Home The crystal structure of poly[aqua-(μ2-4,4′- bis(imidazolyl)biphenyl-κ2N:N′)-(μ2-3-nitrobenzene-1,2-dicarboxylato-κ2O:O′)]copper (II) hydrate, C26H21N5O8Cu
Article Open Access

The crystal structure of poly[aqua-(μ2-4,4′- bis(imidazolyl)biphenyl-κ2N:N′)-(μ2-3-nitrobenzene-1,2-dicarboxylato-κ2O:O′)]copper (II) hydrate, C26H21N5O8Cu

  • Gui-Lian Li ORCID logo EMAIL logo , Meng-Ni Liu , Gao-Jing Du and Jin-Yuan Zhang
Published/Copyright: May 31, 2022

Abstract

C26H21N5O8Cu, monoclinic, P21/c (no. 14), a = 17.2262(10) Å, b = 7.3474(3) Å, c = 21.1086(11) Å, β = 111.498(6)°, V = 2485.8(2) Å3, Z = 4, Rgt(F) = 0.0629, wRref(F2) = 0.1433, T = 293(2) K.

CCDC no.: 2172883

Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Blue block
Size: 0.37 × 0.34 × 0.33 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.94 mm−1
Diffractometer, scan mode: SuperNova, ω
θmax, completeness: 25.5°, >99%
N(hkl)measured, N(hkl)unique, Rint: 25925, 4609, 0.089
Criterion for Iobs, N(hkl)gt: Iobs > 2 σ(Iobs), 3869
N(param)refined: 361
Programs: Bruker [1], Olex2 [2], SHELX [3, 4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z Uiso*/Ueq
Cu1 0.15767 (3) 0.40843 (6) 0.49484 (2) 0.02090 (17)
C1 0.2736 (2) −0.0474 (5) 0.60176 (18) 0.0205 (8)
C2 0.2237 (3) −0.1863 (5) 0.61101 (19) 0.0237 (9)
C3 0.2571 (3) −0.3136 (6) 0.6623 (2) 0.0350 (11)
H3 0.2235 −0.4082 0.6666 0.042*
C4 0.3384 (3) −0.3035 (7) 0.7068 (2) 0.0423 (12)
H4 0.3589 −0.3874 0.7420 0.051*
C5 0.3894 (3) −0.1681 (6) 0.6988 (2) 0.0347 (11)
H5 0.4447 −0.1590 0.7285 0.042*
C6 0.3567 (3) −0.0458 (5) 0.64573 (19) 0.0244 (9)
C7 0.2357 (2) 0.0982 (5) 0.54786 (19) 0.0230 (9)
C8 0.1312 (3) −0.1947 (5) 0.56855 (19) 0.0240 (9)
C9 0.2643 (3) 0.6549 (7) 0.4432 (3) 0.0517 (15)
H9 0.2205 0.6909 0.4041 0.062*
C10 0.3444 (3) 0.7116 (8) 0.4613 (3) 0.0556 (17)
H10 0.3654 0.7905 0.4371 0.067*
C11 0.3334 (3) 0.5279 (6) 0.5374 (2) 0.0257 (9)
H11 0.3470 0.4577 0.5767 0.031*
C12 0.4744 (2) 0.6604 (5) 0.56325 (19) 0.0227 (9)
C13 0.5267 (3) 0.7401 (7) 0.5354 (2) 0.0378 (11)
H13 0.5069 0.7679 0.4892 0.045*
C14 0.6091 (3) 0.7794 (7) 0.5758 (2) 0.0372 (11)
H14 0.6441 0.8298 0.5558 0.045*
C15 0.6400 (3) 0.7448 (5) 0.64522 (19) 0.0236 (9)
C16 0.5877 (3) 0.6597 (7) 0.6713 (2) 0.0425 (13)
H16 0.6076 0.6305 0.7173 0.051*
C17 0.5058 (3) 0.6151 (7) 0.6315 (2) 0.0416 (12)
H17 0.4723 0.5549 0.6508 0.050*
C18 0.7262 (3) 0.7990 (6) 0.68939 (19) 0.0240 (9)
C19 0.7676 (3) 0.9366 (6) 0.6696 (2) 0.0310 (10)
H19 0.7410 0.9944 0.6280 0.037*
C20 0.8475 (3) 0.9901 (6) 0.7102 (2) 0.0305 (10)
H20 0.8736 1.0844 0.6963 0.037*
C21 0.8883 (3) 0.9030 (5) 0.77151 (19) 0.0226 (9)
C22 0.8487 (3) 0.7664 (6) 0.7927 (2) 0.0280 (9)
H22 0.8758 0.7083 0.8341 0.034*
C23 0.7686 (3) 0.7158 (6) 0.7521 (2) 0.0295 (10)
H23 0.7422 0.6240 0.7670 0.035*
C24 1.0065 (3) 0.9623 (5) 0.87996 (19) 0.0236 (9)
H24 0.9795 0.9277 0.9090 0.028*
C25 1.0311 (3) 1.0175 (7) 0.7869 (2) 0.0333 (10)
H25 1.0252 1.0276 0.7414 0.040*
C26 1.0991 (3) 1.0595 (6) 0.8418 (2) 0.0321 (10)
H26 1.1488 1.1055 0.8404 0.039*
Cu1 0.15767 (3) 0.40843 (6) 0.49484 (2) 0.02090 (17)
N1 0.2577 (2) 0.5376 (4) 0.49077 (16) 0.0241 (7)
N2 0.3883 (2) 0.6299 (4) 0.52229 (17) 0.0244 (8)
N3 0.9721 (2) 0.9567 (5) 0.81159 (16) 0.0233 (7)
N4 1.0841 (2) 1.0240 (4) 0.90034 (15) 0.0225 (7)
N5 0.4148 (2) 0.0848 (5) 0.63521 (19) 0.0356 (9)
O1 0.23246 (17) 0.2575 (4) 0.57209 (13) 0.0242 (6)
O1W 0.06542 (17) 0.2820 (4) 0.51083 (14) 0.0273 (7)
H1WA 0.0153 0.3134 0.5032 0.041*
H1WB 0.0764 0.1692 0.5171 0.041*
O2 0.2087 (2) 0.0575 (4) 0.48755 (14) 0.0365 (8)
O2W −0.0406 (2) 0.0301 (6) 0.61584 (17) 0.0583 (11)
H2WA −0.0057 0.0243 0.5960 0.088*
H2WB −0.0865 0.0106 0.5831 0.088*
O3 0.09033 (19) −0.0537 (4) 0.56467 (16) 0.0357 (8)
O4 0.10246 (18) −0.3459 (4) 0.54288 (15) 0.0319 (7)
O5 0.4051 (2) 0.1294 (5) 0.57752 (17) 0.0484 (9)
O6 0.4727 (3) 0.1381 (7) 0.6843 (2) 0.0919 (18)

Source of material

All chemicals were of reagent grade and used as received without further purification. The 4,4′-bis(imidazolyl)biphenyl was obtained from Jinan Henghua Technology Co., Ltd.. The 3-nitrobenzene-1,2-dicarboxylic acid was purchased from Beijing Bailingwei Technology Co., Ltd.. Other chemical reagents were obtained from the Tianjin Deen Chemical Reagent Co., Ltd.. The mixture of 3-nitrobenzene-1,2-dicarboxylic acid (H23-Nbdc 21.3 mg, 0.1 mmol), 4,4′-bis(imidazolyl)biphenyl (bibp, 28.6 mg, 0.1 mmol), Cu(OAc)2·4H2O (20.3 mg, 0.1 mmol), EtOH (2 mL) and H2O (4 mL) was placed in a 23 ml Teflon-lined autoclave at 393 K for four days, then cooled to room temperature. Blue block crystals were obtained in ca. 58% yield. Elemental analysis calcd. (%) for C26H21N5O8Cu: C, 52.48; H, 3.56; N, 11.77 Found: C, 52.42; H, 3.74; N, 11.62.

Experimental details

Using Olex2 [2]. The structure was solved with the SheLXT [3] structure solution program and refined with the SheLXL [4] refinement package. Hydrogen atoms were placed in their geometrically idealized positions and constrained to ride on their parent atoms. The Uiso of the H-atoms were constrained to 1.2 times Ueq of their bonding carbon atoms with C–H = 0.93 Å (aromatic) and 1.5 times Ueq for the hydrogen atoms at water with O–H = 0.85 Å.

Comment

The aromatic 1,2-benzenedicarboxylic acids are widely used constructing coordination polymers (CPs) with interesting structures and properties not only because of their diversities coordination modes (monodentate, bridging, chelating), but also because of their strong thermal and chemical stabilities. The nitro-1,2-benzenedicarboxylates are widely used as O-donor ligands to enrich the structural and functional diversities of coordination polymers because the N and O atoms in the electron-withdrawing group (–NO2) can be not only used as coordination sites, but also as donors or acceptors of hydrogen-bond interactions. We and other authors have synthesized a large number of CPs with interesting structures and excellent properties based on 3-nitrobenzene-1,2-dicarboxylic acid (H23-Nbdc) [515]. However, the literature on the synthesis of CPs based on the mixed H23-Nbdc and 4,4′-bis(imidazolyl)biphenyl(bibp) ligands is relative rare [8].

X-ray crystallographic analysis reveals that the title complex crystallizes in monoclinic crystal system, space group P21/c and features a two-dimensional grid layer. The asymmetric unit contains one Cu(II) ion, one 3-Nbdc dianion, one bibp molecule, one coordinated water and one guest water molecule, as shown in Figure (A: x, 1 + y, z; B: −1 + x, 1.5 − y, −0.5 + z). The Cu(II) ion is five-coordinated in a slightly distorted tetragonal-pyramidal geometry[CuO3N2] with the one carboxylate O(1) atom belonging to 3-Nbdc anion, one O(1W) atom from coordinated water molecule, and N(1) and N(4B) atoms from two symmetry-related bibp molecules, while another carboxylate O(4A) atom from symmetry-related 3-Nbdc dianion occupies the apical site. The Cu–O bond lengths are 1.974(3), 2.002(3) and 2.429(3) Å, and the Cu–N bond lengths are 2.013(5) and 2.037(5) Å, respectively.

Since the fivefold coordination geometry in the complex does not correspond to a perfect tetragonal pyramid, we used a convenient distortion parameter τ5 for the quantitative characterisation of the copper coordination polyhedron [16]. The extreme values of distortion parameter (0 and 1) are associated with an ideal tetragonal pyramid and a regular trigonal bipyramid. The distortion parameter of the title compound is 0.23, the result reveals that the copper coordination polyhedron is the predominantly tetragonal pyramidal geometry (77%), additionally including a 23% contribution of the trigonal-bipyramid state.

The adjacent copper ions are linked by the carboxylate groups of 3-Nbdc dianions adopting monodentate coordination mode to form a metal-carboxylate chain with the Cu···Cu distance of 7.3474 Å. The metal-carboxylate chains are further connected by bibp molecules adopting exo-bidentate coordinated mode to produce a two-dimensional grid layer with the through-ligand Cu···Cu separation of 17.3226 Å. The discussed layers, stacking along the c direction adopting a -ABAB- mode, are cohered by interlayer hydrogen bonds forming a bilayer structure. There is a hydrogen bond between the coordinated water O(1W) and the carboxylate O(4) atom from 3-Nbdc anion (O(1W)–H(1WA)···O(4): d = 2.732(4) Å). Secondly, it there is a hydrogen bond between free water O(2W) and the carboxylate O(3) and O(2) atoms from 3-Nbdc anions (O(2W)–H(2WA)···O(3): d = 2.901(5) Å; O(2W)–H(2WB)···O(2): d = 2.989(5) Å). Bilayers further stack together to accomplish its entire three-dimensional structure by offset-stacking π–π interactions between imidazole ring and benzene ring of bibp molecules with the centroid distance of 4.1312 Å and the planar angle of 18.2°. It is obvious that H-bond interactions and π–π interactions play important roles in the self-assembly and enhanced the stability of resultant structure.


Corresponding author: Gui-Lian Li, College of Chemistry and Chemical Engineering, LuoYang Normal University, Luoyang, Henan 471934, P. R. China, E-mail:

Funding source: National Natural Science Foundation of China

Award Identifier / Grant number: 21571093

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by the National Natural Science Foundation of China (no. 21571093).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Rigaku Oxford Diffraction. CrysAlisPRO Software System; Rigaku Corporation: Oxford, UK, 2015.Search in Google Scholar

2. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

3. Sheldrick, G. M. SHELXTL – integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Search in Google Scholar PubMed PubMed Central

4. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar PubMed PubMed Central

5. Wang, X. L., Xiong, Y., Sha, X. T., Liu, G. C., Lin, H. Y. Various polycarboxylate-directed Cd(II) coordination polymers based on a semirigid bis-pyridyl-bis-amide ligand: construction and fluorescent and photocatalytic properties. Cryst. Growth Des. 2017, 17, 483–496; https://doi.org/10.1021/acs.cgd.6b01299.Search in Google Scholar

6. Liu, G., Li, Y., Lu, Z., Li, X., Chen, X. Carboxylates directed versatile structures of ten 1D-3D Ni(II) coordination polymers: fluorescent behaviors and electrochemical activities. CrystEngComm 2019, 21, 5344–5355; https://doi.org/10.1039/c9ce01060b.Search in Google Scholar

7. Xu, W., Hu, K. K., Jin, S., Zhang, Y., Wang, D. Constructions of seven noncovalent-bonded supramolecules from reactions of Cu(II)/Cd(II)/Zn(II) with isonicotinamide and carboxylates. Inorg. Nano-Metal Chem. 2021, 51, 1842–1859; https://doi.org/10.1080/24701556.2020.1862207.Search in Google Scholar

8. Xiao, Q. Q., Song, Z. W., Li, Y. H., Cui, G. H. Two difunctional Co(II) coordination polymers for natural sunlight photocatalysis of methylene blue and selective fluorescence sensing of Cr(VI) ion in water media. J. Solid State Chem. 2019, 276, 331–338; https://doi.org/10.1016/j.jssc.2019.05.025.Search in Google Scholar

9. Liu, S., Li, L. L., Wang, W. Z., Jia, X. G., Lin, C. L. A carboxylate-bridged Co(II) layer complex: synthesis, structure and magnetic property. Chin. J. Struct. Chem. 2018, 37, 973–980.Search in Google Scholar

10. Huan, D. H., Liu, Y. G., Dong, G. Y., Wang, S. C. Three cobalt(II) coordination polymers constructed from flexible bis(thiabendazole) and dicarboxylate linkers: crystal structures, fluorescence, and photocatalytic properties. Transition Met. Chem. 2016, 41, 447–457; https://doi.org/10.1007/s11243-016-0040-9.Search in Google Scholar

11. Li, G. L., Liu, G. Z., Xin, L. Y., Li, X. L., Ma, L. F., Wang, L. Y. Syntheses, structures and fluorescence properties of four Zn/Cd(II) coordination polymers with 3-nitrobenzene-1,2-dicarboxylate and dipyridyl-typed coligands. J. Inorg. Organomet. Polym. 2015, 25, 694–701; https://doi.org/10.1007/s10904-014-0147-4.Search in Google Scholar

12. Li, G. L., Yin, W. D., Liu, G. Z., Ma, L. F., Huang, L. L., Li, L., Wang, L. Y. Single-crystal to single-crystal photochemical structure transformation of a ladder-like coordination polymer with dinuclear Zn(II) platform. Inorg. Chem. Commun. 2014, 43, 165–168; https://doi.org/10.1016/j.inoche.2014.02.037.Search in Google Scholar

13. Yin, W. D., Li, G. L., Liu, G. Z., Xin, L. Y., Li, X. L., Ma, L. F. Syntheses, structures and properties of two coordination polymers constructed by 3-nitrobenzene-1,2-dicarboxylate acid and Zn/Co. Chin. J. Inorg. Chem. 2015, 31, 1439–1446.Search in Google Scholar

14. Yin, W. D., Liu, Q. L., Li, G. L. Crystal structure of catena-poly[triaqua-(1,3-di(1H-imidazol-1-yl)benzene- κ2N:N′)- (3-nitrophthalato-κ1O)cobalt(II)]-water (2/3), C20H22N5O10.5Co. Z. Kristallogr. N. Cryst. Struct. 2020, 235, 125–128.10.1515/ncrs-2019-0531Search in Google Scholar

15. Yin, W. D., Liu, Q. L., Zhao, Y. J., Gong, X. R., Li, G. L. Crystal structure of catena-poly[bis(μ2-3,5-bis(1-imidazolyl) pyridine-κ2N:N′)-(μ2-3-nitrophthalato-κ3O,O′:Oʺ)cadmium(II)] dihydrate, C30H25N11O8Cd. Z. Kristallogr. N. Cryst. Struct. 2021, 236, 899–902; https://doi.org/10.1515/ncrs-2021-0133.Search in Google Scholar

16. Rodinaa, T. A., Losevaa, O. V., Smolentsevb, A. I., Antzutkind, O. N., Ivanova, A. V. Crystal structure, solid-state 13C and 15N NMR characterisation, chemisorption activity and thermal behaviour of new mercury(II) dipropyldithiocarbamate: binuclear, pseudo- binuclear and heteronuclear complexes of [Hg2(PrDtc)4], [Hg(PrDtc)2]2 and [Au(PrDtc)2]2[Hg2Cl6]. Inorg. Chim. Acta 2020, 508, 119630; https://doi.org/10.1016/j.ica.2020.119630.Search in Google Scholar

Received: 2022-04-01
Accepted: 2022-05-16
Published Online: 2022-05-31
Published in Print: 2022-08-26

© 2022 Gui-Lian Li et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of N-((3s,5s,7s)-adamantan-1-yl)-2-(3-benzoylphenyl)propanamide, C26H29NO2
  4. The crystal structure of bis(μ2-5-chloro-2-oxido-N-(1-oxidopropylidene)benzohydrazonato-κ5 N,O,O′:N′,O′′)-octakis(pyridine-κ1 N)trinickel(II) C60H56Cl2N12Ni3O6
  5. The crystal structure of 3-(4-chlorophenyl)-1,5-di-p-tolylpentane-1,5-dione, C25H23ClO2
  6. The crystal structure of 2,4,4-triphenyl-4H-benzo[b][1,4]oxaphosphinin-4-ium bromide – dichloromethane (1/1), C27H22BrCl2OP
  7. The crystal structure of 2-(3,6-di-tert-butyl-1,8-diiodo-9H-carbazol-9-yl)acetonitrile, C22H24I2N2
  8. Crystal structure of 3-phenylpropyl 2-(6-methoxynaphthalen-2-yl)propanoate, C23H24O3
  9. The crystal structure of (4-fluorophenyl)(5-(hydroxymethyl)furan-2-yl)methanol, C12H11FO3
  10. Crystal structure of the dihydrate of tetraethylammonium 1,3,5-thiadiazole-5-amido-2-carbamate, C11H27N5O4S
  11. Crystal structure of (Z)-4-[(p-tolylamino)(furan-2-yl)methylene]-3-phenyl-1-1-p-tolyl-1H-phenyl-1H-pyrazol-5(4H)-one, C28H23N3O2
  12. The crystal structure of (E)-3-(2-chlorophenyl)-1-ferrocenylprop-2-en-1-one, C19H15ClFeO
  13. The pseudosymmetric crystal structure of 3-((1R,2S)-1-methylpyrrolidin-1-ium-2-yl)pyridin-1-ium hexachloridostannate(IV), C10H16N2SnCl6
  14. Crystal structure of (2-(1-hydroxyheptyl)octahydro-8aH-chromene-5,8,8a-triol), C16H30O5
  15. The crystal structure of N-cyclohexyl-3-hydroxy-4-methoxybenzamide, C14H19NO3
  16. Crystal structure of 1-(4-hydroxybenzyl)-4-methoxy-9,10-dihydrophenanthrene-2,7-diol from Arundina graminifolia, C22H20O4
  17. The crystal structure of N-cyclopentyl-3-hydroxy-4-methoxybenzamide, C13H17NO3
  18. The crystal structure of 2,5,5-triphenyl-3,5-dihydro-4H-imidazol-4-one, C21H16N2O
  19. Crystal structure of 1H-1,2,3-Triazolo[4,5-b]-pyridin-4-ium nitrate, C5H5N5O3
  20. Crystal structure of (Z)-4-(((4-bromophenyl)amino)(furan-2-yl)methylene)-2,5-diphenyl-2,4-dihydro-3H-pyrazol-3-one, C26H18BrN3O2
  21. Crystal structure of 2-(4-methoxyphenyl)-3-methyl-1,8-naphthyridine, C16H14N2O
  22. The crystal structure of 3-([1,1′-biphenyl]-2-yl)-1,2-diphenylbenzo[b]phosphole-1-oxide, C32H23OP
  23. The crystal structure of ammonium (E)-4-((4-carboxyphenyl)diazenyl)benzoate, C14H13N3O4
  24. Crystal structure of bis(5-amino-1,2,4-triazol-4-ium-3-yl)methane sulfate, C5H10N8O4S
  25. The crystal structure of phenantroline-κ2 N,N′-bis(6-phenylpyridine-2-carboxylato-κ2 N,O)copper(II), C36H24N4O4Cu
  26. The crystal structure of tris(6-methylpyridin-2-yl)phosphine oxide, C18H18N3OP
  27. The crystal structure of N-(2′-hydroxymethyl-5′-phenyl-3′,4′-dihydro-[1,1′:3′,1″-terphenyl]- 1′(2′H)-yl)-P,P-diphenylphosphinic amide, C37H34NO2P
  28. Crystal structure of (E)-4-(6-(4-(2-(pyridin-4-yl)vinyl)phenoxy)pyrimidin-4-yl)morpholine, C21H20N4O2
  29. Crystal structure of 5-(adamantan-1-yl)-3-[(4-trifluoromethylanilino)methyl]-2,3-dihydro-1,3,4-oxadiazole-2-thione, C20H22F3N3OS
  30. Crystal structure of 2,2-dichloro-1-(4-chloro-1H-indol-1-yl)ethan-1-one, C10H6Cl3NO
  31. The crystal structure of 4-(((3-bromo-5-(trifluoromethyl)pyridin-2-yl)oxy)methyl)benzonitrile, C28H16Br2F6N4O2
  32. The crystal structure of 1H-benzimidazole-2-carboxamide, C8H7N3O
  33. The crystal structure of Histidinium hydrogensquarate, C10H11N3O6
  34. The crystal structure of 3-amino-5-carboxypyridin-1-ium iodide, C6H7IN2O2
  35. Crystal structure of (E)-amino(2-(3-ethoxy-4-hydroxybenzylidene)hydrazineyl)methaniminium nitrate hemihydrate C10H16N5O5.5
  36. Crystal structure of 1,2-bis(4,5-dinitro-1H-imidazol-1-yl)ethane, C8H6N8O8
  37. The crystal structure of diaqua-bis(pyrazolo[1,5-a]pyrimidine-3-carboxylato-κ2N,O)manganese(II), C14H12N6O6Mn
  38. The crystal structure of catena-poly[aqua-2,2′bipyridine-κ2N,N′-(μ2-5-ethoxyisophthalato-κ 4O,O:Oʺ,O′ʺ)cadmium(II)] monohydrate, C20H20CdN2O7
  39. The crystal structure of (1S,3R)-1-(4-isopropylphenyl)-3-(methoxycarbonyl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-2-iumchloride monohydrate, C22H27ClN2O3
  40. Crystal structure of 1-isopropyl-3-(prop-1-en-2-yl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine, C11H15N5
  41. The crystal structure of (2,2′-bipyridine-κ2N,N′)- bis(6-phenylpyridine-2-carboxylate-κ2N,O)manganese(II)] monohydrate, C34H26N4O5Mn
  42. Crystal structure of the cocrystal 1,3,5,7-tetranitro-1,3,5,7-tetrazoctane ─ 2,3-dihydroindole (1/1), C12H17N9O8
  43. Crystal structure of 3-acetyl-6-hydroxy-2H-chromen-2-one monohydrate, C11H10O5
  44. Crystal structure of 6,9-diamino-2-ethoxyacridinium 3,5-dinitrobenozate — dimethylsulfoxide — water (1/1/1), C24H27N5O9S
  45. The crystal structure of 4,4′-bipyridinium bis-(2-hydroxy-3-methoxybenzoate), 2(C8H7.68O4)·C10H8.64N2
  46. Crystal structure of (Z)-4-(((4-fluorophenyl)amino)(furan-2-yl)methylene)-5-methyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one
  47. The crystal structure of bis(4-chloro-2-(((2-chloroethyl)imino)methyl)phenolato-κ2N,O)-oxidovanadium(IV), C18H16Cl4N2O3V
  48. The crystal structure of 17-(bromoethynyl)-17-hydroxy-10, 13-dimethyl- 1,2,6,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-3H-cyclopenta[a]phenanthren-3-one, C21H27BrO2
  49. The crystal structure of 4-((6-fluoropyridin-2-yloxy)methyl)benzonitrile, C13H9FN2O
  50. Crystal structure of (Z)-2-(1-bromo-2-phenylvinyl)-5-ethyl-2-methyl-1,3-dioxane-5-carboxylic acid, C15H17Br1O4
  51. Crystal structure of catena-poly[tribenzyl-κ1C-(μ2-6-oxidopyridin-1-ium-3-carboxylato-κ2O:O’)tin(IV)-dichloromethane-methanol (1/1/1), C29H31Cl2NO4Sn
  52. Crystal structure of bis{2-(tert-butyl)-6-((E)-((4-((E)-1-(methoxyimino)ethyl)phenyl)imino)methyl)phenolato-κ2N,O}zinc(II), C40H46N4O4Zn
  53. Crystal structure of diaqua-bis(μ2-2-carboxy-3,4,5,6-tetrafluorobenzoato-κ2O:O′)-bis(phenanthroline-κ2N,N′)-bis(μ2-3,4,5,6-tetrafluorophthalato-κ3O:O,O′)dieuropium(III) – phenanthroline (1/2), C40H19EuF8N4O9
  54. The crystal structure of diaqua-bis(6-phenylpyridine-2-carboxylato-κ2N,O) manganese(II) — water — dimethylformamide (1/2/1), C27H31N3O9Mn
  55. The crystal structure of bis(pyrazolo[1,5-a]pyrimidine-3-carboxylato-κ2N,O)-copper(ii), C14H8N6O4Cu
  56. Crystal structure of poly[(μ2-1-(1-imidazolyl)-4-(imidazol-1-ylmethyl)benzene-κ2N:N′)-(μ3-pyridazine-4,5-dicarboxylate-κ3O:O′:N)]copper(II) hydrate, C19H16CuN6O5
  57. Crystal structure of acrinidinium tetrafluorohydrogenphthalate, C21H11F4NO4
  58. Crystal structure of 2-(1H-pyrazol-3-yl-κN)pyridine-κN-bis(2-(2,4-difluorophenyl)pyridinato-κ2C,N)iridium(III) sesquihydrate, C30H18F4IrN5·1.5[H2O]
  59. Crystal structure of 2-(2-hydroxy-5-nitrophenyl)-5-methyl-1,3-dioxane-5-carboxylic acid, C12H13N1O7
  60. The crystal structure of 1,2-bis(pyridinium-4-yl)ethane diperchlorate, C12H14N2·2ClO4 – a second polymorph
  61. The crystal structure of [(1,10-phenantroline-κ2N,N′)-bis(6-phenylpyridine-2-carboxylato-κ2N,O)manganese(II)] monohydrate, C36H26N4O5Mn
  62. Crystal structure of 1,2-bis(2,2,3,3,5,5,5-heptamethyl-1,1,4,4- tetrakis(trimethylsilyl)pentasilan-1-yl)ditellane, C38H114Si18Te2
  63. Crystal structure of 1,2-bis(2,4-dinitro-1H-imidazol-1-yl)ethane – dimethylformamide (1/1), C11H13N9O9
  64. Crystal structure of (Z)-3-((tert-butylamino) methylene)-2-(2-hydroxynaphthalen-1-yl) chroman-4-one, C24H23NO3
  65. Synthesis and crystal structure of (E)-1-(4-(((E)-3-(tert-butyl)-2-hydroxybenzylidene)amino)phenyl)ethan-1-one O-ethyl oxime, C21H26N2O2
  66. Crystal structure of the double salt bis(5-amino-1,2,4-triazol-4-ium-3-yl)methane hydrogen oxalate hemioxalate, C8H11N8O6
  67. Hydrothermal synthesis and crystal structure of catena-poly[diaqua-bis(μ2-4-[(4-pyridinylmethyl)amino]benzoato-κ2N:O)cobalt(II)]–1,2bi(4-pyridyl)ethene–water (1/1/1), C50H50N8O8Co
  68. Crystal structure of 3-(3-bromophenyl)-1′,3′-dimethyl-2′H,3H,4H-spiro[furo[3, 2-c]chromene-2,5′-pyrimidine]-2′,4,4′,6′(1′H,3′H) tetraone, C22H15BrN2O6
  69. The crystal structure of poly[aqua-(μ2-4,4′- bis(imidazolyl)biphenyl-κ2N:N′)-(μ2-3-nitrobenzene-1,2-dicarboxylato-κ2O:O′)]copper (II) hydrate, C26H21N5O8Cu
  70. The crystal structure of bis(4-(6-carboxy-8-ethyl-3-fluoro-5-oxo-5,8-dihydro-1,8-naphthyridin-2- yl)piperazin-1-ium) adipate tetrahydrate, C36H52F2N8O14
  71. Synthesis and crystal structure of poly[aqua(μ4-(1R,2S,4R)-4-hydroxy-1-((7-hydroxy-3-(4-hydroxy-3-sulfonatophenyl)-4-oxo-4H-chromen-8-yl)methyl)pyrrolidin-1-ium-2-carboxylate-κ4O:O′:O″:O‴)sodium(I)] monohydrate, C21H22NNaO12S
  72. Crystal structure of chlorido-(η6-toluene)(2,2′-bipyridine-κ2N,N′)ruthenium(II) hexafluorophosphate, C17H16ClN2RuPF6
  73. The crystal structure of (R)-6-hydroxy-8-methoxy-3-methylisochroman-1-one, C11H12O4
  74. Crystal structure of catena-poly[(5,5,7,12,12,14-hexamethyl -1,4,8,11-tetraazacyclotetradecane- κ4N,N′,Nʺ,N‴)nickel(II)-(μ2-perchlorato-κ2O:O′)] 3,5-dicarboxybenzoate – methanol (1/2), C27H49ClN4NiO12
  75. The crystal structure of 4-(chloromethyl)benzonitrile, C8H6ClN
  76. The crystal structure of dimethylammonium 8-[(7,9-dioxo-6,10-dioxaspiro[4.5]decan-8-ylidene)methyl]-9-oxo-6,10-dioxaspiro[4.5]dec-7-en-7-olate, C19H25NO8
  77. Crystal structure of (2R,3S,4S,5R,6S)-2-(acetoxymethyl)-6-((1-acetyl-5-bromo-4-chloro-1H-indol-3-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate hemihydrate C24H25BrClNO11
  78. The crystal structure of the co-crystal tetrakis[2-(tris(4-methoxyphenyl)stannyl)ethyl]silane – tetrahydrofuran – toluene – tetrahydrofurane (1/1/1), C103H116O13SiSn4
  79. Crystal structure of methyl 3-(1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)propanoate, C16H13NO4
  80. Crystal structure of ethyl (Z)-3-amino-2-cyano-3-(2-oxo-2H-chromen-3-yl)acrylate, C15H12N2O4
  81. Crystal structure of methyl 2-(1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)acetate, C15H11NO4
  82. Crystal structure of catena-poly[diaqua-bis(μ2-1,3-di(1H-imidazol-1-yl)propane-κ2N:N′)cobalt(II)] tetrafluoroterephthalate, C26H28N8O6F4Co
Downloaded on 6.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2022-0163/html
Scroll to top button