl oxyindoles efficiently catalysed by FeCl∼3∼ and their in vitro evaluation for anticancer activity. Bioorg. Med. Chem. Lett. 2010, 20, 5229–5231; https://doi.org/10.1016/j.bmcl.2010.06.152.Search in Google Scholar

10. Praveen, C., Ayyanar, A., Perumal, P. T. Practical synthesis, anticonvulsant, and antimicrobial activity of N-allyl and N-propargyl di(indolyl)indolin-2-ones. Bioorg. Med. Chem. Lett. 2011, 21, 4072–4077; https://doi.org/10.1016/j.bmcl.2011.04.117.Search in Google Scholar

11. Paira, P., Hazra, A., Kumar, S., Paira, R., Sahu, K. B., Naskar, S., Saha, P., Mondal, S., Maity, A., Banerjee, S., Mondal, N. B. Efficient synthesis of 3,3-diheteroaromatic oxindole analogues and their in vitro evaluation for spermicidal potential. Bioorg. Med. Chem. Lett. 2009, 19, 4786–4789; https://doi.org/10.1016/j.bmcl.2009.06.049.Search in Google Scholar

12. Sasnovskikh, V. Y., Irgashev, R. A. Uncatalyzed addition of indoles and N-methylpyrrole to 3-formylchromones: synthesis of (chromon-3-yl) bis(indol-3-yl)methanes and E-2-hydroxy-3-(1-methylpyrrol-2-ylmethylene)chroman-4-ones under solvent-free conditions. Tetrahedron Lett. 2007, 48, 7436–7439. https://doi.org/10.1016/j.tetlet.2007.08.078.Search in Google Scholar

13. Huo, H. X., Gu, Y. F., Sun, H., Zhang, Y. F., Liu, W. J., Zhu, Z. X., Shi, S. P., Song, Y. L., Jin, H. W., Zhao, Y. F., Tu, P. F., Li, J. Anti-inflammatory 2-(2-phenylethyl)chromone derivatives from Chinese agarwood. Fitoterapia 2017, 118, 49–55; https://doi.org/10.1016/j.fitote.2017.02.009.Search in Google Scholar

14. Yu, D., Chen, C., Brossi, A., Lee, K. Anti-AIDS agents. 60. substituted 3′R,4′R-di-O-(-)-camphanoyl-2′-2′, 2′-dimethyl dihydropyrano[2,3-f]chromone(DCP) analogues as potent anti-HIV agents. J. Med. Chem. 2004, 47, 4072–4082; https://doi.org/10.1021/jm0400505.Search in Google Scholar

15. Venkateswararao, E., Sharma, V. K., Manickam, M., Yun, J., Jung, S. H. Synthesis and SAR studies of bis-chromenone derivatives for anti-proliferative activity against human cancer cells. Bioorg. Med. Chem. Lett. 2014, 24, 5256–5259; https://doi.org/10.1016/j.bmcl.2014.09.057.Search in Google Scholar

16. Babu, K. S., Babu, T. H., Srinivas, P., Kishore, K., Murthy, U., Rao, J. Synthesis and biological evaluation of novel C (7) modified chrysin analogues as antibacterial agents. Bioorg. Med. Chem. Lett. 2006, 16, 221–224. https://doi.org/10.1016/j.bmcl.2005.09.009.Search in Google Scholar

17. Lerdsirisuk, P., Maicheen, C., Ungwitayatorn, J. Antimalarial activity of HIV-1 protease inhibitor in chromone series. Bioorg. Chem. 2014, 57, 142–147; https://doi.org/10.1016/j.bioorg.2014.10.006.Search in Google Scholar

18. Nawrot-Modranka, J., Nawrot, E., Graczyk, J. In vivo antitumor, in vitro antibacterial activity and alkylating properties of phosphorohydrazine derivatives of coumarin and chromone. Eur. J. Med. Chem. 2006, 41, 1301–1309; https://doi.org/10.1016/j.ejmech.2006.06.004.Search in Google Scholar

19. Li, F., Wu, J. J., Wang, J., Yang, X. L., Cai, P., Liu, Q. H., Kong, L. Y., Wang, X. B. Synthesis and pharmacological evaluation of novel chromone derivatives asbalanced multifunctional agents against Alzheimer’s disease. Bioorg. Med. Chem. 2017, 25, 3815–3826; https://doi.org/10.1016/j.bmc.2017.05.027.Search in Google Scholar

20. Amir, M., Kumar, H., Khan, S. A. Synthesis and pharmacological evaluation of pyrazoline derivatives as new antiinflammatory and analgesic agents. Bioorg. Med. Chem. Lett. 2008, 18, 918–922; https://doi.org/10.1016/j.bmcl.2007.12.043.Search in Google Scholar

21. Shivarama Holla, B., Mahalinga, M., Boja, P., Mithun, A. Synthesis of pyrazolines promoted by amberlyst-15 catalyst. Eur. J. Med. Chem. 1980, 15, 567–570. https://doi.org/10.1002/chin.200623120.Search in Google Scholar

22. Renuka, N., Ajay Kumar, K. Synthesis and biological evaluation of novel formyl-pyrazoles bearing coumarin moiety as potent antimicrobial and antioxidant agents. Bioorg. Med. Chem. Lett. 2013, 23, 6406–6409; https://doi.org/10.1016/j.bmcl.2013.09.053.Search in Google Scholar

23. Li, W. W., Zheng, M. Y., Li, X. B., Zhang, Z. T. Synthesis, crystal structure and antineoplasmic activity of 3,6,8-tribromo-5-hydroxy-2,7-dimethoxy-2-phenyl-2,3-dihydrochromen-4-one. Chin. J. Struct. Chem. 2018, 37, 1071–1077. https://doi.org/10.14102/j.cnki.0254-5861.2011-1948.Search in Google Scholar

24. Li, W. W., Zheng, M. Y., Guo, Y., Jiang, Y. P., Wang, Q., Wang, M., Ji, M. X., Zhang, Y. T., Zhang, Z. T. Synthesis and crystal structure of (+-)-ethyl 5′-(difluoromethyl)-2-oxo-4′-5′-dihydrospiro[indoline-3,3′-pyrazole]-4′,5′-carboxylate, C14H13F2N3O3. Z. Kristallogr. NCS 2019, 234, 845–847; https://doi.org/10.1515/ncrs-2019-0188.Search in Google Scholar

Received: 2020-07-27
Accepted: 2020-09-22
Published Online: 2020-10-04
Published in Print: 2021-01-26

© 2020 Wu-Wu Li et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. The crystal structure of 3-oxo-urs-12-en-28-oic acid, C30H46O3·1/6H2O
  4. The crystal structure of (3S,12R,20R,24R)-3,12-diacetyl-20,24-epoxy-dammarane-3,12,25–triol–ethyl acetate (4/1), C34H56O6⋅ 0.25(C4H8O2)
  5. A new polymorph of tetrakis(dimethylammonium) catena-poly[tetrakis(μ2-sulfato-κ2O:O′)dizinc(II)], Zn2C8H32N4O16S4
  6. Crystal structure of 10-oxysophoridine, C15H22N2O2
  7. The crystal structure of (5R,8R,9R,10R,12R,13R,14R)-12-hydroxy-4,4,8,10,14-pentamethyl-17-((R)-2,6,6-trimethyltetrahydro-2H-pyran-2-yl)tetradecahydro-3H-cyclopenta[a]phenanthrene-3,6(2H)-dione, C30H48O4
  8. Synthesis, crystal structure and optical property of 1,6-bis(p-tolylthio)pyrene, C30H22S2
  9. The crystal structure of hexakis(2-(pyridin-2-ylamino)pyridin-1-ium) decavanadate(V) dihydrate, C60H64N18O30V10
  10. Preparation and crystal structure of a cationic olefin polymerization precatalyst: (1,7-bis(2,6–dichlorophenyl)-1,7-di-aza-4-oxo-heptan-1,4,7-triyl)dimethyl zirconium(IV), C18H20Cl4N2OZr
  11. The crystal structure of fac-tricarbonyl(4,4-dimethyl-2,2-dipyridyl-κ2N,N′)- (pyrazole-κN)rhenium(I) nitrate, C18H16O3N4Re
  12. Synthesis and crystal structure of hexaaquacopper(II) 2,5-dicarboxyterephthalate, C10H16O14Cu
  13. The crystal structure of (8R,10R,12R,14R)- 12-hydroxy-16-(5-(2-hydroxypropan-2-yl)-2-methyltetrahydrofuran-2-yl)- 4,4,8,10,14-pentamethyltetradecahydro-3H- cyclopenta[a]phenanthrene-3,6(2H)-dione, C30H48O5
  14. Structure of the mixed crystal (S)-(6-(bromo/chloro)-2-methoxy-2,6-dihydroquinolin-3-yl)(phenyl)methanol, C17H14Br0.5Cl0.5NO2
  15. The crystal structure of trans-tetraaqua-bis(4-acetylphenoxyacetato-κ1O)manganese(II), C20H26O12Mn
  16. Crystal structure of (E)-2-(4-fluoro-3-(trifluoromethyl)benzylidene)-7-methoxy-3,4-dihydronaphthalen-1(2H)-one, C19H14F4O2
  17. Crystal structure of DL-α-(methylaminomethyl)benzyl alcohol, C9H13NO
  18. The crystal structure of dipentaerthritol hexanitrate, C10H16N6O19
  19. Crystal structure of N,N-diphenylformamide, C13H11NO
  20. Crystal structure of (E)-2-(3,5-bis(trifluoromethyl)benzylidene)-7-methoxy-3,4-dihydronaphthalen- 1(2H)-one, C20H14F6O2
  21. Crystal structure of ortho-methoxy benzaldehyde, C8H8O2 – a second polymorph and deposition of 3D coordinates
  22. Crystal structure of catena-poly[diaqua-bis(μ2-2-(4-(2,4,4-trimethylpentan-2-yl)phenoxy)propanoato-κ2O:O')-(2-(4-(2,4,4-trimethylpentan-2-yl)phenoxy)propanoato-κ2O,O')yttrium(III)], C51H79O11Y
  23. Crystal structure of benzylthiouronium chloride, C8H11ClN2S
  24. Synthesis and crystal structure of tert-butyl (2′R,3R,3′R,4aR,9aS)-1-acetyl-5-chloro-3″-methyl-2,5″,9′-trioxo-1″-phenyl-1″,4a′,5″,9a′-tetrahydro-1′H,3′H,9′H-dispiro[indoline-3,4′-xanthene-2′,4″-pyrazole]-3′-carboxylate, C36H32ClN3O7
  25. Crystal structure of 2-hydroxy-4-methoxy benzaldehyde, C8H8O3
  26. Crystal structure of poly[diaqua-(m3-3′,5′-dicarboxy-[1,1′-biphenyl]-3,4-dicarboxylato-K4O,O′:O″:O‴) cadmium(II)], C16H11O10Cd
  27. Crystal structure of {tetraaqua-bis(1-(4-hydroxy-2-oxotetrahydrofuran-3-yl)-2-((4aS,6R,8aS)-6-hydroxy-5-(hydroxymethyl)-5,8a-dimethyl-2-methylenedecahydronaphthalen-1-yl)ethane-1-sulfonato-k2O,O') calcium(II)}-{triaqua-bis(1-(4-hydroxy-2-oxotetrahydrofuran-3-yl)-2-((4aS,6R,8aS)-6-hydroxy-5-(hydroxymethyl)-5,8a-dimethyl-2-methylenedecahydronaphthalen-1-yl)ethane-1-sulfonato-k2O,O') calcium(II)} – water – acetone (1/1/8/2)
  28. Synthesis and crystal structure of bis{2-bromo-6-((E)-((4-((E)-1-(methoxy-imino)ethyl)phenyl)imino)methyl)phenolato- κ2N,O}zinc(II)-methanol(1/2), C65H60Br4N8O9Zn2
  29. Crystal structure of benzenesulphonic acid
  30. Crystal structure of N-benzyl-N-nicotinoyl-nicotine amide C19H15N3O2
  31. Crystal structure of poly[aqua(μ3-2,4-diamino-benzenesulfonato-κ4N:N′,O:O′)silver(I)], C12H18O8N4S2Ag2
  32. Crystal structure of 1,4-bis(methylpyridinium benzene) bis(1,2-dicyanoethene-1,2-dithiolato-κ2S:S)nickel(II), C26H18N6NiS4
  33. Crystal structure of the Cu(II) complex chlorido-(6-oxo-2-phenyl-1,6-dihydropyrimidine-4-carboxylato-k2N,O)-(phenanthroline-k2N,N')copper(II), C23H15ClCuN4O3
  34. Crystal structure of phenarsazine chloride acetic acid solvate, C14H13AsClNO2
  35. Crystal structure of poly[aqua-(μ2-3,3′,4,5′-biphenyl tetracarboxylate- κ3O,O′:O′′) -(μ2-4,4′-bis(pyrid-4-yl)biphenyl-κ2N:N′)zinc(II)], C27H18NO9Zn
  36. Crystal structure of catena-poly[(μ2-3-amino-benzenedisulfonato-κ2N:O)-bis (3-methyl-isoquinoline-κN)silver(I)], C26H24N3O3SAg
  37. Crystal structure of 2-((4-Aminophenyl)thio)acetic acid, C8H9NO2S
  38. Crystal structure of phenarsazine chloride dimethylsulfoxide solvate, C14H15AsClNOS
  39. Synthesis and crystal structure of 2-azido-N-phenylacetamide, C8H8N4O
  40. Crystal structure of chlorido{hydridotris[3-phenyl-5-methylpyrazol-1-yl-κN3]borato}copper(II), C30H28BClCuN6
  41. Crystal structure of benzanthrone – a redetermination for correct molecular geometry and localization of hydrogen atoms
  42. Crystal structure of 4-bromobenzaldehyde – complete redetermination at 200 K, C7H5BrO
  43. Crystal structure and spectroscopic properties of chlorido{hydridotris[3-,5-dimethylpyrazol-1-yl-κN3]borato}(3-,5-dimethylpyrazol-1-yl-κN)copper(II), C20H30BClCuN8
  44. The crystal structure of 4-((2-hydroxynaphthalen-1-yl)(pyrrolidin-1-yl)methyl)benzonitrile, C22H20N2O
  45. Crystal structure of 4-ethyl-3-phenylisoquinolin-1(2H)-one, C17H15NO
  46. Crystal structure of (tricyclohexylphosphane-κP)-[(Z)-N-(3-fluorophenyl)-O-methylthiocarbamato-k1S]gold(I), C26H40AuFNOPS
  47. Crystal structure of (3S,8R,10R,12R,14R)-12-hydroxy-4,4,8,10,14-pentamethyl-17-((R)-2,6,6-trimethyltetrahydro-2H-pyran-2-yl) hexadecahydro-1H-cyclopenta[a]phenanthren-3-yl acetate, C32H54O4
  48. The crystal structure of 2-[(S)-1-(naphthalen-1-yl)ethyl]-2,3,7,7a- tetrahydro-3a,6-epoxyisoindol-1(6H)-one, C19H20NO2
  49. Crystal structure of {hydridotris[3-(t-butyl)-5-isopropylpyrazol-1-yl-κN3]borato}thallium(I), C30H52BN6Tl
  50. Synthesis and crystal structure of 1-octyl-3-phenylquinoxalin-2(1H)-one, C22H26N2O
  51. The crystal structure of 2,6-difluorophenol, C6H4F2O
  52. 4-(9H-Fluoren-9-yl)-4-methylmorpholin-4-ium bromide, C18H20BrNO
  53. The crystal structure of 2,4-dimethylimidazole monohydrate, C5H10N2O
  54. The crystal structure of 1,2-dimethylimidazole, C5H8N2
  55. The crystal structure of 3-ammonio-4-aminobenzoate, C7H8N2O2 – a second polymorph
  56. The crystal structure of 4-hydroxy-2,5-bis(1-methyl-1H-imidazol-3-ium-2-ylthio)-3,6-dioxocyclohexa-1,4-dienolate chloride monohydrate, C14H15N4O5S2Cl
  57. The crystal structure of butyrylferrocene, C14H16FeO
  58. The crystal structure of bi-1,1′-cyclopentane-1,1′-diol, C10H18O2
  59. The crystal structure of 2-iso-propylimidazole, C6H10N2
  60. The crystal structure of aqua-tris (1,3-diphenylpropane-1,3-dionato-κ2O,O′)-lanthanum(III), C45H35LaO7
  61. Crystal structure of (3E,5E)-3,5-bis-4-methoxy-3-(trifluoromethyl)benzylidene)-1-methylpiperidin-4-one, C24H21F6NO3
  62. The crystal structure of 3,5-dichloro-6-diazo-2,4-dinitrocyclohexa-2,4-dien-1-one, C6Cl2N4O5
  63. Crystal structure of carbonyl(2-methylquinolin-8-olato-κ2N,O)(triphenylarsine-κAs)rhodium(I), C29H23AsNO2Rh
  64. Crystal structure of (1aS,1a1S,2S)-4a-butoxy-1a,1a1,2,4a,5,6-hexahydro-1H-cyclobuta[de]naphthalen-2-yl-4-nitrobenzoate, C22H25NO5
  65. Crystal structure of carbonyl(2-oxopyridin-1(2H)-olato-k2O,O′)(triphenylarsine-κAs)rhodium(I), C24H19AsNO3Rh
  66. Crystal structure of catena-poly[triqua-bis(μ2-4-carboxy-2-(1H-tetrazol-1-yl)-1H-imidazole-5-carboxylato-k3N,O:O′)barium(II)] tetrahydrate, C14H14BaN12O15
  67. Crystal structure of (E)-3′,6′-bis(ethylamino)-2-((quinoxalin-2-ylmethylene)amino)spiro[isoindoline-1,9′-xanthen]-3-one, C35H32N6O2
  68. Crystal structure of diaqua-bis(μ2-5-chloro-salicylato-κ3O,O′:O′)-bis(5-chloro-salicylato-κ2O,O′)-bis(1,10-phenanthroline-κ2N,N′) dilead(II) – water (1/2), C52H36C14N4O14Pb2·2(H2O)
  69. Crystal structure of (E)-2-(4-ethoxycarbonyl-3,5-dimethyl-2-(pyrrole-2-ylmethyleneamino)-3′,6′-dihydroxylspiro[isoindoline-1,9′-xanthen]-3-one-methanol (1/1), C31H29N3O7
  70. The crystal structure of 5H-dibenzo[b,e]azepine-6,11-dione, C14H9NO2
  71. Crystal structure of (E)-2-(4-fluoro-2-(trifluoromethyl)benzylidene)-7-methoxy-3,4-dihydronaphthalen-1(2H)-one, C19H14F4O2
  72. The crystal structure of N-(2-methoxy-4,5-bis[phenylselanyl]phenyl)picolinamide, C25H20N2O2Se2
  73. The crystal structure of (E)-2-(5-bromo-2-hydroxybenzylidene)-N-phenylhydrazine-1- carboxamide monohydrate, C14H14BrN3O3
  74. Crystal structure of fac-tricarbonyl-(nitrato-k1O)-bis(pyridine-κN)-rhenium, C13H10O6N3Re
  75. Crystal structure of (E)-2-(((1H-pyrrol-2-yl)methylene)amino)-3′,6′-dihydroxyspiro[isoindoline-1,9′-xanthen]-3-one — methanol (1/2), C27H25N3O6
  76. The crystal structure of 4-amino-N′-(4-aminobenzoyl)benzohydrazide monohydrate, C14H16N4O3
  77. Crystal structure of bis(amino(carbamothioylamino)methaniminium) 5-hydroxyisophthalate monohydrate, C12H20N8O6S2
  78. The crystal structure of 2-(chloromethyl)pyridine, C6H6ClN
  79. The crystal structure of 1-bromo-4-iodo-benzene, C6H4BrI
  80. The crystal structure of 2,6-dimethyl-4-nitro-phenol, C8H9NO3
  81. The crystal structure of 3-chloropropionic acid, C3H5ClO2
  82. The crystal structure of 2-(2-methoxyphenyl)acetic acid, C9H10O3
Downloaded on 5.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2020-0408/html?srsltid=AfmBOopMoJDzAzkF9PQ-T5ujHha4E70QFpAuxQ3gf4ELmkSJ0p9-wgSR
Scroll to top button