Startseite The hydrated double salt structure of (E)-4-(2-benzylidenehydrazine-1-carbonyl)pyridin-1-ium cation with 2-hydroxybenzoate and benzoate anions
Artikel Open Access

The hydrated double salt structure of (E)-4-(2-benzylidenehydrazine-1-carbonyl)pyridin-1-ium cation with 2-hydroxybenzoate and benzoate anions

  • Itumeleng B. Setshedi ORCID logo , Tebogo M. L. Mokoto ORCID logo und Mark G. Smith ORCID logo EMAIL logo
Veröffentlicht/Copyright: 6. September 2024

Abstract

2(C13H12N3O)+, 2(C7H4.5O2.5), 2(H2O), orthorhombic, Pbca (no. 61), a = 8.2775(5) Å, b = 12.6054(9) Å, c = 35.082(2) Å, V = 3,660.5(4) Å3, Z = 4, Rgt (F) = 0.0663, wRref (F 2) = 0.1864, T = 173 K.

CCDC no.: 2251424

1 Source of materials

To synthesize the title compound, 0.23 g (167 mmol) isonicotinic acid hydrazide and 0.23 g (166 mmol) salicylic acid were weight out in a Dram vial and dissolved in 3 mL benzaldehyde. The vial was closed tightly and reacted at 333 K, and stirred at 300 rpm for 24 h. The solution was allowed to slowly evaporate at ambient temperatures between 298 and 300 K. Colourless needles were formed at the bottom of the vial after six weeks (Tables 1 and 2).

Table 1:

Data collection and handling.

Crystal: Colourless needles
Size: 0.42 × 0.27 × 0.03 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.10 mm−1
Diffractometer, scan mode: Bruker D8 Venture Photon, ω
θ max, completeness: 25.7°, >99 %
N(hkl)measured, N(hkl)unique, R int: 28,159, 3,482, 0.083
Criterion for I obs, N(hkl)gt: I obs > 2σ(I obs), 2,434
N(param)refined: 267
Programs: Bruker, 1 SHELX, 2 , 3 WinGX/ORTEP, 4 , 5 PLATON 6
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
C1 0.6866 (3) 0.5026 (3) 0.53410 (7) 0.0470 (7)
C2 0.6477 (5) 0.3974 (3) 0.53390 (9) 0.0669 (10)
H2 0.684206 0.351752 0.514132 0.08*
C3 0.5527 (5) 0.3591 (4) 0.56373 (12) 0.0899 (15)
H3 0.522484 0.286376 0.5638 0.108*
C4 0.5434 (6) 0.5200 (6) 0.59176 (12) 0.113 (2)
H4 0.508254 0.563934 0.61215 0.135*
C5 0.6326 (5) 0.5640 (4) 0.56407 (9) 0.0748 (11)
H5 0.658724 0.63735 0.565084 0.09*
C6 0.7850 (3) 0.5570 (2) 0.50425 (7) 0.0433 (7)
C7 0.9367 (3) 0.4959 (2) 0.41461 (8) 0.0437 (7)
H7 0.895479 0.425757 0.412776 0.052*
C8 1.0349 (3) 0.5387 (2) 0.38367 (7) 0.0448 (7)
C9 1.0739 (4) 0.4727 (3) 0.35318 (8) 0.0598 (9)
H9 1.034625 0.401912 0.352506 0.072*
C10 1.1702 (4) 0.5104 (4) 0.32380 (10) 0.0762 (12)
H10 1.196917 0.465278 0.30305 0.091*
C11 1.2265 (4) 0.6119 (4) 0.32461 (10) 0.0784 (13)
H11 1.292833 0.637168 0.304462 0.094*
C12 1.1876 (4) 0.6785 (3) 0.35458 (10) 0.0699 (10)
H12 1.226805 0.749376 0.354901 0.084*
C13 1.0912 (4) 0.6418 (3) 0.38424 (8) 0.0531 (8)
H13 1.064151 0.687461 0.404813 0.064*
C14 0.1871 (3) 0.2487 (2) 0.68575 (7) 0.0424 (6)
C15 0.1297 (4) 0.3125 (3) 0.71500 (9) 0.0520 (7)
C16 0.0320 (4) 0.2677 (3) 0.74297 (9) 0.0638 (10)
H16 −0.008676 0.31095 0.762954 0.077*
C17 −0.0060 (4) 0.1629 (3) 0.74210 (9) 0.0691 (10)
H17 −0.074024 0.133686 0.76121 0.083*
C18 0.0541 (4) 0.0986 (3) 0.71351 (10) 0.0668 (9)
H18 0.029703 0.024977 0.713283 0.08*
C19 0.1492 (4) 0.1418 (2) 0.68541 (8) 0.0505 (7)
H19 0.189336 0.097864 0.665554 0.061*
C20 0.2852 (4) 0.2927 (3) 0.65401 (10) 0.0653 (10)
N1 0.5027 (4) 0.4214 (5) 0.59222 (10) 0.1094 (18)
H1 0.443286 0.395616 0.610853 0.131*
N2 0.8141 (3) 0.50176 (18) 0.47205 (6) 0.0404 (5)
N3 0.9055 (3) 0.55147 (18) 0.44407 (6) 0.0413 (5)
O1 0.8334 (3) 0.64760 (16) 0.50919 (6) 0.0609 (6)
O2 0.3379 (3) 0.3871 (2) 0.65791 (8) 0.0797 (8)
O1W 0.1945 (3) 0.20372 (18) 0.55182 (8) 0.0625 (7)
O3 0.3152 (3) 0.2389 (2) 0.62522 (7) 0.0840 (9)
O4a 0.1610 (6) 0.4098 (4) 0.72475 (14) 0.0653 (12)
H4Aa 0.220417 0.437932 0.70818 0.098*
H2A 0.775 (4) 0.432 (3) 0.4672 (8) 0.052 (8)*
H1WA 0.164 (7) 0.261 (4) 0.5405 (14) 0.119 (18)*
H1WB 0.234 (8) 0.237 (5) 0.577 (2) 0.19 (3)*
  1. aOccupancy: 0.5.

2 Experimental details

The C-bound hydrogen atoms were located in the difference map, then positioned geometrically. They were then allowed to ride on their respective parent atoms with thermal displacement parameters 1.2 times of the parent C atom. The coordinates and isotropic displacement parameters of the two N-bound and O-bound H atoms, namely H1 and H4A, were constrained to their parent atoms using the riding model approximation appropriate for their respective geometries. The other O and N-bound hydrogen atoms were allowed to refine freely. Diagrams and publication material were generated using ORTEP-3, 4 WinGX 5 and PLATON. 6

3 Comment

Isonicotinic acid hydrazide (INH), commonly known as isoniazid is an anti-mycobacterial agent that is primarily used as a tuberculostatic drug and remains the first choice in the treatment of latent tuberculosis (TB). 7 Isoniazid has a simple structure and contains two essential components, namely the hydrazide group and a pyridine ring, both which are required for anti-mycobacterial activity. 8 This drug is commonly used to treat pulmonary and extra pulmonary TB infections and is also utilized as a chemoprophylaxis therapy to prevent or delay the appearance of microbial resistance. 9 Many derivatives of the compound isoniazid have been synthesized over the years to counteract resistance of the mycobacterium species. These include the design of new compound derivatives such as isonicotinoylhydrazone with an intention to improve pharma-toxicological profiles of the drug towards the organism. 10 However, in most cases they demonstrate low solubility. In such instances, it is more suitable to use a multicomponent form such as a co-crystal or salt as these tend to be more soluble than the crystal form of an active pharmaceutical ingredient. 11 Co-crystallization or ionization of these derivatives is also likely to increase bioavailability of the drug. 12 The use of benzaldehyde as a solvent is commonly avoided as it is known to autoxidize at room temperatures to form benzoic acid. 13 Although this reaction is known to be instigated by a catalyst, it can also occur spontaneously over a long period of time. 14 However, in this case, benzaldehyde was used as very slow evaporation was desired.

The crystal structure of the title structure crystallised in the orthorhombic Pbca space group and the asymmetric unit contains one molecule of (E)-4-(2-benzylidenehydrazine-1-carbonyl)pyridin-1-ium, one molecule of water, and two anions, namely 2-hydroxybenzoate and benzoate with 50:50 occupancy (see the Figure). The benzoate anion is produced in situ via the autoxidation of the benzaldehyde solvent. In the asymmetric unit, the H1 atom of the carbohydrazide moiety is bonded via bifurcated hydrogen bonds to the two oxygen atoms of the carboxylate functional group of the 2-hydroxybenzoate or the benzoate anion, respectively. The O3 oxygen on the anion is also bifurcated and hydrogen bonded to both H1 as described above as well as to the H1wb atom on the water molecule. Each water molecule in the unit cell is connected to two carbohydrazide moieties. The first carbohydrazide moiety is hydrogen bonded to the water through the N2–H2⋯O1 hydrogen bond. The second carbohydrazide moiety has a bifurcated hydrogen bond between H1wa on the water molecule and O1 and N3 on the moiety. Furthermore, the second hydrogen atom on the water molecule, H1wb, is bonded to the O3 atom on the 2-hydroxybenzoate or benzoate molecule respectively. The salt is therefore stabilised by the water molecule in the crystal. The packing of the crystal contains an anticlockwise twofold screw rotation along the b-axis, resulting in a three-dimensional (3D) network in the crystal structure.


Corresponding author: Mark G. Smith, Chemistry Department, University of South Africa, Unisa Science Campus, 28 Pioneer Avenue, Florida, Roodepoort, Gauteng, South Africa, E-mail:

  1. Author contributions: The author has accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by the National Research Foundation (NRF) Thuthuka Grant Number 118127 (Dr IB Setshedi) as well as the National Research Foundation (NRF) “Competitive Support for Unrated Researchers” grant Number CSUR23042597072 (Dr. MG Smith).

  3. Conflict of interest statement: The author declares no conflict of interest regarding this article.

References

1. Bruker. APEX3. SAINT–Plus and XPREP; Bruker AXS Inc.: Madison, Wisconsin, USA, 2016.Suche in Google Scholar

2. Sheldrick, G. M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Suche in Google Scholar

3. Sheldrick, G. M. SHELXTL – Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. 2015, A71, 3–8.10.1107/S2053273314026370Suche in Google Scholar PubMed PubMed Central

4. Farrugia, L. J. WinGX and ORTEP for Windows: An Update. J. Appl. Crystallogr. 2012, 45, 849–854; https://doi.org/10.1107/s0021889812029111.Suche in Google Scholar

5. Farrugia, L. J. WinGX Suite for Small-Molecule Single-Crystal Crystallography. J. Appl. Crystallogr. 1999, 32, 837–838; https://doi.org/10.1107/s0021889899006020.Suche in Google Scholar

6. Spek, A. L. Structure Validation in Chemical Crystallography. Acta Crystallogr. 2009, D65, 148–155; https://doi.org/10.1107/s090744490804362x.Suche in Google Scholar

7. Denholm, J. T.; McBryde, E. S.; Einsen, D. P.; Penington, J. S.; Chen, C.; Street, A. C. Effect of Isoniazid Preventive Therapy on Tuberculosis Incidence and Associated Risk Factors Among HIV Infected Adults in Tanzania: a Retrospective Cohort Study. Drug. Healthc. Patient Saf. 2014, 6, 145–149; https://doi.org/10.2147/dhps.s68837.Suche in Google Scholar PubMed PubMed Central

8. Jena, L.; Waghmare, P.; Kashikar, S.; Kumar, S.; Harinath, B. C. Computational Approach to Understanding the Mechanism of Action of Isoniazid, an Anti-TB Drug. Int. J. Mycobact. 2014, 3, 276–282; https://doi.org/10.1016/j.ijmyco.2014.08.003.Suche in Google Scholar PubMed

9. Mahmoud, B. G.; Khairy, M.; Rashwan, F. A.; Banks, C. E. Simultaneous Voltammetric Determination of Acetaminophen and Isoniazid (Hepatotoxicity-Related Drugs) Utilizing Bismuth Oxide Nanorod Modified Screen-Printed Electrochemical Sensing Platforms. Anal. Chem. 2017, 89, 2170–2178; https://doi.org/10.1021/acs.analchem.6b05130.Suche in Google Scholar PubMed

10. Dragostin, I.; Dragostin, O. M.; Samal, S. K.; Dash, S.; Tatia, R.; Dragan, M.; Confederat, L.; Ghiciuc, C. M.; Diculencu, D.; Lupusoru, C. E.; Zamfir, C. L. New Isoniazid Derivatives with Improved Pharmaco-toxicological Profile: Obtaining, Characterization and Biological Evaluation. Eur. J. Pharm. Sci. 2019, 137, 104974; https://doi.org/10.1016/j.ejps.2019.104974.Suche in Google Scholar PubMed

11. Aitipamula, S.; Banerjee, R.; Bansal, A. K.; Biradha, K.; Cheney, M. L.; Choudhury, A. R.; Desiraju, G. R.; Dikundwar, A. G.; Dubey, R.; Duggirala, N.; Ghogale, P. P.; Ghosh, S.; Goswami, P. K.; Goud, N. R.; Jetti, R. R. K. R.; Karpinski, P.; Kaushik, P.; Kumar, D.; Kumar, V.; Moulton, B.; Mukherjee, A.; Mukherjee, G.; Myerson, A. S.; Puri, V.; Ramanan, A.; Rajamannar, T.; Reddy, C. M.; Rodriguez–Hornedo, N.; Rogers, R. D.; Row, T. N. G.; Sanphui, P.; Shan, N.; Shete, G.; Singh, A.; Sun, C. C.; Swift, J. A.; Thaimattam, R.; Thakur, T. S.; Kumar, T. R.; Thomas, S. P.; Tothadi, S.; Vangala, V. R.; Variankaval, N.; Vishweshwar, P.; Weyna, D. R.; Zaworotko, M. J. Polymorphs, Salts, and Cocrystals: What’s in a Name? Cryst. Growth Des. 2012, 12, 2147–2152; https://doi.org/10.1021/cg3002948.Suche in Google Scholar

12. Smith, M. G.; Forbes, R. P.; Lemmerer, A. Covalent-assisted Supramolecular Synthesis: Masking of Amides in Co-crystal Synthesis Using Benzophenone Derivatives. Cryst. Growth Des. 2015, 15, 3813–3821; https://doi.org/10.1021/acs.cgd.5b00462.Suche in Google Scholar

13. Meenakshisundaram, S.; Nowicka, E.; Carter, E.; Murphy, D. M.; Knight, D. W.; Bethell, D.; Hutchings, G. J. The Benzaldehyde Oxidation Paradox Explained by the Interception of Peroxy Radical by Benzyl Alcohol. Nat. Commun. 2014, 5, 3332; https://doi.org/10.1038/ncomms4332.Suche in Google Scholar PubMed

14. Setshedi, I. B.; Lemmerer, A.; Smith, M. G.. Co-crystallization of N′-benzylidenepyridine-4-carbohydrazide and Benzoic Acid via Autoxidation of Benzaldehyde. Acta Crystallogr. 2023, E79, 682–685.10.1107/S2056989023005698Suche in Google Scholar PubMed PubMed Central

Received: 2024-07-10
Accepted: 2024-08-21
Published Online: 2024-09-06
Published in Print: 2024-12-17

© 2024 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Artikel in diesem Heft

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of 3-nitrophenol-2,1,3-benzoselenadiazole (1/1), C12H9N3O3Se
  4. Crystal structure of diaqua-(hydroxido)-{μ-[2-(hydroxy)-5-[(4-nitrophenyl)diazenyl]benzoato]}-{2-hydroxy-5-[(4-nitrophenyl)diazenyl]benzoato}-(1,10-phenanthroline)-diterbium hydrate, C38H27.4N8O12.2Tb
  5. Crystal structure of poly[bis(μ3-3-fluoro-4-(1H-1,2,4-triazol-1-yl)benzoato-κ3 O:O′:N)cadmium(II)] – dimethylformamide (1/1), C21H17CdF2N7O5
  6. The crystal structure of 2-amino-N-(pyridin-2-yl)benzamide, C12H11N3O
  7. The crystal structure of 2,3-di(pyridin-2-yl)-2,3-dihydroquinazolin-4(1H)-one, C18H14N4O
  8. Crystal structure of 2-chloro-4-fluorobenzyl (R)-2-(6-methoxynaphthalen-2-yl)propanoate, C21H18ClFO3
  9. Crystal structure of [1-(4-carboxyphenyl)-4-oxo-1,4-dihydropyridazine-3-carboxylic acid]-(methylsulfinyl)methane, C15H16N2O6S
  10. The crystal structure of 2-ethyl-1,1-dimethyl-1H-benzo[e]indole, C16H17N
  11. The crystal structure of (Z)-5-amino-N -hydroxy-1H-pyrazole-4-carboximidamide, C4H7N5O
  12. The crystal structure of 2,2,5-trimethyl-3-(4-(4-(5-phenyl-4,5-dihydroisoxazol-3-yl)thiazol-2-yl)phenyl)imidazolidin-4-one, C24H24N4O2S
  13. The crystal structure of tetrakis(μ2-acetato-κ2 O:O′)-bis[(4′-phenyl-4,2′:6′,4″-terpyridine-κ1 N)dicopper(II)], C25H21CuN3O4
  14. Crystal structure of poly(3-thiophenecarboxylato-κ 3 O,O′:O′)-(methanol-κO)cadmium(II), C11H10O5S2Cd
  15. The crystal structure of dichloridobis[4′-(p-methoxylphenyl)-4,2′:6′,4″-terpyridine-κN] zinc(II), C44H34Cl2N6O2Zn
  16. The crystal structure of 1-(2-carboxyethyl)-1H-imidazole 3-oxide
  17. Crystal structure of 1,1′,1″-(nitrilotris(ethane-2,1-diyl))tris(3-(4-(((E)-pyridin-2-ylmethylene)amino)phenyl)urea), C45H47N13O4
  18. Crystal structure of a (E)-4-bromo-N-(4-(diethylamino)-2-hydroxybenzylidene) benzenaminium acetate ─ 4-bromoaniline (1/1)
  19. Crystal structure of 2,2′-(iminobis(methylene))bis(benzimidazolium) bis(p-toluenesulfonate), C30H31N5O6S2
  20. The crystal structure of alogliptinium meta-chlorobenzoate
  21. Crystal structure of 4-bromobenzyl 2-(6-methoxy-naphthalen-2-yl)propanoate, C21H19BrO3
  22. The hydrated double salt structure of (E)-4-(2-benzylidenehydrazine-1-carbonyl)pyridin-1-ium cation with 2-hydroxybenzoate and benzoate anions
  23. Crystal structure of (R)(R)-5-chloro-3-((S,1E,3E)-3,5-dimethyl-hepta-1,3-dien-1-yl)-7-methyl-6,8-dioxo-2,6,7,8-tetrahydroisoquinolin-7-yl acetate, C21H24ClNO4
  24. The crystal structure of bis(3-oxo-1,3-diphenylprop-1-en-1-olato-κ 2 O:O′)-bis(1,4-dioxane-κ 1 O)nickel(II), C38H38O8Ni
  25. Crystal structure of poly[aqua-(pyridine-3-carboxylato-κ1 N)(pyridine-3-carboxylato-κ2 O,O′) cadmium(II)] dihydrate, C12H14N2O7Cd
  26. The crystal structure of 4-(4-phenyl-5-(((1-(2,4,6-tribromophenyl)-1H-1,2,3-triazol-4-yl)methyl)thio)-4H-1,2,4-triazol-3-yl)pyridine, C22H14Br3N7S
  27. The crystal structure of N-benzylquinoline-2-carbothioamide, C17H14N2S
  28. Crystal structure of bis(3-isopropylphenyl)-4,4′-bipyridinium dichloride dihydrate, C28H30N2⋅2Cl⋅2H2O
  29. The crystal structure of ethyl 2-amino-4-(cyanophenyl)-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carboxylate, C19H18N2O4
  30. Crystal structure of (4R,10S)-6-hydroxy-7-isopropyl-4,10-dimethyl-1,2,3,5-hexahydro-6,10-epoxyazulen-9-one, C15H22O3
  31. The crystal structure of (E)-(2-(2-hydroxy-3-methoxybenzylidene)aminophenyl)arsonic acid, C14H14AsNO5
  32. The crystal structure of poly[(μ 2-2-aminoisophthalato-κ4O,O′:O″:O″′)-(N-methylpyrrolidone κ1O)-dioxido-uranium(VI)], C13H14N2O7U
  33. The crystal structure of the co-crystal isonicotinamide · terephthalic acid, C8H6O4·2(C6H6N2O)
  34. The crystal structure of (E)-1-phenyl-3-(p-tolylthio)but-2-en-1-one, C17H16OS
  35. The crystal structure of 4,5-bis((Z)-chloro(hydroxyimino)methyl)-1H-imidazol-3-ium chloride monohydrate
  36. The crystal structure of 1,2-bis(4-(dimethylamino)phenyl)ethane-1,2-dione. C18H20N2O2
  37. Crystal structure of 2-chloro-4-fluorobenzyl 2-acetoxybenzoate, C16H12ClFO4
  38. Crystal structure of methyl 1-phenyl-9H-pyrido[3,4-b]indole-3-carboxylate, C19H14N2O2
  39. Crystal structure of (3-(dimethoxymethyl)-5-methoxy-1H-indol-1-yl)(5-fluoro-2-iodophenyl)methanone, C19H17FINO4
  40. Crystal structure of tetrachlorido-bis(1-[(1H-triazole-1-yl)methyl]-1H-benzotriazole-κ2 N:N′)dicopper, C36H32Cu2N24Cl4
  41. Crystal structure of 2-(2,3-bis(4-methoxyphenyl)-1H-pyrrolo[2,3-b]quinoxalin-1-yl)anilin, C30H24N4O2
  42. Crystal structure of 5,7-dihydroxy-2-phenyl-4H-chromen-4-one–N,N-dimethylformamide(1/1), C18H17NO5
  43. The crystal structure of bis(μ 2-biphenyl-2,2′-dicarboxylato)-diaqua-bis(nitrato)-bis(2,2′:6′,2′′-terpyridine)dineodymium(III), C46H32I2N8Nd2O16
  44. Crystal structure of (Z)-4-amino-N -((4-chlorophenyl)(phenyl)methylene)benzohydrazide, C20H16ClN3O
  45. Crystal structure of (E)-6,8-dimethoxy-4-(4-morpholinobenzylidene)-3,4-dihydro-1-benzoxepin-5(2H)-one, C23H25NO5
  46. Crystal structure of (R)-2-((3-(3-aminopiperidin-1-yl)-6-methyl-5-oxo-1,2,4-triazin-4(5H)-yl) methyl)-4-fluorobenzonitrile benzoate monohydrate, C24H27FN6O4
  47. The crystal structure of [triaqua-(8-carboxymethoxy-quinoline-2-carboxylato-κ 3 N,O,O)copper(II)]monohydrate, C12H15NO9Cu
  48. Crystal structure of (((4-chlorophenyl)sulfonyl)glycinato-κ 2 N,O)bis(1,10-phenanthroline-κ 2 N,N′)cobalt(II) tetrahydrate, C32H30ClCoN5O8S
  49. Crystal structure of (((3-nitrophenyl)sulfonyl)-β-alaninato-κO)bis(2,2′-bipyridine-κ 2 N, N′)copper(II) 3-nitrobenzenesulfonate, C35H29CuN7O11S2
  50. Crystal structure of 3-phenoxybenzyl 2-(6-methoxynaphthalen-2-yl)propanoate, C27H24O4
  51. 6-(2′,3′-Dihydroxy-3′-methylbutyl)-7-methoxy-8-(3″-methylbut-2″-en-1″-yl)-2H-chromen-2-one, C20H26O5
  52. Crystal structure of bromido-(2,2′:6′,2″-terpyridine-4′-onato-κ3N)palladium(II) methanol solvate
  53. The crystal structure of ethyl 2-amino-(4-nitrophenyl)-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carboxylate, C20H22N2O6
  54. Crystal structure of (1E,3E,5E)-1,6-bis(4-(pentyloxy)phenyl)hexa-1,3,5-triene, C28H36O2
  55. The crystal structure of tris(2-bromo-4-methylphenyl)amine, C21H18Br3N
  56. The crystal structure of 3-(2,5-dimethylanilino)-1-(2,5-dimethylphenyl)-4-methyl-1H-pyrrole-2,5-dione, C21H22N2O2
  57. Crystal structure of dicarbonyl (μ2-indole-2-carboxylato κ2 O:O′)tris(triphenylarsine-κAs)dirhodium(I) acetone solvate, C68H56As3NO5Rh2
  58. The crystal structure of 4-chloro-2-formylphenyl 4-methylbenzenesulfonate, C14H11ClO4S
  59. Crystal structure of 4-iodobenzyl 2-(6-methoxynaphthalen-2-yl) propanoate, C21H19IO3
Heruntergeladen am 6.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2024-0292/html
Button zum nach oben scrollen