Startseite Crystal structure of (3-(dimethoxymethyl)-5-methoxy-1H-indol-1-yl)(5-fluoro-2-iodophenyl)methanone, C19H17FINO4
Artikel Open Access

Crystal structure of (3-(dimethoxymethyl)-5-methoxy-1H-indol-1-yl)(5-fluoro-2-iodophenyl)methanone, C19H17FINO4

  • Jia-Cheng Yuan , Yue Zhang , Yan Zhou , Chen-Chen Tang und Wei Cong ORCID logo EMAIL logo
Veröffentlicht/Copyright: 1. Oktober 2024

Abstract

C19H17FINO4, triclinic, P1̄ (no. 2), a = 7.1158(2) Å, b = 11.1914(3) Å, c = 12.4974(3) Å, α = 73.015(2)°, β = 87.945(2)°, γ = 78.137(2)°, V = 931.19(4) Å3, Z = 2, R gt (F) = 0.0563, wRref (F 2) = 0.1639, T = 293(2) K.

CCDC no.: 2384291

The crystal structure is shown in figure. Displacement ellipsoids are drawn at the 30 % probability level.

Tables 1 and 2 contain details on crystal structure and measurement conditions and a list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Colourless block
Size: 0.15 × 0.12 × 0.10 mm
Wavelength: Cu Kα radiation (1.54178 Å)
μ: 13.8 mm−1
Diffractometer, scan mode: XtaLAB synergy R, four-circle diffractometer
θ max, completeness: 74.0°, 97 %
N(hkl)measured , N(hkl)unique, R int: 9895, 3519, 0.066
Criterion for I obs, N(hkl)gt: I obs > 2 σ(I obs), 3042
N(param)refined: 239
Programs: Rigaku, 1 SHELX 2 , 3
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom X y z U iso*/U eq
C1 −0.0486 (7) 0.6884 (4) 0.7243 (4) 0.0399 (10)
H1 −0.112865 0.764732 0.675566 0.048*
C2 −0.0532 (6) 0.5729 (4) 0.7163 (4) 0.0368 (9)
C3 0.1171 (7) 0.3466 (4) 0.8385 (4) 0.0416 (10)
H3 0.069593 0.299897 0.799122 0.050*
C4 0.2405 (7) 0.2865 (4) 0.9298 (4) 0.0411 (10)
C5 0.3096 (7) 0.3570 (5) 0.9910 (4) 0.0427 (11)
H5 0.390470 0.314069 1.053136 0.051*
C6 0.2601 (7) 0.4872 (4) 0.9609 (4) 0.0380 (9)
H6 0.306944 0.533507 1.000957 0.046*
C7 0.1381 (6) 0.5475 (4) 0.8690 (4) 0.0335 (9)
C8 0.0660 (7) 0.4793 (4) 0.8071 (3) 0.0354 (9)
C9 0.1071 (7) 0.7797 (4) 0.8472 (4) 0.0429 (10)
C10 0.0311 (7) 0.9098 (4) 0.7680 (4) 0.0419 (10)
C11 0.1382 (8) 0.9640 (5) 0.6785 (5) 0.0480 (11)
C12 0.0715 (11) 1.0861 (5) 0.6101 (5) 0.0633 (16)
H12 0.143458 1.120901 0.549773 0.076*
C13 −0.1002 (12) 1.1564 (5) 0.6307 (7) 0.0726 (19)
H13 −0.145211 1.239528 0.586172 0.087*
C14 −0.2029 (10) 1.1008 (5) 0.7184 (6) 0.0643 (16)
C15 −0.1450 (9) 0.9802 (5) 0.7885 (5) 0.0548 (13)
H15 −0.220139 0.946272 0.847535 0.066*
C16 −0.1543 (7) 0.5433 (5) 0.6271 (4) 0.0433 (10)
H16 −0.055819 0.514220 0.578276 0.052*
C17 −0.4007 (10) 0.4698 (7) 0.7447 (6) 0.0672 (16)
H17A −0.345003 0.493644 0.802218 0.101*
H17B −0.449026 0.393511 0.777574 0.101*
H17C −0.504170 0.537432 0.707337 0.101*
C18 −0.3503 (11) 0.6503 (8) 0.4649 (5) 0.077 (2)
H18A −0.251511 0.636458 0.412944 0.116*
H18B −0.440228 0.728164 0.431259 0.116*
H18C −0.415862 0.580285 0.484269 0.116*
C19 0.2430 (12) 0.0786 (5) 0.9120 (6) 0.0721 (19)
H19A 0.105483 0.091404 0.913661 0.108*
H19B 0.297998 −0.009381 0.948136 0.108*
H19C 0.282640 0.101152 0.835659 0.108*
F1 −0.3745 (7) 1.1691 (4) 0.7407 (5) 0.0983 (15)
I1 0.40179 (6) 0.85710 (4) 0.64563 (4) 0.0756 (3)
N1 0.0660 (6) 0.6790 (4) 0.8160 (3) 0.0373 (8)
O1 0.1957 (7) 0.7661 (4) 0.9313 (4) 0.0613 (11)
O2 −0.2666 (6) 0.6592 (4) 0.5628 (3) 0.0556 (9)
O3 −0.2595 (6) 0.4475 (3) 0.6665 (3) 0.0522 (9)
O4 0.3068 (7) 0.1568 (3) 0.9689 (3) 0.0581 (10)

1 Source of material

The target compound (3-(dimethoxymethyl)-5-methoxy-1H-indol-1-yl) (5-fluoro-2-iodophenyl)methanone could be synthesized by acylation of 3-(dimethoxymethyl)-5-methoxy-1H-indole with corresponding acyl chloride. Firstly, sodium hydride (1.1 g, 27 mmol) and anhydrous N,N-dimethylformamide (DMF, 12 mL) were added into a 100 mL round bottom flask, and stirred for 5 min in an ice water bath. Secondly, a solution of 3-(dimethoxymethyl)-5-methoxy-1H-indole (1.7 g, 7.5 mmol) in anhydrous DMF (10 mL) was added dropwise to the reaction solution, and after the addition was complete, continued stirring for another 5 min. Subsequently, a solution prepared by 5-fluoro-2-iodobenzoyl chloride (3.8 g, 13.5 mmol) and anhydrous DMF (10 mL) was added dropwise. After addition, the reaction mixture was slowly raised to room temperature, and stirred for 4 h. TLC (UV, 254 nm) was used to monitor the reaction process. After the end of reaction, this solution was quenched by saturated ammonium chloride solution carefully, then the crude product precipitated from the mixture. The crude product was homogenized with petroleum ether/ethyl acetate (2:1, v/v), followed by filtration and washing to obtain pure product (3.0 g, yield 85 %). Single crystals were obtained from the n-hexane/ethyl acetate (1:1, v/v) solution.

2 Experimental details

The H atoms were placed in idealized positions and treated as riding on their parent atoms, with d (C–H) = 0.96 Å (methyl), U iso(H) = 1.5U eq(C), and d(C–H) = 0.98 Å (methyne), U iso(H) = 1.2U eq(C), and d(C–H) = 0.93 Å (aromatic), U iso(H) = 1.2U eq(C).

3 Comment

The research on nitrogen heterocycle compositions has always been a hot topic in organic chemistry and medicinal chemistry. 4 Among the 1086 small molecule drugs approved by the U. S. FDA, 640 drugs (approximately 59 %) contained nitrogen heterocycles in their structures, and indole was the most common fused heterocyclic ring, with 17 new drugs containing this structure, ranking 9th among all heterocycles. 5 In the above context, the synthesis and structural modification of indole skeletons have become significant topics in organic chemistry. 6 The classic strategies for sodium indole synthesis included Bischler–Mohlau (1881), 7 Fischer (1883), 8 Reisset (1897), 9 Nenitzescu (1929) 10 reactions. In addition, Batcho–Leimgruber (1971), 11 Gassman (1974), 12 Hegedus (1976), 13 Mori–Ban (1977), 14 Bartoli (1978), 15 and other named reactions represented new methods in this field. On the other hand, N-acylation reactions, Vilsmeier–Haack reactions, Friedel–Crafts reactions, and diverse transition-metal-catalyzed cross-coupling reactions were sodium the most used methods for structure modification of indoles. 16 , 17 Based on the previous research on the synthesis methodology and activity evaluation of indole derivatives, we designed and synthesized a series of N-acyl indole skeletons with methoxy and halogen substituents, which could be utilized as key intermediates for the synthesis of diverse anti-inflammatory or anti-tumor compounds. 18

Single-crystal structure analysis reveals that there is one molecule in the asymmetric unit (cf. the Figure). Bond lengths and angles are within a reasonable range. 19 , 20 , 21 In the title molecule, the halogen substituted benzene ring and indole ring are bridged by a carbonyl group. Due to the conjugation effect between the N(1) atom of indole and the carbonyl group, the bond length of C(9)–N(1) (1.382(6) Å) is significantly shortened compared to normal C–N single bonds, which is similar to C(1)–N(1) (1.397(6) Å) and C(7)–N(1) (1.419(6) Å) of the indole ring. The torsion angles of O(1)–C(9)–N(1)–C(1) and O(1)–C(9)–N(1)–C(7) are 174.7(5)° and −7.6(8)°, respectively, indicating that the amide moiety and indole ring are nearly coplanar. The above phenomenon may be due to conjugation effects and smaller steric hindrance. On the contrary, the torsion angles of O(1)–C(9)–C(10)–C(11) and O(1)–C(9)–C(10)–C(15) are 91.9(7)° and −84.4(7)°, respectively, indicating that the carbonyl group and the benzene ring are almost in a vertical conformation, which may be caused by steric hindrance between the carbonyl oxygen atom and the iodine atom. In summary, due to the above two effects, the indole and the halogen substituted benzene ring are nearly perpendicular, with a dihedral angle of 87.85(2)°. Geometric parameters are all in the expected ranges. 22


Corresponding author: Wei Cong, School of Pharmacy, the Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, P.R. China, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: National Science Foundation of China (No. 21702018), a Key Research and Development Program of Shandong Province (No. 2019GSF108031).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Rigaku, O. D. CrysAlisPRO; Rigaku Oxford Diffraction Ltd: Yarnton, Oxfordshire, England, 2017.Suche in Google Scholar

2. Sheldrick, G. M. A Short History of SHELX. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.Suche in Google Scholar

3. Sheldrick, G. M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Suche in Google Scholar

4. Xing, Q.; Chandrachud, P. P.; Tillett, K.; Lopchuk, J. M. Regioselective Hydroamination of Unactivated Olefins with Diazirines as a Diversifiable Nitrogen Source. Nat. Commun. 2024, 15, 6049; https://doi.org/10.1038/s41467-024-50254-8.Suche in Google Scholar PubMed PubMed Central

5. Vitaku, E.; Smith, D. T.; Njardarson, J. T. Analysis of the Structural Diversity, Substitution Patterns, and Frequency of Nitrogen Heterocycles Among U. S. FDA Approved Pharmaceuticals. J. Med. Chem. 2024, 57, 10257–10274; https://doi.org/10.1021/jm501100b.Suche in Google Scholar PubMed

6. Gavadia, R.; Rasgania, J.; Sahu, N.; Varma–Basil, M.; Chauhan, V.; Kumar, S.; Jakhar, K.; Singh, D. Synthesis of Indole-Functionalized Isoniazid Conjugates with Potent Antimycobacterial and Antioxidant Efficacy. Future Med. Chem. 2024, 1–14. https://doi.org/10.1080/17568919.2024.2379240.Suche in Google Scholar PubMed PubMed Central

7. Pchalek, K.; Jones, A. W.; Wekking, M. M. T.; Black, D. S. C. Synthesis of Activated 3-Substituted Indoles: An Optimised One-Pot Procedure. Tetrahedron 2005, 61, 77–82; https://doi.org/10.1016/j.tet.2004.10.060.Suche in Google Scholar

8. Robinson, B. The Fischer Indole Synthesis. Chem. Rev. 1963, 63, 373–401; https://doi.org/10.1021/cr60224a003.Suche in Google Scholar

9. Frydman, B.; Despuy, M. E.; Rapoport, H. Pyrroles from Azaindoles. A Synthesis of Porphobilinogen. J. Am. Chem. Soc. 1965, 87, 3530–3531; https://doi.org/10.1021/ja01093a061.Suche in Google Scholar PubMed

10. Nenitzescu, C. D. Derivatives of 2-Methyl-5-Hydroxyindole. Bull. Soc. Chim. Romania 1929, 11, 37–43.Suche in Google Scholar

11. Batcho, A. D.; Leimgruber, W. Indoles from 2-Methylnitrobenzenes by Condensation with Formamide Acetals Followed by Reduction: 4-Benzyloxyindole. Org. Synth. 1985, 63, 214–225.10.15227/orgsyn.063.0214Suche in Google Scholar

12. Gassman, P. G.; Van Bergen, T. J.; Gilbert, D. P.; Cue, B. W.Jr. General Method for the Synthesis of Indoles. J. Am. Chem. Soc. 1974, 96, 5495–5508; https://doi.org/10.1021/ja00824a028.Suche in Google Scholar

13. Hegedus, L. S.; Allen, G. F.; Waterman, E. L. Palladium Assisted Intramolecular Amination of Olefins. A New Synthesis of Indoles. J. Am. Chem. Soc. 1976, 98, 2674–2676; https://doi.org/10.1021/ja00425a051.Suche in Google Scholar

14. Mori, M.; Ban, Y. Reactions and Syntheses with Organometallic Compounds. X. The Intramolecular Cyclization Using Arylpalladium Complexes for Generation of Nitrogen-Heterocycles. Tetrahedron Lett. 1979, 20, 1133–1136; https://doi.org/10.1016/s0040-4039(01)86083-4.Suche in Google Scholar

15. Bartoli, G.; Palmieri, G.; Bosco, M.; Dalpozzo, R. The Reaction of Vinyl Grignard Reagents with 2-Substituted Nitroarenes: a New Approach to the Synthesis of 7-Substituted Indoles. Tetrahedron Lett. 1989, 30, 2129–2132; https://doi.org/10.1016/s0040-4039(01)93730-x.Suche in Google Scholar

16. Ahmad, T.; Khan, S.; Ullah, N. Recent Advances in the Catalytic Asymmetric Friedel–Crafts Reactions of Indoles. ACS Omega 2022, 7, 35446–35485; https://doi.org/10.1021/acsomega.2c05022.Suche in Google Scholar PubMed PubMed Central

17. Leitch, J.; Bhonoah, Y.; Frost, C. Beyond C2 and C3: Transition-Metal-Catalyzed C–H Functionalization of Indole. ACS Catal. 2017, 7, 5618–5627; https://doi.org/10.1021/acscatal.7b01785.Suche in Google Scholar

18. Cong, W.; Zhao, L.; Wu, X.; Xu, J.; Yao, H. Facile Construction of Pyrrolophenanthridone Skeleton via a One-Pot Intramolecular Heck Reaction and Oxidation. Tetrahedron 2014, 70, 312–317; https://doi.org/10.1016/j.tet.2013.11.053.Suche in Google Scholar

19. Almutairi, M. S.; Ghabbour, H. A.; Attia, M. I. Crystal Structure of Methyl 1H-Indole-2-Carboxylate, C10H9NO2. Z. Kristallogr. N. Cryst. Struct. 2017, 232, 431–432; https://doi.org/10.1515/ncrs-2016-0303.Suche in Google Scholar

20. Sun, Y. F.; Tang, Q. Q.; Zhang, Y.; Yang, F.; Liu, Y. J.; Cong, W. Crystal Structure of 1-(2-iodobenzoyl)-6-Methoxy- 1H-indole-3-carbaldehyde, C17H12INO3. Z. Kristallogr. N. Cryst. Struct. 2023, 238, 299–301; https://doi.org/10.1515/ncrs-2022-0599.Suche in Google Scholar

21. Zhang, Y.; Tang, Q. Q.; Yuan, J. C.; Sheng, C. S.; Cong, W. Crystal Structure of 5-Bromo-1-(2-iodobenzoyl)-1H-Indole-3-carbaldehyde, C16H9BrINO2. Z. Kristallogr. N. Cryst. Struct. 2024, 239, 73–75; https://doi.org/10.1515/ncrs-2023-0447.Suche in Google Scholar

22. Kalinowska–Tłuścik, J.; Staroń, J.; Krawczuk, A.; Mordalski, S.; Warszycki, D.; Satała, G.; Hogendorf, A. S.; Bojarski, A. J. The Effect of the Intramolecular C—H⃛O Interactions on the Conformational Preferences of Bis -arylsulfones – 5–HT6 Receptor Antagonists and beyond. RSC Adv. 2018, 8, 18672–18681; https://doi.org/10.1039/c8ra03107j.Suche in Google Scholar PubMed PubMed Central

Received: 2024-07-29
Accepted: 2024-09-16
Published Online: 2024-10-01
Published in Print: 2024-12-17

© 2024 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Artikel in diesem Heft

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of 3-nitrophenol-2,1,3-benzoselenadiazole (1/1), C12H9N3O3Se
  4. Crystal structure of diaqua-(hydroxido)-{μ-[2-(hydroxy)-5-[(4-nitrophenyl)diazenyl]benzoato]}-{2-hydroxy-5-[(4-nitrophenyl)diazenyl]benzoato}-(1,10-phenanthroline)-diterbium hydrate, C38H27.4N8O12.2Tb
  5. Crystal structure of poly[bis(μ3-3-fluoro-4-(1H-1,2,4-triazol-1-yl)benzoato-κ3 O:O′:N)cadmium(II)] – dimethylformamide (1/1), C21H17CdF2N7O5
  6. The crystal structure of 2-amino-N-(pyridin-2-yl)benzamide, C12H11N3O
  7. The crystal structure of 2,3-di(pyridin-2-yl)-2,3-dihydroquinazolin-4(1H)-one, C18H14N4O
  8. Crystal structure of 2-chloro-4-fluorobenzyl (R)-2-(6-methoxynaphthalen-2-yl)propanoate, C21H18ClFO3
  9. Crystal structure of [1-(4-carboxyphenyl)-4-oxo-1,4-dihydropyridazine-3-carboxylic acid]-(methylsulfinyl)methane, C15H16N2O6S
  10. The crystal structure of 2-ethyl-1,1-dimethyl-1H-benzo[e]indole, C16H17N
  11. The crystal structure of (Z)-5-amino-N -hydroxy-1H-pyrazole-4-carboximidamide, C4H7N5O
  12. The crystal structure of 2,2,5-trimethyl-3-(4-(4-(5-phenyl-4,5-dihydroisoxazol-3-yl)thiazol-2-yl)phenyl)imidazolidin-4-one, C24H24N4O2S
  13. The crystal structure of tetrakis(μ2-acetato-κ2 O:O′)-bis[(4′-phenyl-4,2′:6′,4″-terpyridine-κ1 N)dicopper(II)], C25H21CuN3O4
  14. Crystal structure of poly(3-thiophenecarboxylato-κ 3 O,O′:O′)-(methanol-κO)cadmium(II), C11H10O5S2Cd
  15. The crystal structure of dichloridobis[4′-(p-methoxylphenyl)-4,2′:6′,4″-terpyridine-κN] zinc(II), C44H34Cl2N6O2Zn
  16. The crystal structure of 1-(2-carboxyethyl)-1H-imidazole 3-oxide
  17. Crystal structure of 1,1′,1″-(nitrilotris(ethane-2,1-diyl))tris(3-(4-(((E)-pyridin-2-ylmethylene)amino)phenyl)urea), C45H47N13O4
  18. Crystal structure of a (E)-4-bromo-N-(4-(diethylamino)-2-hydroxybenzylidene) benzenaminium acetate ─ 4-bromoaniline (1/1)
  19. Crystal structure of 2,2′-(iminobis(methylene))bis(benzimidazolium) bis(p-toluenesulfonate), C30H31N5O6S2
  20. The crystal structure of alogliptinium meta-chlorobenzoate
  21. Crystal structure of 4-bromobenzyl 2-(6-methoxy-naphthalen-2-yl)propanoate, C21H19BrO3
  22. The hydrated double salt structure of (E)-4-(2-benzylidenehydrazine-1-carbonyl)pyridin-1-ium cation with 2-hydroxybenzoate and benzoate anions
  23. Crystal structure of (R)(R)-5-chloro-3-((S,1E,3E)-3,5-dimethyl-hepta-1,3-dien-1-yl)-7-methyl-6,8-dioxo-2,6,7,8-tetrahydroisoquinolin-7-yl acetate, C21H24ClNO4
  24. The crystal structure of bis(3-oxo-1,3-diphenylprop-1-en-1-olato-κ 2 O:O′)-bis(1,4-dioxane-κ 1 O)nickel(II), C38H38O8Ni
  25. Crystal structure of poly[aqua-(pyridine-3-carboxylato-κ1 N)(pyridine-3-carboxylato-κ2 O,O′) cadmium(II)] dihydrate, C12H14N2O7Cd
  26. The crystal structure of 4-(4-phenyl-5-(((1-(2,4,6-tribromophenyl)-1H-1,2,3-triazol-4-yl)methyl)thio)-4H-1,2,4-triazol-3-yl)pyridine, C22H14Br3N7S
  27. The crystal structure of N-benzylquinoline-2-carbothioamide, C17H14N2S
  28. Crystal structure of bis(3-isopropylphenyl)-4,4′-bipyridinium dichloride dihydrate, C28H30N2⋅2Cl⋅2H2O
  29. The crystal structure of ethyl 2-amino-4-(cyanophenyl)-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carboxylate, C19H18N2O4
  30. Crystal structure of (4R,10S)-6-hydroxy-7-isopropyl-4,10-dimethyl-1,2,3,5-hexahydro-6,10-epoxyazulen-9-one, C15H22O3
  31. The crystal structure of (E)-(2-(2-hydroxy-3-methoxybenzylidene)aminophenyl)arsonic acid, C14H14AsNO5
  32. The crystal structure of poly[(μ 2-2-aminoisophthalato-κ4O,O′:O″:O″′)-(N-methylpyrrolidone κ1O)-dioxido-uranium(VI)], C13H14N2O7U
  33. The crystal structure of the co-crystal isonicotinamide · terephthalic acid, C8H6O4·2(C6H6N2O)
  34. The crystal structure of (E)-1-phenyl-3-(p-tolylthio)but-2-en-1-one, C17H16OS
  35. The crystal structure of 4,5-bis((Z)-chloro(hydroxyimino)methyl)-1H-imidazol-3-ium chloride monohydrate
  36. The crystal structure of 1,2-bis(4-(dimethylamino)phenyl)ethane-1,2-dione. C18H20N2O2
  37. Crystal structure of 2-chloro-4-fluorobenzyl 2-acetoxybenzoate, C16H12ClFO4
  38. Crystal structure of methyl 1-phenyl-9H-pyrido[3,4-b]indole-3-carboxylate, C19H14N2O2
  39. Crystal structure of (3-(dimethoxymethyl)-5-methoxy-1H-indol-1-yl)(5-fluoro-2-iodophenyl)methanone, C19H17FINO4
  40. Crystal structure of tetrachlorido-bis(1-[(1H-triazole-1-yl)methyl]-1H-benzotriazole-κ2 N:N′)dicopper, C36H32Cu2N24Cl4
  41. Crystal structure of 2-(2,3-bis(4-methoxyphenyl)-1H-pyrrolo[2,3-b]quinoxalin-1-yl)anilin, C30H24N4O2
  42. Crystal structure of 5,7-dihydroxy-2-phenyl-4H-chromen-4-one–N,N-dimethylformamide(1/1), C18H17NO5
  43. The crystal structure of bis(μ 2-biphenyl-2,2′-dicarboxylato)-diaqua-bis(nitrato)-bis(2,2′:6′,2′′-terpyridine)dineodymium(III), C46H32I2N8Nd2O16
  44. Crystal structure of (Z)-4-amino-N -((4-chlorophenyl)(phenyl)methylene)benzohydrazide, C20H16ClN3O
  45. Crystal structure of (E)-6,8-dimethoxy-4-(4-morpholinobenzylidene)-3,4-dihydro-1-benzoxepin-5(2H)-one, C23H25NO5
  46. Crystal structure of (R)-2-((3-(3-aminopiperidin-1-yl)-6-methyl-5-oxo-1,2,4-triazin-4(5H)-yl) methyl)-4-fluorobenzonitrile benzoate monohydrate, C24H27FN6O4
  47. The crystal structure of [triaqua-(8-carboxymethoxy-quinoline-2-carboxylato-κ 3 N,O,O)copper(II)]monohydrate, C12H15NO9Cu
  48. Crystal structure of (((4-chlorophenyl)sulfonyl)glycinato-κ 2 N,O)bis(1,10-phenanthroline-κ 2 N,N′)cobalt(II) tetrahydrate, C32H30ClCoN5O8S
  49. Crystal structure of (((3-nitrophenyl)sulfonyl)-β-alaninato-κO)bis(2,2′-bipyridine-κ 2 N, N′)copper(II) 3-nitrobenzenesulfonate, C35H29CuN7O11S2
  50. Crystal structure of 3-phenoxybenzyl 2-(6-methoxynaphthalen-2-yl)propanoate, C27H24O4
  51. 6-(2′,3′-Dihydroxy-3′-methylbutyl)-7-methoxy-8-(3″-methylbut-2″-en-1″-yl)-2H-chromen-2-one, C20H26O5
  52. Crystal structure of bromido-(2,2′:6′,2″-terpyridine-4′-onato-κ3N)palladium(II) methanol solvate
  53. The crystal structure of ethyl 2-amino-(4-nitrophenyl)-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carboxylate, C20H22N2O6
  54. Crystal structure of (1E,3E,5E)-1,6-bis(4-(pentyloxy)phenyl)hexa-1,3,5-triene, C28H36O2
  55. The crystal structure of tris(2-bromo-4-methylphenyl)amine, C21H18Br3N
  56. The crystal structure of 3-(2,5-dimethylanilino)-1-(2,5-dimethylphenyl)-4-methyl-1H-pyrrole-2,5-dione, C21H22N2O2
  57. Crystal structure of dicarbonyl (μ2-indole-2-carboxylato κ2 O:O′)tris(triphenylarsine-κAs)dirhodium(I) acetone solvate, C68H56As3NO5Rh2
  58. The crystal structure of 4-chloro-2-formylphenyl 4-methylbenzenesulfonate, C14H11ClO4S
  59. Crystal structure of 4-iodobenzyl 2-(6-methoxynaphthalen-2-yl) propanoate, C21H19IO3
Heruntergeladen am 6.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2024-0321/html
Button zum nach oben scrollen