Startseite Crystal structure of bromido-(2,2′:6′,2″-terpyridine-4′-onato-κ3N)palladium(II) methanol solvate
Artikel Open Access

Crystal structure of bromido-(2,2′:6′,2″-terpyridine-4′-onato-κ3N)palladium(II) methanol solvate

  • Dong-E Wang ORCID logo EMAIL logo und Li-Feng Zhao
Veröffentlicht/Copyright: 16. Oktober 2024

Abstract

C16H14BrN3O2Pd, triclinic, P 1 (no. 2), a = 7.5162(5) Å, b = 12.5437(9) Å, c = 17.7525(12) Å, α = 73.149(2)°, β = 82.186(2)°, γ = 73.616(2)°, V = 1534.13(18) Å3, Z = 4, T = 100(2) K, R gt (F) = 0.0208, wR ref (F 2) = 0.0573.

CCDC no.: 2377415

A part of the molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Green block
Size: 0.15 × 0.10 × 0.06 mm
Wavelength: Ga Kα radiation (1.34139 Å)
μ: 8.72 mm−1
Diffractometer, scan mode: Bruker D8 venture, φ and ω
θ max, completeness: 72.5°, >99 %
N(hkl)measured, N(hkl)unique, R int: 48198, 9168, 0.032
Criterion for I obs, N(hkl)gt: I obs > 2 σ(I obs), 8,873
N(param)refined: 420
Programs: Bruker, 1 SHELX, 2 , 3 , 4 Diamond, 5 Olex2 6
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
Br1 0.24570 (2) 1.13961 (2) 0.87041 (2) 0.01838 (4)
C1 0.1297 (2) 1.04707 (13) 0.64470 (9) 0.0147 (2)
C2 0.0441 (2) 1.10615 (14) 0.57444 (9) 0.0187 (3)
H2 0.031369 1.065222 0.538906 0.022*
C3 −0.0229 (2) 1.22528 (14) 0.55636 (9) 0.0210 (3)
H3 −0.080644 1.266530 0.508296 0.025*
C4 −0.0041 (2) 1.28330 (14) 0.60954 (10) 0.0211 (3)
H4 −0.048393 1.364763 0.598231 0.025*
C5 0.0804 (2) 1.22031 (13) 0.67953 (9) 0.0176 (3)
H5 0.091899 1.259802 0.716178 0.021*
C6 0.2074 (2) 0.92083 (12) 0.66960 (8) 0.0141 (2)
C7 0.2008 (2) 0.84113 (13) 0.63102 (9) 0.0163 (3)
H7 0.145498 0.866451 0.581727 0.020*
C8 0.2770 (2) 0.71995 (13) 0.66485 (9) 0.0163 (3)
C9 0.3609 (2) 0.68971 (13) 0.73914 (9) 0.0167 (3)
H9 0.415415 0.611265 0.764201 0.020*
C10 0.3617 (2) 0.77500 (12) 0.77380 (9) 0.0146 (2)
C11 0.4348 (2) 0.75792 (12) 0.85067 (8) 0.0144 (2)
C12 0.5187 (2) 0.65065 (13) 0.89824 (9) 0.0182 (3)
H12 0.534672 0.582952 0.881507 0.022*
C13 0.5788 (2) 0.64349 (13) 0.97049 (9) 0.0191 (3)
H13 0.635167 0.570723 1.004032 0.023*
C14 0.5558 (2) 0.74373 (14) 0.99329 (9) 0.0187 (3)
H14 0.597218 0.740489 1.042333 0.022*
C15 0.4716 (2) 0.84844 (13) 0.94355 (9) 0.0169 (3)
H15 0.456392 0.916966 0.959148 0.020*
N1 0.14632 (17) 1.10498 (11) 0.69686 (7) 0.0147 (2)
N2 0.28703 (18) 0.88698 (11) 0.73915 (7) 0.0141 (2)
N3 0.41064 (17) 0.85628 (10) 0.87369 (7) 0.0136 (2)
O1 0.27118 (17) 0.64407 (10) 0.63150 (7) 0.0211 (2)
Pd1 0.27793 (2) 1.00028 (2) 0.79471 (2) 0.01240 (4)
Br2 0.69846 (2) −0.09628 (2) 0.61552 (2) 0.01836 (4)
C16 0.8032 (2) 0.01556 (12) 0.83456 (9) 0.0145 (2)
C17 0.8835 (2) −0.03799 (13) 0.90644 (9) 0.0177 (3)
H17 0.887367 0.006101 0.941319 0.021*
C18 0.9582 (2) −0.15653 (13) 0.92696 (9) 0.0196 (3)
H18 1.012809 −0.194337 0.976116 0.023*
C19 0.9522 (2) −0.21915 (13) 0.87490 (10) 0.0197 (3)
H19 1.004755 −0.300062 0.887568 0.024*
C20 0.8681 (2) −0.16203 (13) 0.80383 (9) 0.0177 (3)
H20 0.862355 −0.205116 0.768563 0.021*
C21 0.7211 (2) 0.14060 (12) 0.80652 (8) 0.0140 (2)
C22 0.7170 (2) 0.22341 (12) 0.84376 (9) 0.0159 (3)
H22 0.777002 0.202436 0.891645 0.019*
C23 0.6221 (2) 0.34179 (13) 0.81038 (9) 0.0168 (3)
C24 0.5415 (2) 0.36717 (12) 0.73609 (9) 0.0169 (3)
H24 0.477086 0.443808 0.711278 0.020*
C25 0.5583 (2) 0.27964 (12) 0.70117 (8) 0.0144 (2)
C26 0.4923 (2) 0.29155 (12) 0.62387 (9) 0.0147 (2)
C27 0.4026 (2) 0.39598 (13) 0.57487 (9) 0.0176 (3)
H27 0.380004 0.465450 0.590135 0.021*
C28 0.3464 (2) 0.39722 (14) 0.50301 (9) 0.0204 (3)
H28 0.283549 0.467623 0.468869 0.024*
C29 0.3828 (2) 0.29488 (14) 0.48165 (9) 0.0199 (3)
H29 0.345932 0.294580 0.432622 0.024*
C30 0.4736 (2) 0.19299 (14) 0.53257 (9) 0.0174 (3)
H30 0.498388 0.122992 0.517792 0.021*
N4 0.79476 (17) −0.04715 (11) 0.78396 (7) 0.0145 (2)
N5 0.64389 (18) 0.16958 (11) 0.73660 (7) 0.0141 (2)
N6 0.52755 (17) 0.19071 (11) 0.60248 (7) 0.0144 (2)
O2 0.60970 (18) 0.42002 (10) 0.84444 (7) 0.0221 (2)
Pd2 0.66287 (2) 0.05112 (2) 0.68439 (2) 0.01267 (4)
C31 −0.1127 (3) 0.5446 (2) 0.69386 (13) 0.0401 (5)
H31A −0.221004 0.516160 0.693016 0.060*
H31B −0.153793 0.618795 0.707019 0.060*
H31C −0.029826 0.488955 0.733546 0.060*
O3 −0.01756 (19) 0.55873 (12) 0.61951 (8) 0.0286 (3)
H3A 0.069984 0.588316 0.619104 0.043*
C32 0.9852 (3) 0.43833 (18) 0.91231 (13) 0.0355 (4)
H32A 1.063576 0.449045 0.947956 0.053*
H32B 0.931692 0.512805 0.875945 0.053*
H32C 1.060618 0.385311 0.882188 0.053*
O4 0.8411 (2) 0.39201 (11) 0.95671 (8) 0.0320 (3)
H4A 0.765095 0.391983 0.926121 0.048*

1 Source of materials

All the reagents and solvents were used as obtained without further purification. The ligand 2,6-bis(2-pyridyl)-4(1H)-pyridone (25.0 mg, 0.1 mmol) and palladium bromide (27.0 mg, 0.1 mmol) were thoroughly mixed and dissolved in 20.0 mL a mixed solution of methanol and acetonitrile (v:v = 1:1). The yellow solution was stirred vigorously at 333 K for 2 h and then filtered to remove some precipitate. The final resulting solution was kept at ambient condition. Yellow-brown block crystals were obtained seven days later at bottom of the vessel.

2 Experimental details

All the H atoms bound to carbon atoms were placed at their geometrically idealized positions and constrained to ride on their parent atoms with C–H = 0.95 Å (aromatic) and 0.98 Å (methyl), U iso(H) = 1.2U eq (aromatic) and 1.5U eq (methyl). These two H atoms bound with O3 and O4 oxygen atoms were initially found from the difference maps and then constrained to be at their ideal positions with O–H = 0.84 Å and the U iso(H) = 1.5Ueq(O).

3 Comment

In recent years, terpyridine-based palladium metal complexes have been widely designed and applied in many fields such as medicine, materials science, chemical sensors, and catalysis. 7 , 8 , 9 , 10 Along with the various structural features, 4′-substituted terpyridine derivatives have interesting photophysical and electrochemical properties. 11 In this work, we have used 2,6-bis(2-pyridyl)-4(1H)-pyridone (TPD) and palladium bromide as the raw material.

The titled compound was crystallized in the triclinic P 1 space group with the asymmetric unit consisting of each two neutral Pd(TPD)Br coordination units and two methanol molecules, thus giving a z′ = 2. These two independent coordination units have same configurations with the middle pyridine nitrogen atom trans to bromide atom and the ligand carbonyl group (O1 and O2), acting as acceptors, were hydrogen-bonded to solvent methanol molecules. For each Pd2+ ion, it adopted a distorted square-planar geometric configuration and was coordinated by a bromide atom and three nitrogen atoms of the terpyridine moiety of TPD which is similar to some Pd(II)-chloride analogs. 12 TPD acted as a tridentate ligand and it can be regarded as being deprotonated one proton to satisfy the whole molecular charge balance. The Pd1–Br1 and Pd2–Br2 bond lengths are 2.440(2) and 2.435(2) Å, which are in a range of common bond distances for similar Pd(II) complexes. 13 The Pd1–N2 (1.933(1) Å) and Pd2–N5 (1.931(1) Å) bond lengths are slightly shorter than those of the two outer nitrogen atoms (2.033(1) Å/2.030(1) Å; 2.037(1) Å/2.034(1) Å). Due to the deprotonation effect of the central pyridine ring, the two neighboring aromatic C–C bonds (1.440(2)–1.443(2) Å) are slightly longer than the other four (1.348(2)–1.382(2) Å), which should be mainly ascribed to the electron delocalization around C8 and C23 atoms.

In the crystal packing, the component ions are linked into a three-dimensional network by a combination of O–H⋯O, C–H⋯O, C–H⋯Br and π⋯π stacking interactions. In more details, these two methanol molecules are respectively anchored to the host Pd(II) coordination unit by means of O–H⋯O hydrogen bonds (d 01···03 = 2.733(2) Å, d 02···04 = 2.704(2) Å). The atomic distances d H14···Br1(1 − x, 2 − y, 2 − z) = 2.984(2) Å and d H29···Br2(1 − x, −y, 1 − z) = 2.968(2) Å are slightly shorter than the sum of their van der Waal’s radii, 3.05 Å, indicating weak intermolecular forces between the symmetrically related molecules and forming dimers between molecules of these same type. Further, these dimers are linked into two-dimensional layer structure parallel to the (-2-12) plane by C–H⋯O interactions (C12–H12⋯O2 and C27–H27⋯O1). Finally, those neighboring two-dimensional (-2-12) layer structures are linked into the whole three-dimensional structure via two weak ππ interactions. For instances, the centroid-to-centroid distances between symmetry-related pyridine rings (N1-related-pyridie/N6-related-pyridine (x, 1 + y, z)) and (N3-related-pyridine/N4-related-pyridine (1 + x, y − 1, z)) are 3.557(2) and 3.731(2) Å by a calculation using PLATON, 14 showing a moderate ππ interaction.


Corresponding author: Dong-E Wang, Xinjiang Key Laboratory of Novel Functional Materials Chemistry, College of Chemistry and Environmental Sciences, Kashi University, Kashi 844000, P.R. China, E-mail:

Acknowledgments

This work was financially supported by Kashi University.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: Kashi University.

  3. Conflict of interest: The authors declare no conflicts of interest regarding this article.

References

1. Bruker. APEX 3 and SAINT V8.40B; Bruker AXS Inc.: Madison, WI, USA. 2003.Suche in Google Scholar

2. Sheldrick, G. M. SHELXTL Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. 2015, A71, 3–8. https://doi.org/10.1107/S2053273314026370.Suche in Google Scholar PubMed PubMed Central

3. Sheldrick, G. M. Crystal Refinement with SHELX. Acta Crystallogr. 2015, C71, 3–8. https://doi.org/10.1107/S2053229614024218.Suche in Google Scholar PubMed PubMed Central

4. Sheldrick, G. M. A Short History of SHELX. Acta Crystallogr. 2008, A64, 112–122. https://doi.org/10.1107/S2053229614024218.Suche in Google Scholar

5. Brandenburg, K. DIAMOND; Crystal Impact GbR: Bonn Germany, 2006.Suche in Google Scholar

6. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, A42, 339–341. https://doi.org/10.1107/S0021889808042726.Suche in Google Scholar

7. Ramakrishnan, A.; Kuppan, M.; Agarwal, A.; Sivin, V. Advances in the Biological Studies of Metal–Terpyridine Complexes: An Overview from 2012 to 2022. Coord. Chem. Rev. 2023, 496, 215380. https://doi.org/10.1016/j.ccr.2023.215380.Suche in Google Scholar

8. Tian, X.; Zhang, Q.; Zhang, M.; Uvdal, K.; Wang, Q.; Chen, J.; Du, W.; Huang, B.; Wu, J.; Tian, Y. Probe for Simultaneous Membrane and Nucleus Labeling in Living Cells and In Vivo Bioimaging Using a Two-Photon Absorption Water-Soluble Zn(II) Terpyridine Complex with a Reduced π-conjugation System. Chem. Sci. 2016, 8, 142–149. https://doi.org/10.1039/c6sc02342h.Suche in Google Scholar PubMed PubMed Central

9. Manikandamathavan, V. M.; Thangaraj, M.; Weyhermuller, T.; Parameswari, R. P.; Punitha, V.; Narasimha Murthy, N.; Unni Nair, B. Novel Mononuclear Cu (II) Terpyridine Complexes: Impact of Fused Ring Thiophene and Thiazole Head Groups towards DNA/BSA Interaction, Cleavage and Antiproliferative Activity on HepG2 and Triple Negative CAL-51 Cell Line. Eur. J. Med. Chem. 2007, 135, 434–446. https://doi.org/10.1016/j.ejmech.2017.04.030.Suche in Google Scholar PubMed

10. Wang, K. Y.; Weber, M.; Chung, T. S. P.; Zheng, J.; Yan, W.; Wu, W.; Jiang, H. B2pin2 Mediated Palladium–Catalyzed Diacetoxylation of Aryl Alkenes with O2 as Oxygen Source and Sole Oxidant. Org. Lett. 2018, 20, 5090–5093. https://doi.org/10.1021/acs.orglett.8b01806.Suche in Google Scholar PubMed

11. Maskus, M.; Abruna, H. D. Synthesis and Characterization of Redox–Active Metal Complexes Sequentially Self-Assembled onto Gold Electrodes via a New Thiol–Terpyridine Ligand. Langmuir 1996, 12, 4455–4462. https://doi.org/10.1021/la960308x.Suche in Google Scholar

12. Ha, K. Redetermination of Crystal Structure of [bis(pyridin-2-ylmethyl) Amine-κ3 N, N′, N″]Chloridopalladium(II) Chloride Monohydrate. Z. Kristallogr. N. Cryst. Struct. 2023. 228, 467–469. https://doi.org/10.1515/ncrs-2023–0037.10.1515/ncrs-2023-0037Suche in Google Scholar

13. Broring, M.; Brandt, C. D. One Compound, Two Structures: Synthesis, Structures and Reactivity of a Novel (Tripyrrinato)Palladium(II) Trifluoracetate Complex TrpyPdOAcf. J. Chem. Soc., Dalton Trans. 2002, 1391–1395. https://doi.org/10.1039/B109510M.Suche in Google Scholar

14. Spek, A. L. Structure Validation in Chemical Crystallography. Acta Crystallogr. 2009, D65, 148–155. https://doi.org/10.1107/S090744490804362X.Suche in Google Scholar PubMed PubMed Central

Received: 2024-08-19
Accepted: 2024-10-04
Published Online: 2024-10-16
Published in Print: 2024-12-17

© 2024 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Artikel in diesem Heft

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of 3-nitrophenol-2,1,3-benzoselenadiazole (1/1), C12H9N3O3Se
  4. Crystal structure of diaqua-(hydroxido)-{μ-[2-(hydroxy)-5-[(4-nitrophenyl)diazenyl]benzoato]}-{2-hydroxy-5-[(4-nitrophenyl)diazenyl]benzoato}-(1,10-phenanthroline)-diterbium hydrate, C38H27.4N8O12.2Tb
  5. Crystal structure of poly[bis(μ3-3-fluoro-4-(1H-1,2,4-triazol-1-yl)benzoato-κ3 O:O′:N)cadmium(II)] – dimethylformamide (1/1), C21H17CdF2N7O5
  6. The crystal structure of 2-amino-N-(pyridin-2-yl)benzamide, C12H11N3O
  7. The crystal structure of 2,3-di(pyridin-2-yl)-2,3-dihydroquinazolin-4(1H)-one, C18H14N4O
  8. Crystal structure of 2-chloro-4-fluorobenzyl (R)-2-(6-methoxynaphthalen-2-yl)propanoate, C21H18ClFO3
  9. Crystal structure of [1-(4-carboxyphenyl)-4-oxo-1,4-dihydropyridazine-3-carboxylic acid]-(methylsulfinyl)methane, C15H16N2O6S
  10. The crystal structure of 2-ethyl-1,1-dimethyl-1H-benzo[e]indole, C16H17N
  11. The crystal structure of (Z)-5-amino-N -hydroxy-1H-pyrazole-4-carboximidamide, C4H7N5O
  12. The crystal structure of 2,2,5-trimethyl-3-(4-(4-(5-phenyl-4,5-dihydroisoxazol-3-yl)thiazol-2-yl)phenyl)imidazolidin-4-one, C24H24N4O2S
  13. The crystal structure of tetrakis(μ2-acetato-κ2 O:O′)-bis[(4′-phenyl-4,2′:6′,4″-terpyridine-κ1 N)dicopper(II)], C25H21CuN3O4
  14. Crystal structure of poly(3-thiophenecarboxylato-κ 3 O,O′:O′)-(methanol-κO)cadmium(II), C11H10O5S2Cd
  15. The crystal structure of dichloridobis[4′-(p-methoxylphenyl)-4,2′:6′,4″-terpyridine-κN] zinc(II), C44H34Cl2N6O2Zn
  16. The crystal structure of 1-(2-carboxyethyl)-1H-imidazole 3-oxide
  17. Crystal structure of 1,1′,1″-(nitrilotris(ethane-2,1-diyl))tris(3-(4-(((E)-pyridin-2-ylmethylene)amino)phenyl)urea), C45H47N13O4
  18. Crystal structure of a (E)-4-bromo-N-(4-(diethylamino)-2-hydroxybenzylidene) benzenaminium acetate ─ 4-bromoaniline (1/1)
  19. Crystal structure of 2,2′-(iminobis(methylene))bis(benzimidazolium) bis(p-toluenesulfonate), C30H31N5O6S2
  20. The crystal structure of alogliptinium meta-chlorobenzoate
  21. Crystal structure of 4-bromobenzyl 2-(6-methoxy-naphthalen-2-yl)propanoate, C21H19BrO3
  22. The hydrated double salt structure of (E)-4-(2-benzylidenehydrazine-1-carbonyl)pyridin-1-ium cation with 2-hydroxybenzoate and benzoate anions
  23. Crystal structure of (R)(R)-5-chloro-3-((S,1E,3E)-3,5-dimethyl-hepta-1,3-dien-1-yl)-7-methyl-6,8-dioxo-2,6,7,8-tetrahydroisoquinolin-7-yl acetate, C21H24ClNO4
  24. The crystal structure of bis(3-oxo-1,3-diphenylprop-1-en-1-olato-κ 2 O:O′)-bis(1,4-dioxane-κ 1 O)nickel(II), C38H38O8Ni
  25. Crystal structure of poly[aqua-(pyridine-3-carboxylato-κ1 N)(pyridine-3-carboxylato-κ2 O,O′) cadmium(II)] dihydrate, C12H14N2O7Cd
  26. The crystal structure of 4-(4-phenyl-5-(((1-(2,4,6-tribromophenyl)-1H-1,2,3-triazol-4-yl)methyl)thio)-4H-1,2,4-triazol-3-yl)pyridine, C22H14Br3N7S
  27. The crystal structure of N-benzylquinoline-2-carbothioamide, C17H14N2S
  28. Crystal structure of bis(3-isopropylphenyl)-4,4′-bipyridinium dichloride dihydrate, C28H30N2⋅2Cl⋅2H2O
  29. The crystal structure of ethyl 2-amino-4-(cyanophenyl)-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carboxylate, C19H18N2O4
  30. Crystal structure of (4R,10S)-6-hydroxy-7-isopropyl-4,10-dimethyl-1,2,3,5-hexahydro-6,10-epoxyazulen-9-one, C15H22O3
  31. The crystal structure of (E)-(2-(2-hydroxy-3-methoxybenzylidene)aminophenyl)arsonic acid, C14H14AsNO5
  32. The crystal structure of poly[(μ 2-2-aminoisophthalato-κ4O,O′:O″:O″′)-(N-methylpyrrolidone κ1O)-dioxido-uranium(VI)], C13H14N2O7U
  33. The crystal structure of the co-crystal isonicotinamide · terephthalic acid, C8H6O4·2(C6H6N2O)
  34. The crystal structure of (E)-1-phenyl-3-(p-tolylthio)but-2-en-1-one, C17H16OS
  35. The crystal structure of 4,5-bis((Z)-chloro(hydroxyimino)methyl)-1H-imidazol-3-ium chloride monohydrate
  36. The crystal structure of 1,2-bis(4-(dimethylamino)phenyl)ethane-1,2-dione. C18H20N2O2
  37. Crystal structure of 2-chloro-4-fluorobenzyl 2-acetoxybenzoate, C16H12ClFO4
  38. Crystal structure of methyl 1-phenyl-9H-pyrido[3,4-b]indole-3-carboxylate, C19H14N2O2
  39. Crystal structure of (3-(dimethoxymethyl)-5-methoxy-1H-indol-1-yl)(5-fluoro-2-iodophenyl)methanone, C19H17FINO4
  40. Crystal structure of tetrachlorido-bis(1-[(1H-triazole-1-yl)methyl]-1H-benzotriazole-κ2 N:N′)dicopper, C36H32Cu2N24Cl4
  41. Crystal structure of 2-(2,3-bis(4-methoxyphenyl)-1H-pyrrolo[2,3-b]quinoxalin-1-yl)anilin, C30H24N4O2
  42. Crystal structure of 5,7-dihydroxy-2-phenyl-4H-chromen-4-one–N,N-dimethylformamide(1/1), C18H17NO5
  43. The crystal structure of bis(μ 2-biphenyl-2,2′-dicarboxylato)-diaqua-bis(nitrato)-bis(2,2′:6′,2′′-terpyridine)dineodymium(III), C46H32I2N8Nd2O16
  44. Crystal structure of (Z)-4-amino-N -((4-chlorophenyl)(phenyl)methylene)benzohydrazide, C20H16ClN3O
  45. Crystal structure of (E)-6,8-dimethoxy-4-(4-morpholinobenzylidene)-3,4-dihydro-1-benzoxepin-5(2H)-one, C23H25NO5
  46. Crystal structure of (R)-2-((3-(3-aminopiperidin-1-yl)-6-methyl-5-oxo-1,2,4-triazin-4(5H)-yl) methyl)-4-fluorobenzonitrile benzoate monohydrate, C24H27FN6O4
  47. The crystal structure of [triaqua-(8-carboxymethoxy-quinoline-2-carboxylato-κ 3 N,O,O)copper(II)]monohydrate, C12H15NO9Cu
  48. Crystal structure of (((4-chlorophenyl)sulfonyl)glycinato-κ 2 N,O)bis(1,10-phenanthroline-κ 2 N,N′)cobalt(II) tetrahydrate, C32H30ClCoN5O8S
  49. Crystal structure of (((3-nitrophenyl)sulfonyl)-β-alaninato-κO)bis(2,2′-bipyridine-κ 2 N, N′)copper(II) 3-nitrobenzenesulfonate, C35H29CuN7O11S2
  50. Crystal structure of 3-phenoxybenzyl 2-(6-methoxynaphthalen-2-yl)propanoate, C27H24O4
  51. 6-(2′,3′-Dihydroxy-3′-methylbutyl)-7-methoxy-8-(3″-methylbut-2″-en-1″-yl)-2H-chromen-2-one, C20H26O5
  52. Crystal structure of bromido-(2,2′:6′,2″-terpyridine-4′-onato-κ3N)palladium(II) methanol solvate
  53. The crystal structure of ethyl 2-amino-(4-nitrophenyl)-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carboxylate, C20H22N2O6
  54. Crystal structure of (1E,3E,5E)-1,6-bis(4-(pentyloxy)phenyl)hexa-1,3,5-triene, C28H36O2
  55. The crystal structure of tris(2-bromo-4-methylphenyl)amine, C21H18Br3N
  56. The crystal structure of 3-(2,5-dimethylanilino)-1-(2,5-dimethylphenyl)-4-methyl-1H-pyrrole-2,5-dione, C21H22N2O2
  57. Crystal structure of dicarbonyl (μ2-indole-2-carboxylato κ2 O:O′)tris(triphenylarsine-κAs)dirhodium(I) acetone solvate, C68H56As3NO5Rh2
  58. The crystal structure of 4-chloro-2-formylphenyl 4-methylbenzenesulfonate, C14H11ClO4S
  59. Crystal structure of 4-iodobenzyl 2-(6-methoxynaphthalen-2-yl) propanoate, C21H19IO3
Heruntergeladen am 6.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2024-0343/html
Button zum nach oben scrollen