Home Crystal structure of (1E,3E,5E)-1,6-bis(4-(pentyloxy)phenyl)hexa-1,3,5-triene, C28H36O2
Article Open Access

Crystal structure of (1E,3E,5E)-1,6-bis(4-(pentyloxy)phenyl)hexa-1,3,5-triene, C28H36O2

  • Li Shen ORCID logo EMAIL logo , Yu-Pei Xia ORCID logo and QingGuo Meng EMAIL logo
Published/Copyright: October 16, 2024

Abstract

C28H36O2, monoclinic, P21/c (no. 14), a = 25.4751(13) Å, b = 7.4053(3) Å, c = 6.3520(3) Å, β = 93.923(5)°, V = 1,195.5(1) Å3, Z = 2, R gt(F) = 0.0650, wR ref(F 2) = 0.2007, T = 298 K.

CCDC no.: 2347103

Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Colourless block
Size: 0.26 × 0.24 × 0.21 mm
Wavelength: Cu Kα radiation (1.54184 Å)
μ: 0.53 mm−1
Diffractometer, scan mode: Bruker SMART CCD 6000, ω
θ max, completeness: 68.2°, 99 %
N(hkl)measured, N(hkl)unique, R int: 7,561, 2,166, 0.090
Criterion for I obs, N(hkl)gt: I obs > 2 σ(I obs), 802
N(param)refined: 137
Programs: Bruker 1 , Olex2 2 , SHELX 3 , 4
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
C1 0.94563 (12) 0.4544 (5) −0.3031 (5) 0.1317 (15)
H1A 0.924252 0.483574 −0.428820 0.198*
H1B 0.948281 0.325556 −0.289074 0.198*
H1C 0.980119 0.504843 −0.311861 0.198*
C2 0.92108 (10) 0.5309 (4) −0.1155 (5) 0.0972 (11)
H2A 0.919773 0.661275 −0.129094 0.117*
H2B 0.943380 0.502584 0.010045 0.117*
C3 0.86616 (11) 0.4620 (4) −0.0861 (5) 0.0846 (10)
H3A 0.843178 0.497108 −0.207245 0.101*
H3B 0.866921 0.331107 −0.080777 0.101*
C4 0.84383 (11) 0.5322 (4) 0.1106 (5) 0.0820 (10)
H4A 0.842455 0.662934 0.102698 0.098*
H4B 0.867660 0.500445 0.230496 0.098*
C5 0.78992 (11) 0.4634 (4) 0.1500 (5) 0.0746 (9)
H5A 0.764388 0.506245 0.041122 0.089*
H5B 0.789581 0.332413 0.149166 0.089*
C6 0.72668 (12) 0.5105 (4) 0.4092 (5) 0.0595 (8)
C7 0.68655 (12) 0.4232 (3) 0.2934 (4) 0.0650 (9)
H7 0.692653 0.368424 0.165637 0.078*
C8 0.63680 (12) 0.4184 (3) 0.3709 (5) 0.0640 (8)
H8 0.609693 0.361639 0.290616 0.077*
C9 0.62586 (12) 0.4945 (3) 0.5626 (5) 0.0585 (8)
C10 0.66747 (11) 0.5828 (3) 0.6748 (4) 0.0640 (9)
H10 0.661606 0.637398 0.802971 0.077*
C11 0.71675 (11) 0.5908 (3) 0.6005 (4) 0.0645 (9)
H11 0.743693 0.650383 0.678514 0.077*
C12 0.57408 (11) 0.4723 (3) 0.6417 (5) 0.0622 (8)
H12 0.548934 0.416946 0.550303 0.075*
C13 0.55795 (11) 0.5216 (3) 0.8299 (5) 0.0639 (9)
H13 0.581141 0.588655 0.918246 0.077*
C14 0.50789 (11) 0.4789 (4) 0.9048 (4) 0.0659 (9)
H14 0.484242 0.416504 0.813511 0.079*
O1 0.77736 (7) 0.5296 (2) 0.3513 (3) 0.0741 (7)

1 Source of materials

4-Pentyloxybenzaldehyde were purchased from Energy Chemical. Sodium hydride, 60 % dispersion in mineral oil was purchased from J & K Scientific. The (E)-tetraethylbut-2-ene-1,4-diyldiphosphonate was synthesized following the previous report. 5 The (E)-tetraethylbut-2-ene-1,4-diyldiphosphonate (1.15 g, 3.5 mmol) was dissolved in 10 mL of dry tetrahydrofuran (THF). A 60 % dispersion of sodium hydride in mineral oil (0.42 g, 10.5 mmol) was added with 10 mL of dry THF, and the mixture was stirred at room temperature for 30 min. To this mixture a solution of 4-pentyloxybenzaldehyde (1.34 g, 7 mmol) in 20 mL of dry THF was added dropwise over 5 min. The mixture was stirred for 24 h at room temperature. Water was added to the mixture and vigorously stirred for 1 h. The crude product compound was purified by column chromatography on silica gel (dichlormethane/n-hexane = 1/4). Single crystals were grown from toluene by slow evaporation at room temperature in the dark.

2 Experimental details

The SHELXT program was used to determine the initial structure. SHELXL program was carried out to refine the structure. The H atoms were positioned ideally with isotropic thermal parameters.

3 Comment

(E,E,E)-1,6-diphenyl-1,3,5-hexatriene (DPH) shows good singlet fission property. 6 The function of DPH molecules is of interest, particularly when substituents are attached or benzene rings are replaced with other aromatic rings. These modifications can alter the relative orientation and distance between adjacent molecules in the solid state, potentially affecting the efficiency and yield of singlet fission. 7 , 8 So far, only limited DPH-based crystal structures were reported. To extend the family of singlet fission chromophores, the title compound was synthesized. The asymmetric unit contains half a DPH-OC5H11 molecule. In the triene segment of central DPH, carbon-carbon (C–C) single bonds and C–C double bonds alternate. These conjugated bonds have bond lengths within the range of 1.337(5) – 1.453(4) Å and bond angles within the range of 124.9(3) – 128.2(3)°. In addition, the torsion angles of C14–C13–C12–C9, C12–C13–C14–C141−x,1−y,2−z and C13–C14–C141−x,1−y,2−z –C131−x,1−y,2−z are of −173.3(2)°, 177.2(3)° and 180°. The carbon atoms in the part of the pentyloxy connected to the central benzene ring only have single bonds, with C–O bond lengths, C–C bond lengths and bond angles in the range of 1.374(3) – 1.426(3) Å, 1.494(3) – 1.513(4) Å and 107.3(3) – 115.1(3)°, respectively. All the C–C and C–O bond lengths are in the normal range and comparable to the reported DPH-based crystal structures. 9 , 10 , 11 , 12 Furthermore, from the perspective of the crystal structure, the molecule demonstrates good planarity. Further analysis indicates that the formation of the 3D crystal structure is dominated by pi-pi interactions between the benzene rings (Cg: C6–C7–C8–C9–C10–C11), centroid-centroid distance: 4.8404(15) – 4.9161(15) Å and C–H⋯pi interactions (C7–H7⋯Cg x,1/2−y,−1/2+z , H7⋯Cg x,1/2−y,−1/2+z distance: 3.00 Å, C7⋯Cg x,1/2−y,−1/2+z distance: 3.716(3) Å; C10–H10⋯Cg x,3/2−y,1/2+z , H10⋯Cg x,3/2−y,1/2+z distance: 2.92 Å, C10⋯Cg x,3/2−y,1/2+z distance: 3.643(3) Å).


Corresponding authors: Li Shen and QingGuo Meng, College of Chemistry and Chemical Engineering, Weifang University, Weifang, Shandong 261061, P.R. China, E-mail: (L. Shen), (Q. Meng)

  1. Research funding: Scientific Research Fund for Doctor of Weifang Univerisity (2020BS17).

  2. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  3. Conflict of interest: The authors declare no conflicts of interest regarding this article.

References

1. Bruker. SAINT and SADABS; Bruker AXS Inc.: Madison, Wisconsin, USA, 2000.Search in Google Scholar

2. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341. https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

3. Sheldrick, G. M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8. https://doi.org/10.1107/s2053229614024218.Search in Google Scholar PubMed PubMed Central

4. Sheldrick, G. M. SHELXT – Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. 2015, A71, 3–8. https://doi.org/10.1107/s2053273314026370.Search in Google Scholar PubMed PubMed Central

5. Kauffman, J. M.; Moyna, G. Diarylamino Groups as Photostable Auxofluors in 2-Benzoxazolylfluorene, 2,5-Diphenyloxazoles, 1,3,5-Hexatrienes, 1,4-Distyrylbenzenes, and 2,7-Distyrylfluorenes. J. Org. Chem. 2003, 68, 839–853. https://doi.org/10.1002/chin.200320028.Search in Google Scholar

6. Dillon, R. J.; Piland, G. B.; Bardeen, C. J. Different Rates of Singlet Fission in Monoclinic Versus Orthorhombic Crystal Forms of Diphenylhexatriene. J. Am. Chem. Soc. 2013, 135, 17278–17281. https://doi.org/10.1021/ja409266s.Search in Google Scholar PubMed

7. Sonoda, Y.; Katoh, R.; Tohnai, N.; Yago, T.; Wakasa, M. Singlet Fission in Solid 1,6-Diphenyl-1,3,5-Hexatriene Dicarboxylic Acids and Esters: Effects of Meta and Para Substitution. J. Phys. Chem. C 2022, 126, 8742–8751. https://doi.org/10.1021/acs.jpcc.2c01474.Search in Google Scholar

8. Fallon, K. J.; Sawhney, N.; Toolan, D. T. W.; Sharma, A.; Zeng, W.; Montanaro, S.; Leventis, A.; Dowland, S.; Millington, O.; Congrave, D.; Bond, A.; Friend, R.; Rao, A.; Bronstein, H. Quantitative Singlet Fission in Solution-Processable Dithienohexatrienes. J. Am. Chem. Soc. 2022, 144, 23516–23521. https://doi.org/10.1021/jacs.2c10254.Search in Google Scholar PubMed PubMed Central

9. Sonoda, Y.; Goto, M.; Norikane, Y.; Azum, R. Crystal Structures and Fluorescence Spectroscopic Properties of Cyano-Substituted Diphenylhexatrienes. Cryst. Growth Des. 2014, 14, 4781–4789. https://doi.org/10.1021/cg5009363.Search in Google Scholar

10. Sonoda, Y.; Goto, M.; Matsumoto, Y.; Shimoi, Y.; Sasaki, F.; Furube, A. Halogenated (F, Cl, Br, or I) Diphenylhexatrienes: Crystal Structures, Fluorescence Spectroscopic Properties, and Quantum Chemical Calculations. Cryst. Growth Des. 2016, 16, 4060–4071. https://doi.org/10.1021/acs.cgd.6b00590.Search in Google Scholar

11. Katoh, R.; Hashimoto, M.; Takahashi, A.; Sonoda, Y.; Yago, T.; Wakasa, M. Singlet Fission in Fluorinated Diphenylhexatrienes. J. Phys. Chem. C 2017, 121, 25666–25671. https://doi.org/10.1021/acs.jpcc.7b06905.Search in Google Scholar

12. Sonoda, Y.; Goto, M.; Tsuzuki, S.; Tamaoki, N. Fluorescence Spectroscopic Properties and Crystal Structure of a Series of Donor-Acceptor Diphenylpolyenes. J. Phys. Chem. A 2006, 110, 13379–13387. https://doi.org/10.1021/jp064937j.Search in Google Scholar PubMed

Received: 2024-08-25
Accepted: 2024-10-04
Published Online: 2024-10-16
Published in Print: 2024-12-17

© 2024 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of 3-nitrophenol-2,1,3-benzoselenadiazole (1/1), C12H9N3O3Se
  4. Crystal structure of diaqua-(hydroxido)-{μ-[2-(hydroxy)-5-[(4-nitrophenyl)diazenyl]benzoato]}-{2-hydroxy-5-[(4-nitrophenyl)diazenyl]benzoato}-(1,10-phenanthroline)-diterbium hydrate, C38H27.4N8O12.2Tb
  5. Crystal structure of poly[bis(μ3-3-fluoro-4-(1H-1,2,4-triazol-1-yl)benzoato-κ3 O:O′:N)cadmium(II)] – dimethylformamide (1/1), C21H17CdF2N7O5
  6. The crystal structure of 2-amino-N-(pyridin-2-yl)benzamide, C12H11N3O
  7. The crystal structure of 2,3-di(pyridin-2-yl)-2,3-dihydroquinazolin-4(1H)-one, C18H14N4O
  8. Crystal structure of 2-chloro-4-fluorobenzyl (R)-2-(6-methoxynaphthalen-2-yl)propanoate, C21H18ClFO3
  9. Crystal structure of [1-(4-carboxyphenyl)-4-oxo-1,4-dihydropyridazine-3-carboxylic acid]-(methylsulfinyl)methane, C15H16N2O6S
  10. The crystal structure of 2-ethyl-1,1-dimethyl-1H-benzo[e]indole, C16H17N
  11. The crystal structure of (Z)-5-amino-N -hydroxy-1H-pyrazole-4-carboximidamide, C4H7N5O
  12. The crystal structure of 2,2,5-trimethyl-3-(4-(4-(5-phenyl-4,5-dihydroisoxazol-3-yl)thiazol-2-yl)phenyl)imidazolidin-4-one, C24H24N4O2S
  13. The crystal structure of tetrakis(μ2-acetato-κ2 O:O′)-bis[(4′-phenyl-4,2′:6′,4″-terpyridine-κ1 N)dicopper(II)], C25H21CuN3O4
  14. Crystal structure of poly(3-thiophenecarboxylato-κ 3 O,O′:O′)-(methanol-κO)cadmium(II), C11H10O5S2Cd
  15. The crystal structure of dichloridobis[4′-(p-methoxylphenyl)-4,2′:6′,4″-terpyridine-κN] zinc(II), C44H34Cl2N6O2Zn
  16. The crystal structure of 1-(2-carboxyethyl)-1H-imidazole 3-oxide
  17. Crystal structure of 1,1′,1″-(nitrilotris(ethane-2,1-diyl))tris(3-(4-(((E)-pyridin-2-ylmethylene)amino)phenyl)urea), C45H47N13O4
  18. Crystal structure of a (E)-4-bromo-N-(4-(diethylamino)-2-hydroxybenzylidene) benzenaminium acetate ─ 4-bromoaniline (1/1)
  19. Crystal structure of 2,2′-(iminobis(methylene))bis(benzimidazolium) bis(p-toluenesulfonate), C30H31N5O6S2
  20. The crystal structure of alogliptinium meta-chlorobenzoate
  21. Crystal structure of 4-bromobenzyl 2-(6-methoxy-naphthalen-2-yl)propanoate, C21H19BrO3
  22. The hydrated double salt structure of (E)-4-(2-benzylidenehydrazine-1-carbonyl)pyridin-1-ium cation with 2-hydroxybenzoate and benzoate anions
  23. Crystal structure of (R)(R)-5-chloro-3-((S,1E,3E)-3,5-dimethyl-hepta-1,3-dien-1-yl)-7-methyl-6,8-dioxo-2,6,7,8-tetrahydroisoquinolin-7-yl acetate, C21H24ClNO4
  24. The crystal structure of bis(3-oxo-1,3-diphenylprop-1-en-1-olato-κ 2 O:O′)-bis(1,4-dioxane-κ 1 O)nickel(II), C38H38O8Ni
  25. Crystal structure of poly[aqua-(pyridine-3-carboxylato-κ1 N)(pyridine-3-carboxylato-κ2 O,O′) cadmium(II)] dihydrate, C12H14N2O7Cd
  26. The crystal structure of 4-(4-phenyl-5-(((1-(2,4,6-tribromophenyl)-1H-1,2,3-triazol-4-yl)methyl)thio)-4H-1,2,4-triazol-3-yl)pyridine, C22H14Br3N7S
  27. The crystal structure of N-benzylquinoline-2-carbothioamide, C17H14N2S
  28. Crystal structure of bis(3-isopropylphenyl)-4,4′-bipyridinium dichloride dihydrate, C28H30N2⋅2Cl⋅2H2O
  29. The crystal structure of ethyl 2-amino-4-(cyanophenyl)-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carboxylate, C19H18N2O4
  30. Crystal structure of (4R,10S)-6-hydroxy-7-isopropyl-4,10-dimethyl-1,2,3,5-hexahydro-6,10-epoxyazulen-9-one, C15H22O3
  31. The crystal structure of (E)-(2-(2-hydroxy-3-methoxybenzylidene)aminophenyl)arsonic acid, C14H14AsNO5
  32. The crystal structure of poly[(μ 2-2-aminoisophthalato-κ4O,O′:O″:O″′)-(N-methylpyrrolidone κ1O)-dioxido-uranium(VI)], C13H14N2O7U
  33. The crystal structure of the co-crystal isonicotinamide · terephthalic acid, C8H6O4·2(C6H6N2O)
  34. The crystal structure of (E)-1-phenyl-3-(p-tolylthio)but-2-en-1-one, C17H16OS
  35. The crystal structure of 4,5-bis((Z)-chloro(hydroxyimino)methyl)-1H-imidazol-3-ium chloride monohydrate
  36. The crystal structure of 1,2-bis(4-(dimethylamino)phenyl)ethane-1,2-dione. C18H20N2O2
  37. Crystal structure of 2-chloro-4-fluorobenzyl 2-acetoxybenzoate, C16H12ClFO4
  38. Crystal structure of methyl 1-phenyl-9H-pyrido[3,4-b]indole-3-carboxylate, C19H14N2O2
  39. Crystal structure of (3-(dimethoxymethyl)-5-methoxy-1H-indol-1-yl)(5-fluoro-2-iodophenyl)methanone, C19H17FINO4
  40. Crystal structure of tetrachlorido-bis(1-[(1H-triazole-1-yl)methyl]-1H-benzotriazole-κ2 N:N′)dicopper, C36H32Cu2N24Cl4
  41. Crystal structure of 2-(2,3-bis(4-methoxyphenyl)-1H-pyrrolo[2,3-b]quinoxalin-1-yl)anilin, C30H24N4O2
  42. Crystal structure of 5,7-dihydroxy-2-phenyl-4H-chromen-4-one–N,N-dimethylformamide(1/1), C18H17NO5
  43. The crystal structure of bis(μ 2-biphenyl-2,2′-dicarboxylato)-diaqua-bis(nitrato)-bis(2,2′:6′,2′′-terpyridine)dineodymium(III), C46H32I2N8Nd2O16
  44. Crystal structure of (Z)-4-amino-N -((4-chlorophenyl)(phenyl)methylene)benzohydrazide, C20H16ClN3O
  45. Crystal structure of (E)-6,8-dimethoxy-4-(4-morpholinobenzylidene)-3,4-dihydro-1-benzoxepin-5(2H)-one, C23H25NO5
  46. Crystal structure of (R)-2-((3-(3-aminopiperidin-1-yl)-6-methyl-5-oxo-1,2,4-triazin-4(5H)-yl) methyl)-4-fluorobenzonitrile benzoate monohydrate, C24H27FN6O4
  47. The crystal structure of [triaqua-(8-carboxymethoxy-quinoline-2-carboxylato-κ 3 N,O,O)copper(II)]monohydrate, C12H15NO9Cu
  48. Crystal structure of (((4-chlorophenyl)sulfonyl)glycinato-κ 2 N,O)bis(1,10-phenanthroline-κ 2 N,N′)cobalt(II) tetrahydrate, C32H30ClCoN5O8S
  49. Crystal structure of (((3-nitrophenyl)sulfonyl)-β-alaninato-κO)bis(2,2′-bipyridine-κ 2 N, N′)copper(II) 3-nitrobenzenesulfonate, C35H29CuN7O11S2
  50. Crystal structure of 3-phenoxybenzyl 2-(6-methoxynaphthalen-2-yl)propanoate, C27H24O4
  51. 6-(2′,3′-Dihydroxy-3′-methylbutyl)-7-methoxy-8-(3″-methylbut-2″-en-1″-yl)-2H-chromen-2-one, C20H26O5
  52. Crystal structure of bromido-(2,2′:6′,2″-terpyridine-4′-onato-κ3N)palladium(II) methanol solvate
  53. The crystal structure of ethyl 2-amino-(4-nitrophenyl)-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carboxylate, C20H22N2O6
  54. Crystal structure of (1E,3E,5E)-1,6-bis(4-(pentyloxy)phenyl)hexa-1,3,5-triene, C28H36O2
  55. The crystal structure of tris(2-bromo-4-methylphenyl)amine, C21H18Br3N
  56. The crystal structure of 3-(2,5-dimethylanilino)-1-(2,5-dimethylphenyl)-4-methyl-1H-pyrrole-2,5-dione, C21H22N2O2
  57. Crystal structure of dicarbonyl (μ2-indole-2-carboxylato κ2 O:O′)tris(triphenylarsine-κAs)dirhodium(I) acetone solvate, C68H56As3NO5Rh2
  58. The crystal structure of 4-chloro-2-formylphenyl 4-methylbenzenesulfonate, C14H11ClO4S
  59. Crystal structure of 4-iodobenzyl 2-(6-methoxynaphthalen-2-yl) propanoate, C21H19IO3
Downloaded on 17.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2024-0351/html
Scroll to top button