Startseite The crystal structure of tetrakis(μ2-acetato-κ2 O:O′)-bis[(4′-phenyl-4,2′:6′,4″-terpyridine-κ1 N)dicopper(II)], C25H21CuN3O4
Artikel Open Access

The crystal structure of tetrakis(μ2-acetato-κ2 O:O′)-bis[(4′-phenyl-4,2′:6′,4″-terpyridine-κ1 N)dicopper(II)], C25H21CuN3O4

  • Hong-Xin Duan , Rou Li , Zhi-Wei Zhou , Zhen Li und Wei-Wei Fu ORCID logo EMAIL logo
Veröffentlicht/Copyright: 4. September 2024

Abstract

C25H21CuN3O4, triclinic, P 1 (no. 2), a = 7.935(4) Å, b = 10.849(6) Å, c = 13.782(7) Å, α = 77.946(9)°, β = 78.917(9)°, γ = 82.223(10)°, V = 1133.0(10) Å3, Z = 2, Rgt (F) = 0.0703, wRref (F 2) = 0.1781, T = 293 K.

CCDC no.: 2361455

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Green block
Size: 0.23 × 0.21 × 0.18 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 1.00 mm−1
Diffractometer, scan mode: Bruker APEX-II, φ and ω
θ max, completeness: 25.0°, 99 %
N(hkl)measured, N(hkl)unique, R int: 5,790, 3,968, 0.130
Criterion for I obs, N(hkl)gt: I obs > 2σ(I obs), 2,513
N(param)refined: 300
Programs: Bruker 1 , SHELX 2 , 3 , Olex2 4
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
Cu1 0.45002 (8) 0.09534 (6) 0.93013 (4) 0.0384 (3)
O1 0.2215 (5) 0.0786 (4) 1.0157 (3) 0.0540 (10)
O2 0.3039 (5) −0.0860 (4) 1.1312 (3) 0.0493 (10)
O3 0.4236 (5) −0.0512 (4) 0.8677 (3) 0.0499 (10)
O4 0.5022 (5) −0.2107 (3) 0.9866 (3) 0.0535 (11)
N1 0.3694 (6) 0.2412 (4) 0.8072 (3) 0.0381 (10)
N2 0.2679 (6) 0.6262 (4) 0.5403 (3) 0.0389 (11)
N3 0.2472 (8) 1.1038 (5) 0.4737 (4) 0.0680 (16)
C1 0.3481 (8) 0.2027 (5) 0.7250 (4) 0.0497 (15)
H1 0.357549 0.116000 0.726520 0.060*
C2 0.3127 (8) 0.2835 (5) 0.6372 (4) 0.0461 (14)
H2 0.296185 0.250617 0.582968 0.055*
C3 0.3024 (6) 0.4123 (5) 0.6312 (3) 0.0329 (12)
C4 0.3265 (8) 0.4530 (5) 0.7172 (4) 0.0521 (16)
H4 0.321522 0.539086 0.717601 0.063*
C5 0.3578 (8) 0.3645 (6) 0.8015 (4) 0.0505 (15)
H5 0.371470 0.394152 0.857843 0.061*
C6 0.2686 (6) 0.5034 (5) 0.5394 (4) 0.0339 (12)
C7 0.2382 (7) 0.4607 (5) 0.4544 (4) 0.0380 (12)
H7 0.240547 0.374407 0.455938 0.046*
C8 0.2051 (7) 0.5468 (5) 0.3694 (4) 0.0377 (12)
C9 0.2038 (7) 0.6746 (5) 0.3720 (4) 0.0404 (13)
H9 0.181602 0.735553 0.316335 0.048*
C10 0.2357 (7) 0.7122 (5) 0.4574 (4) 0.0391 (13)
C11 0.2407 (7) 0.8464 (5) 0.4618 (4) 0.0408 (13)
C12 0.2672 (8) 0.9415 (5) 0.3764 (4) 0.0502 (15)
H12 0.283200 0.920885 0.312887 0.060*
C13 0.2701 (9) 1.0646 (6) 0.3848 (5) 0.0593 (17)
H13 0.288911 1.124716 0.325915 0.071*
C14 0.2201 (11) 1.0120 (7) 0.5545 (5) 0.080 (2)
H14 0.201302 1.035577 0.617153 0.096*
C15 0.2173 (9) 0.8867 (6) 0.5536 (4) 0.066 (2)
H15 0.199966 0.828642 0.613784 0.079*
C16 0.1719 (7) 0.5038 (5) 0.2784 (4) 0.0408 (13)
C17 0.1118 (8) 0.3870 (6) 0.2870 (4) 0.0501 (15)
H17 0.088916 0.335683 0.350117 0.060*
C18 0.0855 (9) 0.3456 (6) 0.2030 (5) 0.0619 (17)
H18 0.044887 0.267074 0.210389 0.074*
C19 0.1187 (11) 0.4194 (8) 0.1093 (5) 0.077 (2)
H19 0.102081 0.391109 0.052949 0.093*
C20 0.1767 (11) 0.5353 (8) 0.0994 (5) 0.090 (3)
H20 0.198061 0.585944 0.035821 0.108*
C21 0.2044 (10) 0.5792 (6) 0.1833 (5) 0.0680 (19)
H21 0.244292 0.658048 0.175426 0.082*
C22 0.1902 (7) −0.0036 (6) 1.0939 (4) 0.0465 (15)
C23 0.0074 (7) −0.0074 (7) 1.1497 (5) 0.071 (2)
H23A −0.030376 −0.088841 1.153035 0.107*
H23B −0.066469 0.057283 1.115021 0.107*
H23C 0.002678 0.006821 1.216679 0.107*
C24 0.4499 (7) −0.1682 (5) 0.9078 (4) 0.0404 (13)
C25 0.4164 (9) −0.2601 (6) 0.8440 (5) 0.0607 (17)
H25A 0.512991 −0.267281 0.790805 0.091*
H25B 0.314072 −0.228540 0.815508 0.091*
H25C 0.401309 −0.341880 0.885714 0.091*

1 Source of materials

The reagents were purchased from standard commercial sources and used without further purification. A mixture of CuCl2⋅2H2O (0.017 g, 0.10 mmol), 4264-phtpy (0.031 g, 0.10 mmol) was dispersed in mixed CH3COOH (2 mL) and C2H5OH (8 mL) solutions and ammonia (25 %) were added until a pale blue solution were obtained. The resultant solution was allowed slowly to evaporate under room temperature for two weeks to give green crystals which were isolated by filtration and washed by deionized water and dried in air.

2 Experimental details

The structure was solved by Direct Methods with the SHELXT-2018 program. All H-atoms from C atoms were positioned with idealized geometry and refined isotropically (U iso(H) = 1.2U eq(C)) using a riding model with C–H = 0.93 and 0.97 Å.

3 Comment

In the past decades, there are a growing interest in the design of organic ligands and syntheses of metal-organic frameworks for their diverse structures and wide applications. 5 , 6 , 7 , 8 Terpyridine possesses 48 isomers, among which the bis-chelating 2,2′:6′,2″-terpyridine is the best known and the adoption of 3,2′:6′,3″-terpyridine and 4,2′:6′,4″-terpyridine in construction of coordination complexes have become more widespread over the last twenty years. 9 , 10 , 11 , 12 , 13 Just as the design and syntheses of organic ligands in some cases are time-consuming and laborious, usually with strict synthesis conditions, low yields, and high costs, an alternative strategy is to introduce metalloligands 14 which are preassembled by common organic ligands and metal ions. The metalloligand still possess unsaturated coordination groups, which are important to direct the assembly of large molecular arrays and one-, two- and three-dimensional coordination polymers and networks. 15 , 16 A Cu(II) metalloligand was obtained with 4′-phenyl-4,2′:6′,4″-terpyridine(phtpy) and its structure has been determined.

The asymmetric unit contains one Cu(II) ion, one phtpy ligand, and two acetate anions. As shown in the figure, each Cu(II) ion is five coordinated by one N atom from phtpy and four O atoms from four acetates, comprising a Cu2(CH3CO2)4 paddle-wheel core axially bound by two terminal phtpy ligands. In this complex, the Cu–O distances ranged from 1.971(4) to 2.010(4) Å, the Cu–N distance is 2.193(4) Å and the distance between two nearby Cu(II) ions is 2.6640(12) Å showing weak interaction. All these bond lengths are similar with other paddle-wheel Cu(II) complexes. 17 , 18

In the crystal, three C atoms, C1, C2 and C12 acted as hydrogen donors, contributing hydrogen atoms H1, H2 and H12 to O3, N3 and O2 to form non-classic hydrogen bonds, C1–H1⋯O3, with d(C1⋯O3) = 3.092(7) Å, ∠(C1–H1⋯O3) = 126°, C2–H2⋯N3_1545, with d(C2⋯N3_1545) = 3.422(8) Å, ∠(C2–H2⋯N3_1545) = 163°, C12–H12⋯O2_1564, with d(C12⋯O2_1564) = 3.408(7) Å, ∠(C12–H12⋯O2_1564) = 168°. In addition, there are three kinds of offset face to face ππ stacking interactions with center to center distances of 3.789(5) Å, 3.870(4) Å, 3.871(4) Å, between pyridine rings. The discrete complexes were further extended into 3D network mainly by the hydrogen bonding interaction and the ππ stacking interactions.


Corresponding author: Wei-Wei Fu, Key Laboratory of Functional Metal-organic Compounds of Hunan Province, Key Laboratory of Organometallic New Materials, Department of Hunan Province, Hunan Provincial Engineering Research Center for Monitoring and Treatment of Heavy Metals Pollution in the Upper Reaches of Xiangjiang River, College of Chemistry and Materials Science, Nanyue College, Hengyang Normal University, Hengyang, Hunan 421008, P.R. China, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

  3. Research funding: This work was supported by the 2023 Innovation and Entrepreneurship Training Program for Nanyue College of Hengyang Normal University students (No. NYD202319), and the Scientific Research Project of Hengyang Normal University (2023HSKFJJ013).

References

1. Bruker. SAINT APEX2 and SADABS; Bruker AXS inc.: Madison, Wisconsin, USA, 2012.Suche in Google Scholar

2. Sheldrick, G. SHELXT - Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Suche in Google Scholar PubMed PubMed Central

3. Sheldrick, G. Crystal Structure Refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Suche in Google Scholar

4. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Suche in Google Scholar

5. Ahlén, M.; Cheung, O.; Xu, C. Low-Concentration CO2 Capture Using Metal-Organic Frameworks-Current Status and Future Perspectives. Dalton Trans. 2023, 52, 1841–1856; https://doi.org/10.1039/d2dt04088c.Suche in Google Scholar PubMed

6. Ding, M. L.; Flaig, R. W.; Jiang, H. L.; Yaghi, O. M. Carbon Capture and Conversion Using Metal-Organic Frameworks and MOF-Based Materials. Chem. Soc. Rev. 2019, 48, 2783–2828; https://doi.org/10.1039/c8cs00829a.Suche in Google Scholar PubMed

7. Yi, F. Y.; Chen, D.; Wu, M. K.; Han, L.; Jiang, H. L. Chemical Sensors Based on Metal–Organic Frameworks. ChemPlusChem 2016, 81, 675–690; https://doi.org/10.1002/cplu.201600137.Suche in Google Scholar PubMed

8. Wang, J. X.; Yin, J.; Shekhah, O.; Bakr, O. M.; Eddaoudi, M.; Mohammed, O. F. Energy Transfer in Metal–Organic Frameworks for Fluorescence Sensing. ACS Appl. Mater. Interfaces 2022, 14, 9970–9986; https://doi.org/10.1021/acsami.1c24759.Suche in Google Scholar PubMed PubMed Central

9. Anito, D. A.; Wang, T. X.; Liang, H. P.; Ding, X. S.; Han, B. H. Bis(terpyridine) Ru(III) Complex Functionalized Porous Polycarbazole for Visible-Light Driven Chemical Reactions. Polym. Chem. 2021, 12, 4557–4564; https://doi.org/10.1039/d1py00527h.Suche in Google Scholar

10. Chen, X. L.; Shang, L.; Huang, M. P.; Tong, Y. Q.; Zhang, J. N.; Xue, W. N. Two Complexes Based on Terpyridine/Benzotricarboxylic Acid Ligands: Synthesis, Structures and Properties. Chin. J. Inorg. Chem. 2021, 37, 340–350.Suche in Google Scholar

11. Manfroni, G.; Prescimone, A.; Constable, E. C.; Housecroft, C. E. Stars and Stripes: Hexatopic Tris(3,2′:6′,3″-terpyridine) Ligands that Unexpectedly Form One-Dimensional Coordination Polymers. CrystEngComm 2022, 24, 491–503, https://doi.org/10.1039/d1ce01531a.Suche in Google Scholar PubMed PubMed Central

12. Zhang, J. F.; Xu, B.; Luo, F. M.; Tang, G. D.; Zhang, C., Two 4′-(4-carboxyphenyl)-3,2′:6′,3″-terpyridine-based Luminescent Zn(II) Coordination Polymers for Detection of 2,4,6-trinitrophenol. Polyhedron 2019, 169, 51–57, https://doi.org/10.1016/j.poly.2019.04.049.Suche in Google Scholar

13. Zhu, S.; Dai, X. J.; Wang, X. G.; Cao, Y. Y.; Zhao, X. J.; Yang, E. C. Two Bulky Conjugated 4′-(4–Hydroxyphenyl)-4,2′:6′,4″-terpyridine-based Layered Complexes: Synthesis, Structure, and Photocatalytic Hydrogen Evolution Activity. Z. Anorg. Allg. Chem. 2019, 645, 516–522, https://doi.org/10.1002/zaac.201800455.Suche in Google Scholar

14. Zhang, S. R.; Du, D. Y.; Qin, J. S.; Li, S. L.; He, W. W.; Lan, Y. Q.; Su, Z. M. 2D Cd(II)-Lanthanide(III) Heterometallic–Organic Frameworks Based on Metalloligands for Tunable Luminescence and Highly Selective, Sensitive, and Recyclable Detection of Nitrobenzene. Inorg. Chem. 2014, 53, 8105–8113; https://doi.org/10.1021/ic5011083.Suche in Google Scholar PubMed

15. Sun, D.; Zhang, L.; Yan, Z.; Sun, D. Stepwise Construction of a Ag9I–Cu4II Heterometallic Cluster Incorporating Two Unusual Vertex–Shared Trigonal–Bipyramidal Silver Polyhedra. Chem.–Asian J. 2012, 7, 1558–1561; https://doi.org/10.1002/asia.201200181.Suche in Google Scholar PubMed

16. Kong, X.; Hu, K.; Mei, L.; Wu, Q.; Huang, Z.; Liu, K.; Chai, Z.; Nie, C.; Shi, W. Construction of Hybrid Bimetallic Uranyl Compounds Based on a Preassembled Terpyridine Metalloligand. Chem. Eur. J. 2021, 27, 2124–2130; https://doi.org/10.1002/chem.202004344.Suche in Google Scholar PubMed

17. Zhang, J.; Li, F.; Zhao, Y. Y.; Zhao, X. H.; Li, T. H.; Li, X. Synthesis, Crystal Structures and Electrocatalytic Properties of Ni(II), Cu(II) Complexes with Pymetrozine Ligands. Chin. J. Inorg. Chem. 2014, 30, 2394–2400.Suche in Google Scholar

18. Zhu, H. B. Yang, W. N. Tetra-μ-acetato-κ8O:O′-bis{[2-methylsulfanyl-4-(pyridin-4-yl-κN)pyrimidine]Copper(II)}(Cu–Cu). Acta Crystallogr. 2011, E67, m1168.10.1107/S1600536811029837Suche in Google Scholar PubMed PubMed Central

Received: 2024-06-26
Accepted: 2024-08-21
Published Online: 2024-09-04
Published in Print: 2024-12-17

© 2024 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Artikel in diesem Heft

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of 3-nitrophenol-2,1,3-benzoselenadiazole (1/1), C12H9N3O3Se
  4. Crystal structure of diaqua-(hydroxido)-{μ-[2-(hydroxy)-5-[(4-nitrophenyl)diazenyl]benzoato]}-{2-hydroxy-5-[(4-nitrophenyl)diazenyl]benzoato}-(1,10-phenanthroline)-diterbium hydrate, C38H27.4N8O12.2Tb
  5. Crystal structure of poly[bis(μ3-3-fluoro-4-(1H-1,2,4-triazol-1-yl)benzoato-κ3 O:O′:N)cadmium(II)] – dimethylformamide (1/1), C21H17CdF2N7O5
  6. The crystal structure of 2-amino-N-(pyridin-2-yl)benzamide, C12H11N3O
  7. The crystal structure of 2,3-di(pyridin-2-yl)-2,3-dihydroquinazolin-4(1H)-one, C18H14N4O
  8. Crystal structure of 2-chloro-4-fluorobenzyl (R)-2-(6-methoxynaphthalen-2-yl)propanoate, C21H18ClFO3
  9. Crystal structure of [1-(4-carboxyphenyl)-4-oxo-1,4-dihydropyridazine-3-carboxylic acid]-(methylsulfinyl)methane, C15H16N2O6S
  10. The crystal structure of 2-ethyl-1,1-dimethyl-1H-benzo[e]indole, C16H17N
  11. The crystal structure of (Z)-5-amino-N -hydroxy-1H-pyrazole-4-carboximidamide, C4H7N5O
  12. The crystal structure of 2,2,5-trimethyl-3-(4-(4-(5-phenyl-4,5-dihydroisoxazol-3-yl)thiazol-2-yl)phenyl)imidazolidin-4-one, C24H24N4O2S
  13. The crystal structure of tetrakis(μ2-acetato-κ2 O:O′)-bis[(4′-phenyl-4,2′:6′,4″-terpyridine-κ1 N)dicopper(II)], C25H21CuN3O4
  14. Crystal structure of poly(3-thiophenecarboxylato-κ 3 O,O′:O′)-(methanol-κO)cadmium(II), C11H10O5S2Cd
  15. The crystal structure of dichloridobis[4′-(p-methoxylphenyl)-4,2′:6′,4″-terpyridine-κN] zinc(II), C44H34Cl2N6O2Zn
  16. The crystal structure of 1-(2-carboxyethyl)-1H-imidazole 3-oxide
  17. Crystal structure of 1,1′,1″-(nitrilotris(ethane-2,1-diyl))tris(3-(4-(((E)-pyridin-2-ylmethylene)amino)phenyl)urea), C45H47N13O4
  18. Crystal structure of a (E)-4-bromo-N-(4-(diethylamino)-2-hydroxybenzylidene) benzenaminium acetate ─ 4-bromoaniline (1/1)
  19. Crystal structure of 2,2′-(iminobis(methylene))bis(benzimidazolium) bis(p-toluenesulfonate), C30H31N5O6S2
  20. The crystal structure of alogliptinium meta-chlorobenzoate
  21. Crystal structure of 4-bromobenzyl 2-(6-methoxy-naphthalen-2-yl)propanoate, C21H19BrO3
  22. The hydrated double salt structure of (E)-4-(2-benzylidenehydrazine-1-carbonyl)pyridin-1-ium cation with 2-hydroxybenzoate and benzoate anions
  23. Crystal structure of (R)(R)-5-chloro-3-((S,1E,3E)-3,5-dimethyl-hepta-1,3-dien-1-yl)-7-methyl-6,8-dioxo-2,6,7,8-tetrahydroisoquinolin-7-yl acetate, C21H24ClNO4
  24. The crystal structure of bis(3-oxo-1,3-diphenylprop-1-en-1-olato-κ 2 O:O′)-bis(1,4-dioxane-κ 1 O)nickel(II), C38H38O8Ni
  25. Crystal structure of poly[aqua-(pyridine-3-carboxylato-κ1 N)(pyridine-3-carboxylato-κ2 O,O′) cadmium(II)] dihydrate, C12H14N2O7Cd
  26. The crystal structure of 4-(4-phenyl-5-(((1-(2,4,6-tribromophenyl)-1H-1,2,3-triazol-4-yl)methyl)thio)-4H-1,2,4-triazol-3-yl)pyridine, C22H14Br3N7S
  27. The crystal structure of N-benzylquinoline-2-carbothioamide, C17H14N2S
  28. Crystal structure of bis(3-isopropylphenyl)-4,4′-bipyridinium dichloride dihydrate, C28H30N2⋅2Cl⋅2H2O
  29. The crystal structure of ethyl 2-amino-4-(cyanophenyl)-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carboxylate, C19H18N2O4
  30. Crystal structure of (4R,10S)-6-hydroxy-7-isopropyl-4,10-dimethyl-1,2,3,5-hexahydro-6,10-epoxyazulen-9-one, C15H22O3
  31. The crystal structure of (E)-(2-(2-hydroxy-3-methoxybenzylidene)aminophenyl)arsonic acid, C14H14AsNO5
  32. The crystal structure of poly[(μ 2-2-aminoisophthalato-κ4O,O′:O″:O″′)-(N-methylpyrrolidone κ1O)-dioxido-uranium(VI)], C13H14N2O7U
  33. The crystal structure of the co-crystal isonicotinamide · terephthalic acid, C8H6O4·2(C6H6N2O)
  34. The crystal structure of (E)-1-phenyl-3-(p-tolylthio)but-2-en-1-one, C17H16OS
  35. The crystal structure of 4,5-bis((Z)-chloro(hydroxyimino)methyl)-1H-imidazol-3-ium chloride monohydrate
  36. The crystal structure of 1,2-bis(4-(dimethylamino)phenyl)ethane-1,2-dione. C18H20N2O2
  37. Crystal structure of 2-chloro-4-fluorobenzyl 2-acetoxybenzoate, C16H12ClFO4
  38. Crystal structure of methyl 1-phenyl-9H-pyrido[3,4-b]indole-3-carboxylate, C19H14N2O2
  39. Crystal structure of (3-(dimethoxymethyl)-5-methoxy-1H-indol-1-yl)(5-fluoro-2-iodophenyl)methanone, C19H17FINO4
  40. Crystal structure of tetrachlorido-bis(1-[(1H-triazole-1-yl)methyl]-1H-benzotriazole-κ2 N:N′)dicopper, C36H32Cu2N24Cl4
  41. Crystal structure of 2-(2,3-bis(4-methoxyphenyl)-1H-pyrrolo[2,3-b]quinoxalin-1-yl)anilin, C30H24N4O2
  42. Crystal structure of 5,7-dihydroxy-2-phenyl-4H-chromen-4-one–N,N-dimethylformamide(1/1), C18H17NO5
  43. The crystal structure of bis(μ 2-biphenyl-2,2′-dicarboxylato)-diaqua-bis(nitrato)-bis(2,2′:6′,2′′-terpyridine)dineodymium(III), C46H32I2N8Nd2O16
  44. Crystal structure of (Z)-4-amino-N -((4-chlorophenyl)(phenyl)methylene)benzohydrazide, C20H16ClN3O
  45. Crystal structure of (E)-6,8-dimethoxy-4-(4-morpholinobenzylidene)-3,4-dihydro-1-benzoxepin-5(2H)-one, C23H25NO5
  46. Crystal structure of (R)-2-((3-(3-aminopiperidin-1-yl)-6-methyl-5-oxo-1,2,4-triazin-4(5H)-yl) methyl)-4-fluorobenzonitrile benzoate monohydrate, C24H27FN6O4
  47. The crystal structure of [triaqua-(8-carboxymethoxy-quinoline-2-carboxylato-κ 3 N,O,O)copper(II)]monohydrate, C12H15NO9Cu
  48. Crystal structure of (((4-chlorophenyl)sulfonyl)glycinato-κ 2 N,O)bis(1,10-phenanthroline-κ 2 N,N′)cobalt(II) tetrahydrate, C32H30ClCoN5O8S
  49. Crystal structure of (((3-nitrophenyl)sulfonyl)-β-alaninato-κO)bis(2,2′-bipyridine-κ 2 N, N′)copper(II) 3-nitrobenzenesulfonate, C35H29CuN7O11S2
  50. Crystal structure of 3-phenoxybenzyl 2-(6-methoxynaphthalen-2-yl)propanoate, C27H24O4
  51. 6-(2′,3′-Dihydroxy-3′-methylbutyl)-7-methoxy-8-(3″-methylbut-2″-en-1″-yl)-2H-chromen-2-one, C20H26O5
  52. Crystal structure of bromido-(2,2′:6′,2″-terpyridine-4′-onato-κ3N)palladium(II) methanol solvate
  53. The crystal structure of ethyl 2-amino-(4-nitrophenyl)-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carboxylate, C20H22N2O6
  54. Crystal structure of (1E,3E,5E)-1,6-bis(4-(pentyloxy)phenyl)hexa-1,3,5-triene, C28H36O2
  55. The crystal structure of tris(2-bromo-4-methylphenyl)amine, C21H18Br3N
  56. The crystal structure of 3-(2,5-dimethylanilino)-1-(2,5-dimethylphenyl)-4-methyl-1H-pyrrole-2,5-dione, C21H22N2O2
  57. Crystal structure of dicarbonyl (μ2-indole-2-carboxylato κ2 O:O′)tris(triphenylarsine-κAs)dirhodium(I) acetone solvate, C68H56As3NO5Rh2
  58. The crystal structure of 4-chloro-2-formylphenyl 4-methylbenzenesulfonate, C14H11ClO4S
  59. Crystal structure of 4-iodobenzyl 2-(6-methoxynaphthalen-2-yl) propanoate, C21H19IO3
Heruntergeladen am 6.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2024-0270/html
Button zum nach oben scrollen