Home The crystal structure of N-cyclohexyl-3-hydroxy-4-methoxybenzamide, C14H19NO3
Article Open Access

The crystal structure of N-cyclohexyl-3-hydroxy-4-methoxybenzamide, C14H19NO3

  • Jingxiao Zhang ORCID logo EMAIL logo , Xiaoxiao Zhao and Chenyu Cai
Published/Copyright: April 13, 2022

Abstract

C14H19NO3, monoclinic, Cc (no. 9), a = 11.1235(5) Å, b = 15.3724(5) Å, c = 8.1110(3) Å, β = 109.3980(10)°, V = 1308.21(9) Å3, Z = 4, R gt (F) = 0.0300, wR ref (F 2) = 0.0703, T = 170 K.

CCDC no.: 2162880

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Colorless block
Size: 0.19 × 0.12 × 0.08 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.09 mm−1
Diffractometer, scan mode: D8 VENTURE, φ and ω
θ max, completeness: 26.4°, 98%
N(hkl)measured, N(hkl)unique, R int: 5397, 2183, 0.030
Criterion for I obs, N(hkl)gt: I obs > 2 σ(I obs), 2059
N(param)refined: 166
Programs: Bruker [1], Olex2 [2], SHELX [3,4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
C1 0.8289 (2) 0.54322 (15) 0.8073 (3) 0.0300 (5)
H1A 0.829744 0.563750 0.691953 0.036*
H1B 0.836374 0.479027 0.809599 0.036*
C2 0.9426 (2) 0.58201 (15) 0.9510 (3) 0.0342 (5)
H2A 0.947738 0.556171 1.064961 0.041*
H2B 1.022184 0.567471 0.927759 0.041*
C3 0.9306 (2) 0.67980 (16) 0.9600 (3) 0.0406 (6)
H3A 0.936580 0.706160 0.851639 0.049*
H3B 1.001976 0.702560 1.059705 0.049*
C4 0.8050 (3) 0.70588 (16) 0.9818 (3) 0.0446 (7)
H4A 0.797911 0.770094 0.979177 0.054*
H4B 0.803547 0.685583 1.096951 0.054*
C5 0.6912 (2) 0.66731 (16) 0.8376 (3) 0.0363 (5)
H5A 0.611450 0.682380 0.860001 0.044*
H5B 0.686784 0.692608 0.723536 0.044*
C6 0.7030 (2) 0.56904 (14) 0.8306 (2) 0.0264 (5)
H6 0.702083 0.544733 0.944565 0.032*
C7 0.5438 (2) 0.45542 (14) 0.7058 (2) 0.0244 (4)
C8 0.4313 (2) 0.42465 (14) 0.5572 (2) 0.0250 (5)
C9 0.3970 (2) 0.33760 (15) 0.5611 (3) 0.0297 (5)
H9 0.445840 0.301741 0.654755 0.036*
C10 0.2946 (2) 0.30240 (14) 0.4333 (3) 0.0292 (5)
C11 0.2232 (2) 0.35452 (15) 0.2931 (2) 0.0268 (5)
C12 0.2550 (2) 0.44134 (14) 0.2892 (2) 0.0289 (5)
H12 0.205877 0.477203 0.195750 0.035*
C13 0.3583 (2) 0.47678 (14) 0.4209 (2) 0.0273 (5)
H13 0.378812 0.536592 0.417306 0.033*
C14 0.0574 (2) 0.35981 (16) 0.0171 (3) 0.0389 (6)
H14A −0.002209 0.320728 −0.066351 0.058*
H14B 0.117680 0.383832 −0.035700 0.058*
H14C 0.009878 0.407350 0.047473 0.058*
N1 0.59438 (17) 0.53236 (12) 0.6914 (2) 0.0275 (4)
H1 0.561283 0.562353 0.594380 0.033*
O1 0.58582 (15) 0.40977 (10) 0.83943 (17) 0.0294 (4)
O2 0.26862 (16) 0.21647 (11) 0.4463 (2) 0.0422 (5)
H2 0.200688 0.203312 0.366500 0.063*
O3 0.12553 (14) 0.31251 (10) 0.17128 (18) 0.0322 (4)

Source of material

The 3-hydroxy-4-methoxybenzoic acid (10 mmol), cyclohexylamine (10.4 mmol), and N,N-diisopropylethylamine (20 mmol) were dissolved in DMF (20 mL) initially, and 2-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate (HATU, 10.4 mmol) was added to the solution with stirring. After the mixture was stirred for 5 h, the reaction was completed (monitored by TLC). A saturated NaCl solution (100 mL) was added, and the product was extracted with ethyl acetate (50 mL) three times. The combined organics were washed with 5% citric acid, 5% NaHCO3, and H2O. Subsequently, the mixture was dried over MgSO4, filtered, and concentrated under vacuum to give the title product. Suitable crystals of the title compound were obtained by recrystallization in ethyl acetate and dried at ambient temperature for one week.

Experimental details

Hydrogen atoms were added in their geometrically idealized positions and treated as riding models on their parent atoms with U iso(H) = 1.2 U eq(C).

Comment

Amides are common functional groups in many biologically active molecules, natural products, and polymer materials and have attracted significant interest from medicinal chemists and chemical biologists [5], [6], [7]. The arylamides have been developed for various applications due to the ease of functionalization via substitution of the aromatic rings and the termini of the scaffold [8]. Arylamide derivatives have been widely used to inhibit treatment-related protein–protein interactions, such as Bcl-x L /Bak [9], p53/HDM2 [10], and c-Myc-Max [11]. They also effectively inhibit the aggregation of human proteins such as islet amyloid polypeptide [12] and amyloid-β [13]. Here, we report the crystal structure of a new methoxybenzamide derivative. Similar systems have been widely studied so far [1422].

The figure shows the molecular configuration of the title compound. In the amide functional group, the bond lengths of C7–O1, C7–N1, and N1–C6 are 1.245(3) Å, 1.331(3) Å, and 1.465(3) Å, and the angles of O1–C7–N1 and C7–N1–C6 are 121.99(16)° and 122.59(16)°, respectively. The molecule’s structure is similar to the stereo-configurations of the compounds reported in references [1822]. Methoxy and hydroxyl groups replace hydrogen atoms on the benzene ring, and the lengths of the C–O bonds are both 1.364(3) Å. The dihedral angle between the ring C8⃛C13 and the mean plane of the cyclohexane group (C1⃛C6) is 51.76°. The bond lengths and angles are all in the expected ranges.


Corresponding author: Jingxiao Zhang, College of Food and Medicine, Luoyang Normal University, Luoyang, China, E-mail:

Award Identifier / Grant number: 22A430032

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was financially supported by the Key Scientific Research Projects of Colleges and Universities in Henan Province (22A430032).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Bruker. SMART APEX-II CCD; Bruker AXS Inc.: Madison, WI, USA, 2006.Search in Google Scholar

2. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

3. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

4. Sheldrick, G. M. SHELXTL – integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Search in Google Scholar PubMed PubMed Central

5. Kumari, S., Carmona, A. V., Tiwari, A. K., Trippier, P. C. Amide bond bioisosteres: strategies, synthesis, and successes. J. Med. Chem. 2020, 63, 12290–12358; https://doi.org/10.1021/acs.jmedchem.0c00530.Search in Google Scholar PubMed PubMed Central

6. Li, G., Szostak, M. Non-classical amide bond formation: transamidation and amidation of activated amides and esters by selective N–C/O–C cleavage. Synthesis 2020, 52, 2579–2599.10.1055/s-0040-1707101Search in Google Scholar

7. de Figueiredo, R. M., Suppo, J.-S., Campagne, J.-M. Nonclassical routes for amide bond formation. Chem. Rev. 2016, 116, 12029–12122; https://doi.org/10.1021/acs.chemrev.6b00237.Search in Google Scholar PubMed

8. Gangarde, Y. M., Das, A., Ajit, J., Saraogi, I. Synthesis and evaluation of arylamides with hydrophobic side chains for insulin aggregation inhibition. ChemPlusChem 2021, 86, 750–757; https://doi.org/10.1002/cplu.202100036.Search in Google Scholar PubMed

9. Yin, H., Lee, G.-i., Sedey, K. A., Kutzki, O., Park, H. S., Orner, B. P., Ernst, J. T., Wang, H.-G., Sebti, S. M., Hamilton, A. D. Terphenyl-based Bak BH3 α-helical proteomimetics as low-molecular-weight antagonists of Bcl-xL. J. Am. Chem. Soc. 2005, 127, 10191–10196; https://doi.org/10.1021/ja050122x.Search in Google Scholar PubMed

10. Yin, H., Lee, G. i., Park, H. S., Payne, G. A., Rodriguez, J. M., Sebti, S. M., Hamilton, A. D. Terphenyl-based helical mimetics that disrupt the p53/HDM2 interaction. Angew. Chem. 2005, 117, 2764–2767; https://doi.org/10.1002/ange.200462316.Search in Google Scholar

11. Jung, K.-Y., Wang, H., Teriete, P., Yap, J. L., Chen, L., Lanning, M. E., Hu, A., Lambert, L. J., Holien, T., Sundan, A. Perturbation of the c-Myc-Max protein-protein interaction via synthetic α-helix mimetics. J. Med. Chem. 2015, 58, 3002–3024; https://doi.org/10.1021/jm501440q.Search in Google Scholar PubMed PubMed Central

12. Hebda, J. A., Saraogi, I., Magzoub, M., Hamilton, A. D., Miranker, A. D. A peptidomimetic approach to targeting pre-amyloidogenic states in type II diabetes. Chem. Biol. 2009, 16, 943–950; https://doi.org/10.1016/j.chembiol.2009.08.013.Search in Google Scholar PubMed PubMed Central

13. Kumar, S., Hamilton, A. D. α-helix mimetics as modulators of Aβ self-assembly. J. Am. Chem. Soc. 2017, 139, 5744–5755; https://doi.org/10.1021/jacs.6b09734.Search in Google Scholar PubMed

14. Zhao, B., Shang, R., Wang, G.-Z., Wang, S., Chen, H., Fu, Y. Palladium-catalyzed dual ligand-enabled alkylation of silyl enol ether and enamide under irradiation: scope, mechanism, and theoretical elucidation of hybrid alkyl Pd(I)-radical species. ACS Catal. 2020, 10, 1334–1343; https://doi.org/10.1021/acscatal.9b04699.Search in Google Scholar

15. Jin, L.-M., Lu, H., Cui, Y., Lizardi, C. L., Arzua, T. N., Wojtas, L., Cui, X., Zhang, X. P. Selective radical amination of aldehydic C(sp2)–H bonds with fluoroaryl azides via Co(II)-based metalloradical catalysis: synthesis of N-fluoroaryl amides from aldehydes under neutral and nonoxidative conditions. Chem. Sci. 2014, 5, 2422–2427; https://doi.org/10.1039/c4sc00697f.Search in Google Scholar PubMed PubMed Central

16. Parra, R. D., Zeng, H., Zhu, J., Zheng, C., Zeng, X. C., Gong, B. Stable three-center hydrogen bonding in a partially rigidified structure. Chem. Eur J. 2001, 7, 4352–4357; https://doi.org/10.1002/1521-3765(20011015)7:20<4352::aid-chem4352>3.0.co;2-l.10.1002/1521-3765(20011015)7:20<4352::AID-CHEM4352>3.0.CO;2-LSearch in Google Scholar

17. Karabulut, S., Namli, H., Kurtaran, R., Yildirim, L. T., Leszczynski, J. Modeling the intermolecular interactions: molecular structure of N-3-hydroxyphenyl-4-methoxybenzamide. J. Mol. Graph. Model. 2014, 48, 1–8; https://doi.org/10.1016/j.jmgm.2013.11.001.Search in Google Scholar

18. Wigbers, C., Prigge, J., Mu, Z., Fröhlich, R., Chi, L., Würthwein, E.-U. Synthesis, structures, and aggregation properties of N-acylamidines. Eur. J. Org Chem. 2011, 2011, 861–877; https://doi.org/10.1002/ejoc.201001155.Search in Google Scholar

19. Wang, M.-M., Nguyen, T. V. T., Waser, J. Diamine synthesis via the nitrogen-directed azidation of σ- and π-C–C bonds. J. Am. Chem. Soc. 2021, 143, 11969–11975; https://doi.org/10.1021/jacs.1c06700.Search in Google Scholar

20. Ruan, P., Tang, Q., Yang, Z., Liu, X., Feng, X. Enantioselective formal [2 + 2 + 2] cycloaddition of 1,3,5-triazinanes to construct tetrahydropyrimidin-4-one derivatives. Chem. Commun. 2022, 58, 1001–1004; https://doi.org/10.1039/d1cc06549a.Search in Google Scholar

21. Rauf, M. K., Bolte, M., Badshah, A. 3-Chloro-N-cyclohexylbenzamide. Acta Crystallogr. 2009, E65, o1265; https://doi.org/10.1107/s1600536809017012.Search in Google Scholar

22. Saeed, A., Khera, R. A., Abbas, N., Flörke, U. N-Cyclohexyl-3-fluorobenzamide. Acta Crystallogr. 2008, E64, o2209; https://doi.org/10.1107/s1600536808034478.Search in Google Scholar

Received: 2022-02-06
Accepted: 2022-03-29
Published Online: 2022-04-13
Published in Print: 2022-08-26

© 2022 Jingxiao Zhang et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of N-((3s,5s,7s)-adamantan-1-yl)-2-(3-benzoylphenyl)propanamide, C26H29NO2
  4. The crystal structure of bis(μ2-5-chloro-2-oxido-N-(1-oxidopropylidene)benzohydrazonato-κ5 N,O,O′:N′,O′′)-octakis(pyridine-κ1 N)trinickel(II) C60H56Cl2N12Ni3O6
  5. The crystal structure of 3-(4-chlorophenyl)-1,5-di-p-tolylpentane-1,5-dione, C25H23ClO2
  6. The crystal structure of 2,4,4-triphenyl-4H-benzo[b][1,4]oxaphosphinin-4-ium bromide – dichloromethane (1/1), C27H22BrCl2OP
  7. The crystal structure of 2-(3,6-di-tert-butyl-1,8-diiodo-9H-carbazol-9-yl)acetonitrile, C22H24I2N2
  8. Crystal structure of 3-phenylpropyl 2-(6-methoxynaphthalen-2-yl)propanoate, C23H24O3
  9. The crystal structure of (4-fluorophenyl)(5-(hydroxymethyl)furan-2-yl)methanol, C12H11FO3
  10. Crystal structure of the dihydrate of tetraethylammonium 1,3,5-thiadiazole-5-amido-2-carbamate, C11H27N5O4S
  11. Crystal structure of (Z)-4-[(p-tolylamino)(furan-2-yl)methylene]-3-phenyl-1-1-p-tolyl-1H-phenyl-1H-pyrazol-5(4H)-one, C28H23N3O2
  12. The crystal structure of (E)-3-(2-chlorophenyl)-1-ferrocenylprop-2-en-1-one, C19H15ClFeO
  13. The pseudosymmetric crystal structure of 3-((1R,2S)-1-methylpyrrolidin-1-ium-2-yl)pyridin-1-ium hexachloridostannate(IV), C10H16N2SnCl6
  14. Crystal structure of (2-(1-hydroxyheptyl)octahydro-8aH-chromene-5,8,8a-triol), C16H30O5
  15. The crystal structure of N-cyclohexyl-3-hydroxy-4-methoxybenzamide, C14H19NO3
  16. Crystal structure of 1-(4-hydroxybenzyl)-4-methoxy-9,10-dihydrophenanthrene-2,7-diol from Arundina graminifolia, C22H20O4
  17. The crystal structure of N-cyclopentyl-3-hydroxy-4-methoxybenzamide, C13H17NO3
  18. The crystal structure of 2,5,5-triphenyl-3,5-dihydro-4H-imidazol-4-one, C21H16N2O
  19. Crystal structure of 1H-1,2,3-Triazolo[4,5-b]-pyridin-4-ium nitrate, C5H5N5O3
  20. Crystal structure of (Z)-4-(((4-bromophenyl)amino)(furan-2-yl)methylene)-2,5-diphenyl-2,4-dihydro-3H-pyrazol-3-one, C26H18BrN3O2
  21. Crystal structure of 2-(4-methoxyphenyl)-3-methyl-1,8-naphthyridine, C16H14N2O
  22. The crystal structure of 3-([1,1′-biphenyl]-2-yl)-1,2-diphenylbenzo[b]phosphole-1-oxide, C32H23OP
  23. The crystal structure of ammonium (E)-4-((4-carboxyphenyl)diazenyl)benzoate, C14H13N3O4
  24. Crystal structure of bis(5-amino-1,2,4-triazol-4-ium-3-yl)methane sulfate, C5H10N8O4S
  25. The crystal structure of phenantroline-κ2 N,N′-bis(6-phenylpyridine-2-carboxylato-κ2 N,O)copper(II), C36H24N4O4Cu
  26. The crystal structure of tris(6-methylpyridin-2-yl)phosphine oxide, C18H18N3OP
  27. The crystal structure of N-(2′-hydroxymethyl-5′-phenyl-3′,4′-dihydro-[1,1′:3′,1″-terphenyl]- 1′(2′H)-yl)-P,P-diphenylphosphinic amide, C37H34NO2P
  28. Crystal structure of (E)-4-(6-(4-(2-(pyridin-4-yl)vinyl)phenoxy)pyrimidin-4-yl)morpholine, C21H20N4O2
  29. Crystal structure of 5-(adamantan-1-yl)-3-[(4-trifluoromethylanilino)methyl]-2,3-dihydro-1,3,4-oxadiazole-2-thione, C20H22F3N3OS
  30. Crystal structure of 2,2-dichloro-1-(4-chloro-1H-indol-1-yl)ethan-1-one, C10H6Cl3NO
  31. The crystal structure of 4-(((3-bromo-5-(trifluoromethyl)pyridin-2-yl)oxy)methyl)benzonitrile, C28H16Br2F6N4O2
  32. The crystal structure of 1H-benzimidazole-2-carboxamide, C8H7N3O
  33. The crystal structure of Histidinium hydrogensquarate, C10H11N3O6
  34. The crystal structure of 3-amino-5-carboxypyridin-1-ium iodide, C6H7IN2O2
  35. Crystal structure of (E)-amino(2-(3-ethoxy-4-hydroxybenzylidene)hydrazineyl)methaniminium nitrate hemihydrate C10H16N5O5.5
  36. Crystal structure of 1,2-bis(4,5-dinitro-1H-imidazol-1-yl)ethane, C8H6N8O8
  37. The crystal structure of diaqua-bis(pyrazolo[1,5-a]pyrimidine-3-carboxylato-κ2N,O)manganese(II), C14H12N6O6Mn
  38. The crystal structure of catena-poly[aqua-2,2′bipyridine-κ2N,N′-(μ2-5-ethoxyisophthalato-κ 4O,O:Oʺ,O′ʺ)cadmium(II)] monohydrate, C20H20CdN2O7
  39. The crystal structure of (1S,3R)-1-(4-isopropylphenyl)-3-(methoxycarbonyl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-2-iumchloride monohydrate, C22H27ClN2O3
  40. Crystal structure of 1-isopropyl-3-(prop-1-en-2-yl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine, C11H15N5
  41. The crystal structure of (2,2′-bipyridine-κ2N,N′)- bis(6-phenylpyridine-2-carboxylate-κ2N,O)manganese(II)] monohydrate, C34H26N4O5Mn
  42. Crystal structure of the cocrystal 1,3,5,7-tetranitro-1,3,5,7-tetrazoctane ─ 2,3-dihydroindole (1/1), C12H17N9O8
  43. Crystal structure of 3-acetyl-6-hydroxy-2H-chromen-2-one monohydrate, C11H10O5
  44. Crystal structure of 6,9-diamino-2-ethoxyacridinium 3,5-dinitrobenozate — dimethylsulfoxide — water (1/1/1), C24H27N5O9S
  45. The crystal structure of 4,4′-bipyridinium bis-(2-hydroxy-3-methoxybenzoate), 2(C8H7.68O4)·C10H8.64N2
  46. Crystal structure of (Z)-4-(((4-fluorophenyl)amino)(furan-2-yl)methylene)-5-methyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one
  47. The crystal structure of bis(4-chloro-2-(((2-chloroethyl)imino)methyl)phenolato-κ2N,O)-oxidovanadium(IV), C18H16Cl4N2O3V
  48. The crystal structure of 17-(bromoethynyl)-17-hydroxy-10, 13-dimethyl- 1,2,6,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-3H-cyclopenta[a]phenanthren-3-one, C21H27BrO2
  49. The crystal structure of 4-((6-fluoropyridin-2-yloxy)methyl)benzonitrile, C13H9FN2O
  50. Crystal structure of (Z)-2-(1-bromo-2-phenylvinyl)-5-ethyl-2-methyl-1,3-dioxane-5-carboxylic acid, C15H17Br1O4
  51. Crystal structure of catena-poly[tribenzyl-κ1C-(μ2-6-oxidopyridin-1-ium-3-carboxylato-κ2O:O’)tin(IV)-dichloromethane-methanol (1/1/1), C29H31Cl2NO4Sn
  52. Crystal structure of bis{2-(tert-butyl)-6-((E)-((4-((E)-1-(methoxyimino)ethyl)phenyl)imino)methyl)phenolato-κ2N,O}zinc(II), C40H46N4O4Zn
  53. Crystal structure of diaqua-bis(μ2-2-carboxy-3,4,5,6-tetrafluorobenzoato-κ2O:O′)-bis(phenanthroline-κ2N,N′)-bis(μ2-3,4,5,6-tetrafluorophthalato-κ3O:O,O′)dieuropium(III) – phenanthroline (1/2), C40H19EuF8N4O9
  54. The crystal structure of diaqua-bis(6-phenylpyridine-2-carboxylato-κ2N,O) manganese(II) — water — dimethylformamide (1/2/1), C27H31N3O9Mn
  55. The crystal structure of bis(pyrazolo[1,5-a]pyrimidine-3-carboxylato-κ2N,O)-copper(ii), C14H8N6O4Cu
  56. Crystal structure of poly[(μ2-1-(1-imidazolyl)-4-(imidazol-1-ylmethyl)benzene-κ2N:N′)-(μ3-pyridazine-4,5-dicarboxylate-κ3O:O′:N)]copper(II) hydrate, C19H16CuN6O5
  57. Crystal structure of acrinidinium tetrafluorohydrogenphthalate, C21H11F4NO4
  58. Crystal structure of 2-(1H-pyrazol-3-yl-κN)pyridine-κN-bis(2-(2,4-difluorophenyl)pyridinato-κ2C,N)iridium(III) sesquihydrate, C30H18F4IrN5·1.5[H2O]
  59. Crystal structure of 2-(2-hydroxy-5-nitrophenyl)-5-methyl-1,3-dioxane-5-carboxylic acid, C12H13N1O7
  60. The crystal structure of 1,2-bis(pyridinium-4-yl)ethane diperchlorate, C12H14N2·2ClO4 – a second polymorph
  61. The crystal structure of [(1,10-phenantroline-κ2N,N′)-bis(6-phenylpyridine-2-carboxylato-κ2N,O)manganese(II)] monohydrate, C36H26N4O5Mn
  62. Crystal structure of 1,2-bis(2,2,3,3,5,5,5-heptamethyl-1,1,4,4- tetrakis(trimethylsilyl)pentasilan-1-yl)ditellane, C38H114Si18Te2
  63. Crystal structure of 1,2-bis(2,4-dinitro-1H-imidazol-1-yl)ethane – dimethylformamide (1/1), C11H13N9O9
  64. Crystal structure of (Z)-3-((tert-butylamino) methylene)-2-(2-hydroxynaphthalen-1-yl) chroman-4-one, C24H23NO3
  65. Synthesis and crystal structure of (E)-1-(4-(((E)-3-(tert-butyl)-2-hydroxybenzylidene)amino)phenyl)ethan-1-one O-ethyl oxime, C21H26N2O2
  66. Crystal structure of the double salt bis(5-amino-1,2,4-triazol-4-ium-3-yl)methane hydrogen oxalate hemioxalate, C8H11N8O6
  67. Hydrothermal synthesis and crystal structure of catena-poly[diaqua-bis(μ2-4-[(4-pyridinylmethyl)amino]benzoato-κ2N:O)cobalt(II)]–1,2bi(4-pyridyl)ethene–water (1/1/1), C50H50N8O8Co
  68. Crystal structure of 3-(3-bromophenyl)-1′,3′-dimethyl-2′H,3H,4H-spiro[furo[3, 2-c]chromene-2,5′-pyrimidine]-2′,4,4′,6′(1′H,3′H) tetraone, C22H15BrN2O6
  69. The crystal structure of poly[aqua-(μ2-4,4′- bis(imidazolyl)biphenyl-κ2N:N′)-(μ2-3-nitrobenzene-1,2-dicarboxylato-κ2O:O′)]copper (II) hydrate, C26H21N5O8Cu
  70. The crystal structure of bis(4-(6-carboxy-8-ethyl-3-fluoro-5-oxo-5,8-dihydro-1,8-naphthyridin-2- yl)piperazin-1-ium) adipate tetrahydrate, C36H52F2N8O14
  71. Synthesis and crystal structure of poly[aqua(μ4-(1R,2S,4R)-4-hydroxy-1-((7-hydroxy-3-(4-hydroxy-3-sulfonatophenyl)-4-oxo-4H-chromen-8-yl)methyl)pyrrolidin-1-ium-2-carboxylate-κ4O:O′:O″:O‴)sodium(I)] monohydrate, C21H22NNaO12S
  72. Crystal structure of chlorido-(η6-toluene)(2,2′-bipyridine-κ2N,N′)ruthenium(II) hexafluorophosphate, C17H16ClN2RuPF6
  73. The crystal structure of (R)-6-hydroxy-8-methoxy-3-methylisochroman-1-one, C11H12O4
  74. Crystal structure of catena-poly[(5,5,7,12,12,14-hexamethyl -1,4,8,11-tetraazacyclotetradecane- κ4N,N′,Nʺ,N‴)nickel(II)-(μ2-perchlorato-κ2O:O′)] 3,5-dicarboxybenzoate – methanol (1/2), C27H49ClN4NiO12
  75. The crystal structure of 4-(chloromethyl)benzonitrile, C8H6ClN
  76. The crystal structure of dimethylammonium 8-[(7,9-dioxo-6,10-dioxaspiro[4.5]decan-8-ylidene)methyl]-9-oxo-6,10-dioxaspiro[4.5]dec-7-en-7-olate, C19H25NO8
  77. Crystal structure of (2R,3S,4S,5R,6S)-2-(acetoxymethyl)-6-((1-acetyl-5-bromo-4-chloro-1H-indol-3-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate hemihydrate C24H25BrClNO11
  78. The crystal structure of the co-crystal tetrakis[2-(tris(4-methoxyphenyl)stannyl)ethyl]silane – tetrahydrofuran – toluene – tetrahydrofurane (1/1/1), C103H116O13SiSn4
  79. Crystal structure of methyl 3-(1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)propanoate, C16H13NO4
  80. Crystal structure of ethyl (Z)-3-amino-2-cyano-3-(2-oxo-2H-chromen-3-yl)acrylate, C15H12N2O4
  81. Crystal structure of methyl 2-(1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)acetate, C15H11NO4
  82. Crystal structure of catena-poly[diaqua-bis(μ2-1,3-di(1H-imidazol-1-yl)propane-κ2N:N′)cobalt(II)] tetrafluoroterephthalate, C26H28N8O6F4Co
Downloaded on 6.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2022-0066/html
Scroll to top button