Home Crystal structure of 5-(adamantan-1-yl)-3-[(4-trifluoromethylanilino)methyl]-2,3-dihydro-1,3,4-oxadiazole-2-thione, C20H22F3N3OS
Article Open Access

Crystal structure of 5-(adamantan-1-yl)-3-[(4-trifluoromethylanilino)methyl]-2,3-dihydro-1,3,4-oxadiazole-2-thione, C20H22F3N3OS

  • Lamya H. Al-Wahaibi , Hazem A. Ghabbour , Fatmah A. M. Al-Omary , Edward R. T. Tiekink and Ali A. El-Emam ORCID logo EMAIL logo
Published/Copyright: May 5, 2022

Abstract

C20H22F3N3OS, triclinic, P1 (no. 1), a = 6.9678(8) Å, b = 10.7614(14) Å, c = 13.0503(14) Å, α = 76.870(3)°, β = 88.004(4)°, γ = 87.275(4)°, V = 951.60(19) Å3, Z = 2, R gt (F) = 0.0629, wR ref (F2) = 0.1626, T = 100 K.

CCDC no.: 1425854

Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Colourless prism
Size: 0.54 × 0.23 × 0.11 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.22 mm−1
Diffractometer, scan mode: Bruker APEX-II D8 venture, φ and ω
θmax, completeness: 25.0°, >99%
N(hkl)measured, N(hkl)unique, Rint: 21,069, 6660, 0.041
Criterion for Iobs, N(hkl)gt: Iobs > 2σ(Iobs), 6248
N(param)refined: 511
Programs: Bruker [1], SHELX [2, 3], WinGX/ORTEP [4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z Uiso*/Ueq
S1A 0.3734 (2) −0.06030 (14) 0.44740 (12) 0.0166 (4)
O1A 0.1263 (6) 0.0610 (4) 0.3004 (3) 0.0131 (9)
N1A 0.0897 (7) 0.2555 (5) 0.3300 (4) 0.0136 (11)
N2A 0.2170 (7) 0.1807 (5) 0.4005 (4) 0.0133 (10)
N3A 0.4741 (7) 0.2654 (5) 0.4833 (4) 0.0153 (11)
H3AB 0.572 (7) 0.215 (6) 0.510 (5) 0.018*
F1A 0.8885 (10) 0.7712 (6) 0.2557 (4) 0.0644 (19)
F2A 0.5965 (10) 0.8309 (5) 0.2232 (5) 0.0644 (18)
F3A 0.7488 (7) 0.7206 (4) 0.1308 (3) 0.0379 (11)
C1A −0.1006 (9) 0.2087 (6) 0.1860 (4) 0.0131 (13)
C2A −0.2851 (9) 0.1361 (7) 0.2270 (5) 0.0188 (14)
H2AA −0.254193 0.043201 0.247696 0.023*
H2AB −0.338981 0.164466 0.289477 0.023*
C3A −0.4324 (9) 0.1639 (7) 0.1390 (5) 0.0211 (14)
H3AA −0.551853 0.117547 0.164934 0.025*
C4A −0.4816 (9) 0.3078 (7) 0.1086 (5) 0.0235 (15)
H4AA −0.578978 0.325877 0.053066 0.028*
H4AB −0.535929 0.337093 0.170541 0.028*
C5A −0.2999 (10) 0.3787 (6) 0.0684 (5) 0.0193 (14)
H5AA −0.332776 0.472425 0.048326 0.023*
C6A −0.1501 (9) 0.3533 (6) 0.1556 (5) 0.0157 (13)
H6AA −0.202663 0.382915 0.217727 0.019*
H6AB −0.032805 0.400366 0.129951 0.019*
C7A −0.3492 (10) 0.1177 (6) 0.0425 (5) 0.0182 (14)
H7AA −0.316444 0.024952 0.062525 0.022*
H7AB −0.445849 0.132579 −0.013265 0.022*
C8A −0.1686 (10) 0.1909 (6) 0.0014 (5) 0.0179 (13)
H8AA −0.114654 0.161871 −0.061632 0.022*
C9A −0.2162 (9) 0.3350 (6) −0.0287 (5) 0.0170 (13)
H9AA −0.310615 0.354184 −0.085687 0.020*
H9AB −0.098380 0.381364 −0.054519 0.020*
C10A −0.0181 (9) 0.1631 (6) 0.0893 (5) 0.0153 (13)
H10A 0.014370 0.070330 0.109004 0.018*
H10B 0.100871 0.208062 0.063410 0.018*
C11A 0.0406 (8) 0.1820 (6) 0.2727 (4) 0.0116 (12)
C12A 0.2407 (8) 0.0624 (6) 0.3843 (4) 0.0103 (12)
C13A 0.2859 (9) 0.2254 (6) 0.4916 (5) 0.0158 (13)
H13A 0.199478 0.297127 0.502702 0.019*
H13B 0.274240 0.155203 0.555075 0.019*
C14A 0.5328 (9) 0.3822 (6) 0.4224 (5) 0.0143 (13)
C15A 0.4044 (10) 0.4654 (6) 0.3557 (5) 0.0194 (14)
H15A 0.275917 0.442040 0.350387 0.023*
C16A 0.4670 (11) 0.5816 (6) 0.2979 (5) 0.0220 (15)
H16A 0.379578 0.639995 0.255293 0.026*
C17A 0.6570 (11) 0.6128 (7) 0.3021 (5) 0.0223 (15)
C18A 0.7850 (10) 0.5317 (7) 0.3681 (5) 0.0216 (15)
H18A 0.914460 0.553968 0.371951 0.026*
C19A 0.7184 (9) 0.4165 (6) 0.4287 (5) 0.0172 (13)
H19A 0.803501 0.360982 0.475187 0.021*
C20A 0.7246 (12) 0.7329 (7) 0.2305 (6) 0.0302 (18)
S1B 0.8594 (2) 1.06071 (14) 0.55707 (12) 0.0181 (4)
O1B 0.6111 (6) 0.9361 (4) 0.7018 (3) 0.0121 (9)
N1B 0.6062 (7) 0.7430 (5) 0.6693 (4) 0.0138 (11)
N2B 0.7321 (7) 0.8202 (5) 0.6002 (4) 0.0144 (11)
N3B 1.0073 (8) 0.7352 (5) 0.5130 (4) 0.0166 (11)
H3BB 1.098 (8) 0.787 (6) 0.484 (5) 0.020*
F1B 1.1988 (13) 0.1684 (5) 0.7620 (5) 0.081 (2)
F2B 1.4793 (10) 0.2431 (6) 0.7529 (4) 0.072 (2)
F3B 1.2775 (7) 0.2737 (5) 0.8712 (3) 0.0413 (12)
C1B 0.3907 (9) 0.7883 (6) 0.8138 (5) 0.0116 (12)
C2B 0.1965 (9) 0.8522 (7) 0.7710 (5) 0.0171 (13)
H2BA 0.209521 0.945584 0.746741 0.021*
H2BB 0.159649 0.818357 0.710316 0.021*
C3B 0.0406 (9) 0.8245 (7) 0.8585 (5) 0.0197 (14)
H3BA −0.084207 0.866512 0.831068 0.024*
C4B 0.0191 (9) 0.6804 (7) 0.8921 (5) 0.0227 (15)
H4BA −0.084525 0.661078 0.946554 0.027*
H4BB −0.016148 0.646910 0.830956 0.027*
C5B 0.2072 (10) 0.6167 (6) 0.9358 (5) 0.0182 (14)
H5BA 0.191746 0.522441 0.958370 0.022*
C6B 0.3673 (10) 0.6434 (6) 0.8500 (5) 0.0187 (14)
H6BA 0.489875 0.601295 0.878336 0.022*
H6BB 0.333932 0.608230 0.789419 0.022*
C7B 0.0991 (10) 0.8778 (6) 0.9527 (5) 0.0199 (14)
H7BA 0.114163 0.971073 0.929898 0.024*
H7BB −0.002375 0.862112 1.008562 0.024*
C8B 0.2873 (10) 0.8127 (7) 0.9953 (5) 0.0242 (15)
H8BA 0.323632 0.846582 1.056910 0.029*
C9B 0.2664 (10) 0.6671 (6) 1.0307 (5) 0.0198 (14)
H9BA 0.389877 0.625215 1.057680 0.024*
H9BB 0.167595 0.647761 1.087787 0.024*
C10B 0.4459 (9) 0.8404 (6) 0.9099 (5) 0.0168 (13)
H10C 0.569004 0.799209 0.938070 0.020*
H10D 0.462561 0.933660 0.887926 0.020*
C11B 0.5385 (8) 0.8157 (6) 0.7282 (4) 0.0116 (12)
C12B 0.7359 (8) 0.9358 (6) 0.6192 (5) 0.0136 (13)
C13B 0.8156 (9) 0.7771 (6) 0.5067 (5) 0.0168 (13)
H13C 0.738634 0.706928 0.494871 0.020*
H13D 0.801939 0.848788 0.444338 0.020*
C14B 1.0726 (9) 0.6173 (6) 0.5754 (5) 0.0157 (13)
C15B 0.9477 (10) 0.5316 (6) 0.6376 (5) 0.0183 (13)
H15B 0.813251 0.550759 0.638783 0.022*
C16B 1.0248 (10) 0.4166 (7) 0.6984 (5) 0.0216 (15)
H16B 0.940911 0.356650 0.739494 0.026*
C17B 1.2184 (11) 0.3892 (6) 0.6996 (5) 0.0214 (15)
C18B 1.3421 (9) 0.4726 (6) 0.6362 (5) 0.0183 (14)
H18B 1.476321 0.452406 0.635334 0.022*
C19B 1.2684 (10) 0.5859 (6) 0.5737 (5) 0.0188 (14)
H19B 1.352845 0.642595 0.529361 0.023*
C20B 1.2923 (12) 0.2697 (7) 0.7700 (5) 0.0284 (17)

Source of material

Formaldehyde solution (37%, 1.5 mL) and 4-trifluoromethylaniline (1.61 g, 0.01 mol) were added to a solution of 5-(adamantan-1-yl)-1,3,4-oxadiazole-2(3H)-thione (2.36 g, 0.01 mol) in ethanol (15 mL), and the mixture was stirred at 293 K for 2 h and allowed to stand overnight. The precipitated crude product was filtered, washed with water, dried and crystallised from aqueous ethanol to yield 3.36 g (82%) of the title compound as colourless prisms. M.pt: 447–449 K (uncorrected). Anal. Calc. for C20H22F3N3OS: C, 58.67; H, 5.42; N, 10.26; S, 7.83%. Found: C, 58.63; H, 5.45; N, 10.24; S, 7.82%. 1 H-NMR (CDCl3, 500.13 MHz): δ 1.74–1.80 (m, 6H, Adamantane-H), 1.97–1.99 (m, 6H, Adamantane-H), 2.12 (s, 3H, Adamantane-H), 5.46 (s, 1H, NH), 5.78 (d, 2H, CH2, J = 6.8 Hz), 6.96 (d, 2H, Ar–H, J = 8.5 Hz), 7.43 (d, 2H, Ar–H, J = 8.5 Hz). 13C-NMR (CDCl3, 125.76 MHz): δ 27.41, 34.33, 36.04, 39.04 (adamantane–C), 59.0 (CH2), 123.85 (CF3), 114.50, 119.88, 128.09, 147.12 (Ar–C), 165.45 (oxadiazole–C), 177.43 (C=S). ESI-MS m/z: 410.3 [M + H]+.

Experimental details

The C-bound H atoms were geometrically placed (C–H = 0.95–1.00 Å) and refined as riding with U iso (H) = 1.2U eq (C). The N-bound H atoms were located from a difference Fourier map and refined with N–H = 0.88 + −0.01 Å, and with Uiso(H) set to 1.2Ueq(N).

Comment

The highly lipophilic adamantane cage is frequently found in biologically-active compounds possessing various pharmacological activities [5], [6], [7]. Amantadine was discovered early as an efficient drug for the control of Influenza A infection [8, 9] and further approved for the treatment of Parkinson’s disease [10]. Further studies based on adamantane derivatives resulted in the evolution of more active anti-viral drugs such as tromantadine [11] and rimantadine [12]. Adamantane-based analogues were also reported to display significant inhibitory effects against human immunodeficiency virus (HIV) [13], [14], [15]. The adamantane ethylenediamine analogue, SQ109, and the related dipiperidine derivative, SQ609, were further approved as efficient therapies against drug-susceptible and drug-resistant Mycobacterium tuberculosis strains [16, 17]. The adamantane carboxamide derivative Opaganib (ABC294640) is a newly approved anti-tumour drug for treating patients suffering from advanced solid tumours [18], [19], [20]. Furthermore, various adamantane derivatives were recognised as efficient anti-bacterial and anti-fungal candidates [21], [22], [23], [24]. On the other hand, the 1,3,4-oxadiazole nucleus was reported to constitute the core of several chemotherapeutic agents possessing anti-bacterial [25, 26], anti-fungal [27], anti-cancer [28, 29] and anti-viral [30] activities. Besides, 1,3,4-oxadiazole derivatives are presently utilised as safe herbicides for crop protection [31]. In an earlier study, we described the synthesis, anti-HIV, and anti-bacterial activities of adamantane-1,3,4-oxadiazole hybrid N-Mannich bases [15]. The previously reported compounds showed strong inhibitory activity against Gram-positive bacteria and limited activity against Gram-negative bacteria. The anti-bacterial structure-activity relationship of these compounds proved that the spectrum of the anti-bacterial efficacy is fundamentally contingent on the nature of the substituents of the aryl moiety. Further optimisation studies based on the previously prepared compounds resulted in development of the title compound (I), which exhibited strong broad-spectrum anti-bacterial activity.

The molecular structures of the independent molecules, i.e. molecule a and molecule b, comprising the crystallographic asymmetric-unit of (I) are shown in the figure (70% probability ellipsoids). The independent molecules resemble each other very closely as seen in the r.m.s. bond and angle fits of 0.0128 Å and 0.745°, respectively [32]. Crucially, there is no pseudo centre of inversion between the molecules, they being directly superimposable.

Each molecule comprises a central, planar 1,3,4-oxadiazole core connected to a thione–S [1.649(6) & 1.665(6) Å for molecules a and b, respectively], an N-bound (4-trifluoromethylanilino)methyl group and the remaining carbon atom carries the adamantan-1-yl group. Within the five-membered ring, the C11–N1 bond of 1.270(8) Å is significantly shorter than the C12–N2 bond of 1.339(8) Å, and the C11–O1 [1.383(7) Å] and C12–O1 [1.379(7) Å] bond lengths are experimentally equivalent, results suggesting limited delocalisation of π-electron density in the ring; the equivalent bond lengths for molecule b are 1.280(8), 1.324(8), 1.379(7) and 1.361(7) Å, respectively. The dihedral angle between the five- and six-membered rings is 47.1(3)°; the equivalent angle for molecule b is 51.3(3)°. Globally, the two central ring-substituents tend to be oriented to the same side of the molecule in a direction away from the thione-S atom.

There are four closely related structures in the literature, namely the phenyl compound, i.e. the parent compound [33], the 4-fluorophenyl [34], the 4-chlorophenyl [35] and the 2-trifluoromethyl [36] derivatives. Each of the previously reported structure resemble that noted above for (I).

The most prominent feature of the molecular packing in the crystal of (I) is a twisted chain aligned along the a-axis. The chains comprise alternating independent molecules and feature amine-N–H⋯S(thione) hydrogen bonds [N3a–H3ab⋯S1bi: H3ab⋯S1bi = 2.54(6) Å, N3a–H3ab⋯S1bi = 3.412(5) Å with angle at H3ab = 171(6)° and N3b–H3bb⋯S1aii: H3bb⋯S1aii = 2.55(6) Å, N3b–H3bb⋯S1aii = 3.407(6) Å with angle at H3bb = 166(5)° for symmetry operations (i): x, −1 + y, z and (ii): 1 + x, 1 + y, z]. A portion of the supramolecular chain is shown in the lower view of the Figure, where the hydrogen bonds are shown as dashed lines and non-participating hydrogen atoms are omitted.

As indicated above, the molecular structures are very similar as is the primary mode of association between the molecules. This is confirmed by the calculation of the Hirshfeld surfaces and the full and decomposed two-dimensional fingerprint plots. Crystal Explorer 17 [37] was employed for this purpose following established procedures [38]. The differences between the Hirshfeld surfaces for each independent molecule differ by no more than 1%. The most significant contribution are from H⋯H contacts being 39.9 and 39.2% for molecules a and b, respectively. The next most important contributions are of the type F⋯H/H⋯F, i.e. 24.5 and 24.0%, respectively. There are also significant contributions to the Hirshfeld surface by C⋯H/H⋯C [13.6 and 13.9%], S⋯H/H⋯S [9.0 and 9.8%], N⋯H/H⋯N [4.1 and 4.3%] and O⋯H/H⋯O [3.4 and 3.5%]. The only other surface contacts greater than 1.0% are S⋯F/F⋯S [1.5 and 0.9%], S⋯N/N⋯S [1.2 and 1.2%] and S⋯C/C⋯S [1.0 and 1.0%].


Corresponding author: Ali A. El-Emam, Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt, E-mail:

Acknowledgements

This research was funded by the Princess Nourah bint Abdulrahman University Researchers Supporting Project No. PNURSP2022R3, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: Princess Nourah bint Abdulrahman University Researchers Supporting Project No. PNURSP2022R3, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Bruker. SADABS, APEX2 and SAINT; Bruker AXS Inc.: Madison, Wisconsin, USA, 2014.Search in Google Scholar

2. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.Search in Google Scholar PubMed

3. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

4. Farrugia, L. J. WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr. 2012, 45, 849–854; https://doi.org/10.1107/s0021889812029111.Search in Google Scholar

5. Wanka, L., Iqbal, K., Schreiner, P. R. The lipophilic bullet hits the targets: medicinal chemistry of adamantane derivatives. Chem. Rev. 2013, 113, 3516–3604; https://doi.org/10.1021/cr100264t.Search in Google Scholar PubMed PubMed Central

6. Liu, J., Obando, D., Liao, V., Lifa, T., Codd, R. The many faces of the adamantyl group in drug design. Eur. J. Med. Chem. 2011, 46, 1949–1963; https://doi.org/10.1016/j.ejmech.2011.01.047.Search in Google Scholar PubMed

7. Lamoureux, G., Artavia, G. Use of the adamantane structure in medicinal chemistry. Curr. Med. Chem. 2010, 17, 2967–2978; https://doi.org/10.2174/092986710792065027.Search in Google Scholar PubMed

8. Davies, W. L., Grunert, R. R., Haff, R. F., McGahen, J. W., Neumayer, E. M., Paulshock, M., Watts, J. C., Wood, T. R., Hermann, E. C., Hoffmann, C. E. Antiviral activity of 1-adamantamine (amantadine). Science 1964, 144, 862–863; https://doi.org/10.1126/science.144.3620.862.Search in Google Scholar PubMed

9. Wendel, H. A., Snyder, M. T., Pell, S. Trial of amantadine in epidemic influenza. Clin. Pharmacol. Ther. 1966, 7, 38–43; https://doi.org/10.1002/cpt19667138.Search in Google Scholar PubMed

10. Schwab, R. S., England, A. C.Jr., Poskanzer, D. C., Young, R. R. Amantadine in the treatment of Parkinson’s disease. J. Am. Med. Assoc. 1969, 208, 1168–1170; https://doi.org/10.1001/jama.208.7.1168.Search in Google Scholar

11. Rosenthal, K. S., Sokol, M. S., Ingram, R. L., Subramanian, R., Fort, R. C. Tromantadine: Inhibitor of early and late events in herpes simplex virus replication. Antimicrob. Agents Chemother. 1982, 22, 1031–1036; https://doi.org/10.1128/aac.22.6.1031.Search in Google Scholar

12. Wingfield, W. L., Pollack, D., Grunert, R. R. Therapeutic efficacy of amantadine HCl and rimantadine HCl in naturally occurring influenza A2 respiratory Illness in man. N. Engl. J. Med. 1969, 281, 579–584; https://doi.org/10.1056/nejm196909112811102.Search in Google Scholar

13. Balzarini, J., Orzeszko-Krzesińska, B., Maurin, J. K., Orzeszko, A. Synthesis and anti-HIV studies of 2- and 3-adamantyl-substituted thiazolidin-4-ones. Eur. J. Med. Chem. 2009, 44, 303–311; https://doi.org/10.1016/j.ejmech.2008.02.039.Search in Google Scholar PubMed PubMed Central

14. Balzarini, J., Orzeszko, B., Mauri, J. K., Orzeszko, A. Synthesis and anti-HIV studies of 2-adamantyl-substituted thiazolidin-4-ones. Eur. J. Med. Chem. 2007, 42, 993–1003; https://doi.org/10.1016/j.ejmech.2007.01.003.Search in Google Scholar PubMed

15. El-Emam, A. A., Al-Deeb, O. A., Al-Omar, M., Lehmann, J. Synthesis, antimicrobial, and anti-HIV-1 activity of certain 5-(1-adamantyl)-2-substituted thio-1,3,4-oxadiazoles and 5-(1-adamantyl)-3-substituted aminomethyl-1,3,4-oxadiazoline-2-thiones. Bioorg. Med. Chem. 2004, 12, 5107–5113; https://doi.org/10.1016/j.bmc.2004.07.033.Search in Google Scholar PubMed

16. Protopopova, M., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Einck, L., Nacy, C. A. Identification of a new antitubercular drug candidate, SQ109, from a combinatorial library of 1,2-ethylenediamines. J. Antimicrob. Chemother. 2005, 56, 968–974; https://doi.org/10.1093/jac/dki319.Search in Google Scholar PubMed

17. Bogatcheva, E., Hanrahan, C., Nikonenko, B., de los Santos, G., Reddy, V., Chen, P., Barbosa, F., Einck, L., Nacy, C., Protopopova, M. Identification of SQ609 as a lead compound from a library of dipiperidines. Bioorg. Med. Chem. Lett. 2011, 21, 5353–5357; https://doi.org/10.1016/j.bmcl.2011.07.015.Search in Google Scholar PubMed PubMed Central

18. McNaughton, M., Pitman, M., Pitson, S. M., Pyne, N. J., Pyne, S. Proteasomal degradation of sphingosine kinase 1 and inhibition of dihydroceramide desaturase by the sphingosine kinase inhibitors, SKi or ABC294640, induces growth arrest in androgen-independent LNCaP-AI prostate cancer cells. Oncotarget 2016, 7, 16663–16675; https://doi.org/10.18632/oncotarget.7693.Search in Google Scholar PubMed PubMed Central

19. Britten, C. D., Garrett-Mayer, E., Chin, S. H., Shirai, K., Ogretmen, B., Bentz, T. A., Brisendine, A., Anderton, K., Cusack, S. L., Maines, L. W., Zhuang, Y., Smith, C. D., Thomas, M. B. A phase I study of ABC294640, a first-in-class sphingosine kinase-2 inhibitor, in patients with advanced solid tumors. Clin. Cancer Res. 2017, 23, 4642–4650; https://doi.org/10.1158/1078-0432.ccr-16-2363.Search in Google Scholar

20. Zhou, J., Chen, J., Yu, H. Targeting sphingosine kinase 2 by ABC294640 inhibits human skin squamous cell carcinoma cell growth. Biochem. Biophys. Res. Commun. 2018, 497, 535–542; https://doi.org/10.1016/j.bbrc.2018.02.075.Search in Google Scholar PubMed

21. Omar, K., Geronikaki, A., Zoumpoulakis, P., Camoutsis, C., Soković, M., Ćirić, A., Glamočlija, J. Novel 4-thiazolidinone derivatives as potential antifungal and antibacterial drugs. Bioorg. Med. Chem. 2010, 18, 426–432; https://doi.org/10.1016/j.bmc.2009.10.041.Search in Google Scholar PubMed

22. Al-Wahaibi, L. H., Hassan, H. M., Abo-Kamar, A. M., Ghabbour, H. A., El-Emam, A. A. Adamantane-isothiourea hybrid derivatives: synthesis, characterization, in vitro antimicrobial, and in vivo hypoglycemic activities. Molecules 2017, 22, 710; https://doi.org/10.3390/molecules22050710.Search in Google Scholar PubMed PubMed Central

23. El-Emam, A. A., Al-Tamimi, A.-M. S., Al-Omar, M. A., Alrashood, K. A., Habib, E. E. Synthesis and antimicrobial activity of novel 5-(1-adamantyl)-2-aminomethyl-4-substituted-1,2,4-triazoline-3-thiones. Eur. J. Med. Chem. 2013, 68, 96–102; https://doi.org/10.1016/j.ejmech.2013.07.024.Search in Google Scholar PubMed

24. Al-Abdullah, E. S., Al-Tuwaijri, H. M., Hassan, H. M., Haiba, M. E. Antimicrobial and hypoglycemic activities of novel N-Mannich bases derived from 5-(1-adamantyl)-4-substituted-1,2,4-triazoline-3-thiones. Int. J. Mol. Sci. 2014, 15, 22995–23010; https://doi.org/10.3390/ijms151222995.Search in Google Scholar PubMed PubMed Central

25. Ogata, M., Atobe, H., Kushida, H., Yamamoto, K. In vitro sensitivity of mycoplasmas isolated from various animals and sewage to antibiotics and nitrofurans. J. Antibiot. 1971, 24, 443–451; https://doi.org/10.7164/antibiotics.24.443.Search in Google Scholar PubMed

26. Kadi, A. A., El-Brollosy, N. R., Al-Deeb, O. A., Habib, E. E., Ibrahim, T. M., El-Emam, A. A. Synthesis, antimicrobial, and anti-inflammatory activities of novel 2-(1-adamantyl)-5-substituted-1,3,4-oxadiazoles and 2-(1-adamantylamino)-5-substituted-1,3,4-thiadiazoles. Eur. J. Med. Chem. 2007, 42, 235–242; https://doi.org/10.1016/j.ejmech.2006.10.003.Search in Google Scholar PubMed

27. Prakash, O., Kumar, M., Kumar, R., Sharma, C., Aneja, K. R. Hypervalent iodine(III) mediated synthesis of novel unsymmetrical 2,5-disubstituted 1,3,4-oxadiazoles as antibacterial and antifungal agents. Eur. J. Med. Chem. 2010, 45, 4252–4257; https://doi.org/10.1016/j.ejmech.2010.06.023.Search in Google Scholar PubMed

28. Gamal El-Din, M. M., El-Gamal, M. I., Abdel-Maksoud, M. S., Yoo, K. H., Oh, C.-H. Synthesis and in vitro antiproliferative activity of new 1,3,4-oxadiazole derivatives possessing sulfonamide moiety. Eur. J. Med. Chem. 2015, 90, 45–52; https://doi.org/10.1016/j.ejmech.2014.11.011.Search in Google Scholar PubMed

29. Zhang, K., Wang, P., Xuan, L.-N., Fu, X.-Y., Jing, F., Li, S., Liu, Y.-M., Chen, B.-Q. Synthesis and antitumor activities of novel hybrid molecules containing 1,3,4-oxadiazole and 1,3,4-thiadiazole bearing Schiff base moiety. Bioorg. Med. Chem. Lett 2014, 24, 5154–5146; https://doi.org/10.1016/j.bmcl.2014.09.086.Search in Google Scholar PubMed

30. Summa, V., Petrocchi, A., Bonelli, F., Crescenzi, B., Donghi, M., Ferrara, M., Fiore, F., Gardelli, C., Gonzalez Paz, O., Hazuda, D. J., Jones, P., Kinzel, O., Laufer, R., Monteagudo, E., Muraglia, E., Nizi, E., Orvieto, F., Pace, P., Pescatore, G., Scarpelli, R., Stillmock, K., Witmer, M. V., Rowley, M. Discovery of raltegravir, a potent, selective orally bioavailable HIV-integrase inhibitor for the treatment of HIV-AIDS infection. J. Med. Chem. 2008, 51, 5843–5855; https://doi.org/10.1021/jm800245z.Search in Google Scholar PubMed

31. Shi, W., Qian, X., Zhang, R., Song, G. Synthesis and quantitative structure-activity relationships of new 2,5-disubstituted-1,3,4-oxadiazoles. J. Agric. Food Chem. 2001, 49, 124–130; https://doi.org/10.1021/jf0007941.Search in Google Scholar PubMed

32. Spek, A. L. checkCIF validation ALERTS: what they mean and how to respond. Acta Crystallogr. 2020, E76, 1–11; https://doi.org/10.1107/s2056989019016244.Search in Google Scholar PubMed PubMed Central

33. Al-Tamimi, A.-M. S., Al-Deeb, O. A., El-Emam, A. A., Ng, S. W., Tiekink, E. R. T. 5-(Adamantan-1-yl)-3-anilinomethyl-2,3-dihydro-1,3,4-oxadiazole-2-thione. Acta Crystallogr. 2013, E69, o729; https://doi.org/10.1107/s1600536813009835.Search in Google Scholar PubMed PubMed Central

34. Al-Tamimi, A.-M. S., Alafeefy, A. M., El-Emam, A. A., Ng, S. W., Tiekink, E. R. T. 5-(Adamantan-1-yl)-3-[(4-fluoroanilino)methyl]-2,3-dihydro-1,3,4-oxadiazole-2-thione. Acta Crystallogr. 2013, E69, o730; https://doi.org/10.1107/s1600536813009823.Search in Google Scholar

35. Al-Alshaikh, M. A., Ghabbour, H. A., Al-Tamimi, A.-M. S., Abdelbaky, M. S. M., Garcia-Granda, S., El-Emam, A . A. Crystal structure of 5-(adamantan-1-yl)-3-[(4-chloroanilino)methyl]-2,3-dihydro-1,3,4-oxadiazole-2-thione, C19H22ClN3OS. Z. Kristallogr. N. Cryst. Struct. 2016, 231, 301–303; https://doi.org/10.1515/ncrs-2015-0151.Search in Google Scholar

36. Al-Wabli, R. I., El-Emam, N. A., Ghabbour, H. A., Haress, N. G., El-Emam, A. A. Crystal structure of 5-(adamantan-1-yl)-3-[(2-trifluoromethylanilino)methyl]-2,3-dihydro-1,3,4-oxadiazole-2-thione, C20H22F3N3OS. Z. Kristallogr. N. Cryst. Struct. 2016, 231, 815–817; https://doi.org/10.1515/ncrs-2015-0278.Search in Google Scholar

37. Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D., Spackman, M. A. Crystal Explorer v17; The University of Western Australia: Australia, 2017.Search in Google Scholar

38. Tan, S. L., Jotani, M. M., Tiekink, E. R. T. Utilizing Hirshfeld surface calculations, non-covalent interaction (NCI) plots and the calculation of interaction energies in the analysis of molecular packing. Acta Crystallogr. 2019, E75, 308–318; https://doi.org/10.1107/s2056989019001129.Search in Google Scholar PubMed PubMed Central

Received: 2022-03-26
Accepted: 2022-04-21
Published Online: 2022-05-05
Published in Print: 2022-08-26

© 2022 Lamya H. Al-Wahaibi et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of N-((3s,5s,7s)-adamantan-1-yl)-2-(3-benzoylphenyl)propanamide, C26H29NO2
  4. The crystal structure of bis(μ2-5-chloro-2-oxido-N-(1-oxidopropylidene)benzohydrazonato-κ5 N,O,O′:N′,O′′)-octakis(pyridine-κ1 N)trinickel(II) C60H56Cl2N12Ni3O6
  5. The crystal structure of 3-(4-chlorophenyl)-1,5-di-p-tolylpentane-1,5-dione, C25H23ClO2
  6. The crystal structure of 2,4,4-triphenyl-4H-benzo[b][1,4]oxaphosphinin-4-ium bromide – dichloromethane (1/1), C27H22BrCl2OP
  7. The crystal structure of 2-(3,6-di-tert-butyl-1,8-diiodo-9H-carbazol-9-yl)acetonitrile, C22H24I2N2
  8. Crystal structure of 3-phenylpropyl 2-(6-methoxynaphthalen-2-yl)propanoate, C23H24O3
  9. The crystal structure of (4-fluorophenyl)(5-(hydroxymethyl)furan-2-yl)methanol, C12H11FO3
  10. Crystal structure of the dihydrate of tetraethylammonium 1,3,5-thiadiazole-5-amido-2-carbamate, C11H27N5O4S
  11. Crystal structure of (Z)-4-[(p-tolylamino)(furan-2-yl)methylene]-3-phenyl-1-1-p-tolyl-1H-phenyl-1H-pyrazol-5(4H)-one, C28H23N3O2
  12. The crystal structure of (E)-3-(2-chlorophenyl)-1-ferrocenylprop-2-en-1-one, C19H15ClFeO
  13. The pseudosymmetric crystal structure of 3-((1R,2S)-1-methylpyrrolidin-1-ium-2-yl)pyridin-1-ium hexachloridostannate(IV), C10H16N2SnCl6
  14. Crystal structure of (2-(1-hydroxyheptyl)octahydro-8aH-chromene-5,8,8a-triol), C16H30O5
  15. The crystal structure of N-cyclohexyl-3-hydroxy-4-methoxybenzamide, C14H19NO3
  16. Crystal structure of 1-(4-hydroxybenzyl)-4-methoxy-9,10-dihydrophenanthrene-2,7-diol from Arundina graminifolia, C22H20O4
  17. The crystal structure of N-cyclopentyl-3-hydroxy-4-methoxybenzamide, C13H17NO3
  18. The crystal structure of 2,5,5-triphenyl-3,5-dihydro-4H-imidazol-4-one, C21H16N2O
  19. Crystal structure of 1H-1,2,3-Triazolo[4,5-b]-pyridin-4-ium nitrate, C5H5N5O3
  20. Crystal structure of (Z)-4-(((4-bromophenyl)amino)(furan-2-yl)methylene)-2,5-diphenyl-2,4-dihydro-3H-pyrazol-3-one, C26H18BrN3O2
  21. Crystal structure of 2-(4-methoxyphenyl)-3-methyl-1,8-naphthyridine, C16H14N2O
  22. The crystal structure of 3-([1,1′-biphenyl]-2-yl)-1,2-diphenylbenzo[b]phosphole-1-oxide, C32H23OP
  23. The crystal structure of ammonium (E)-4-((4-carboxyphenyl)diazenyl)benzoate, C14H13N3O4
  24. Crystal structure of bis(5-amino-1,2,4-triazol-4-ium-3-yl)methane sulfate, C5H10N8O4S
  25. The crystal structure of phenantroline-κ2 N,N′-bis(6-phenylpyridine-2-carboxylato-κ2 N,O)copper(II), C36H24N4O4Cu
  26. The crystal structure of tris(6-methylpyridin-2-yl)phosphine oxide, C18H18N3OP
  27. The crystal structure of N-(2′-hydroxymethyl-5′-phenyl-3′,4′-dihydro-[1,1′:3′,1″-terphenyl]- 1′(2′H)-yl)-P,P-diphenylphosphinic amide, C37H34NO2P
  28. Crystal structure of (E)-4-(6-(4-(2-(pyridin-4-yl)vinyl)phenoxy)pyrimidin-4-yl)morpholine, C21H20N4O2
  29. Crystal structure of 5-(adamantan-1-yl)-3-[(4-trifluoromethylanilino)methyl]-2,3-dihydro-1,3,4-oxadiazole-2-thione, C20H22F3N3OS
  30. Crystal structure of 2,2-dichloro-1-(4-chloro-1H-indol-1-yl)ethan-1-one, C10H6Cl3NO
  31. The crystal structure of 4-(((3-bromo-5-(trifluoromethyl)pyridin-2-yl)oxy)methyl)benzonitrile, C28H16Br2F6N4O2
  32. The crystal structure of 1H-benzimidazole-2-carboxamide, C8H7N3O
  33. The crystal structure of Histidinium hydrogensquarate, C10H11N3O6
  34. The crystal structure of 3-amino-5-carboxypyridin-1-ium iodide, C6H7IN2O2
  35. Crystal structure of (E)-amino(2-(3-ethoxy-4-hydroxybenzylidene)hydrazineyl)methaniminium nitrate hemihydrate C10H16N5O5.5
  36. Crystal structure of 1,2-bis(4,5-dinitro-1H-imidazol-1-yl)ethane, C8H6N8O8
  37. The crystal structure of diaqua-bis(pyrazolo[1,5-a]pyrimidine-3-carboxylato-κ2N,O)manganese(II), C14H12N6O6Mn
  38. The crystal structure of catena-poly[aqua-2,2′bipyridine-κ2N,N′-(μ2-5-ethoxyisophthalato-κ 4O,O:Oʺ,O′ʺ)cadmium(II)] monohydrate, C20H20CdN2O7
  39. The crystal structure of (1S,3R)-1-(4-isopropylphenyl)-3-(methoxycarbonyl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-2-iumchloride monohydrate, C22H27ClN2O3
  40. Crystal structure of 1-isopropyl-3-(prop-1-en-2-yl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine, C11H15N5
  41. The crystal structure of (2,2′-bipyridine-κ2N,N′)- bis(6-phenylpyridine-2-carboxylate-κ2N,O)manganese(II)] monohydrate, C34H26N4O5Mn
  42. Crystal structure of the cocrystal 1,3,5,7-tetranitro-1,3,5,7-tetrazoctane ─ 2,3-dihydroindole (1/1), C12H17N9O8
  43. Crystal structure of 3-acetyl-6-hydroxy-2H-chromen-2-one monohydrate, C11H10O5
  44. Crystal structure of 6,9-diamino-2-ethoxyacridinium 3,5-dinitrobenozate — dimethylsulfoxide — water (1/1/1), C24H27N5O9S
  45. The crystal structure of 4,4′-bipyridinium bis-(2-hydroxy-3-methoxybenzoate), 2(C8H7.68O4)·C10H8.64N2
  46. Crystal structure of (Z)-4-(((4-fluorophenyl)amino)(furan-2-yl)methylene)-5-methyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one
  47. The crystal structure of bis(4-chloro-2-(((2-chloroethyl)imino)methyl)phenolato-κ2N,O)-oxidovanadium(IV), C18H16Cl4N2O3V
  48. The crystal structure of 17-(bromoethynyl)-17-hydroxy-10, 13-dimethyl- 1,2,6,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-3H-cyclopenta[a]phenanthren-3-one, C21H27BrO2
  49. The crystal structure of 4-((6-fluoropyridin-2-yloxy)methyl)benzonitrile, C13H9FN2O
  50. Crystal structure of (Z)-2-(1-bromo-2-phenylvinyl)-5-ethyl-2-methyl-1,3-dioxane-5-carboxylic acid, C15H17Br1O4
  51. Crystal structure of catena-poly[tribenzyl-κ1C-(μ2-6-oxidopyridin-1-ium-3-carboxylato-κ2O:O’)tin(IV)-dichloromethane-methanol (1/1/1), C29H31Cl2NO4Sn
  52. Crystal structure of bis{2-(tert-butyl)-6-((E)-((4-((E)-1-(methoxyimino)ethyl)phenyl)imino)methyl)phenolato-κ2N,O}zinc(II), C40H46N4O4Zn
  53. Crystal structure of diaqua-bis(μ2-2-carboxy-3,4,5,6-tetrafluorobenzoato-κ2O:O′)-bis(phenanthroline-κ2N,N′)-bis(μ2-3,4,5,6-tetrafluorophthalato-κ3O:O,O′)dieuropium(III) – phenanthroline (1/2), C40H19EuF8N4O9
  54. The crystal structure of diaqua-bis(6-phenylpyridine-2-carboxylato-κ2N,O) manganese(II) — water — dimethylformamide (1/2/1), C27H31N3O9Mn
  55. The crystal structure of bis(pyrazolo[1,5-a]pyrimidine-3-carboxylato-κ2N,O)-copper(ii), C14H8N6O4Cu
  56. Crystal structure of poly[(μ2-1-(1-imidazolyl)-4-(imidazol-1-ylmethyl)benzene-κ2N:N′)-(μ3-pyridazine-4,5-dicarboxylate-κ3O:O′:N)]copper(II) hydrate, C19H16CuN6O5
  57. Crystal structure of acrinidinium tetrafluorohydrogenphthalate, C21H11F4NO4
  58. Crystal structure of 2-(1H-pyrazol-3-yl-κN)pyridine-κN-bis(2-(2,4-difluorophenyl)pyridinato-κ2C,N)iridium(III) sesquihydrate, C30H18F4IrN5·1.5[H2O]
  59. Crystal structure of 2-(2-hydroxy-5-nitrophenyl)-5-methyl-1,3-dioxane-5-carboxylic acid, C12H13N1O7
  60. The crystal structure of 1,2-bis(pyridinium-4-yl)ethane diperchlorate, C12H14N2·2ClO4 – a second polymorph
  61. The crystal structure of [(1,10-phenantroline-κ2N,N′)-bis(6-phenylpyridine-2-carboxylato-κ2N,O)manganese(II)] monohydrate, C36H26N4O5Mn
  62. Crystal structure of 1,2-bis(2,2,3,3,5,5,5-heptamethyl-1,1,4,4- tetrakis(trimethylsilyl)pentasilan-1-yl)ditellane, C38H114Si18Te2
  63. Crystal structure of 1,2-bis(2,4-dinitro-1H-imidazol-1-yl)ethane – dimethylformamide (1/1), C11H13N9O9
  64. Crystal structure of (Z)-3-((tert-butylamino) methylene)-2-(2-hydroxynaphthalen-1-yl) chroman-4-one, C24H23NO3
  65. Synthesis and crystal structure of (E)-1-(4-(((E)-3-(tert-butyl)-2-hydroxybenzylidene)amino)phenyl)ethan-1-one O-ethyl oxime, C21H26N2O2
  66. Crystal structure of the double salt bis(5-amino-1,2,4-triazol-4-ium-3-yl)methane hydrogen oxalate hemioxalate, C8H11N8O6
  67. Hydrothermal synthesis and crystal structure of catena-poly[diaqua-bis(μ2-4-[(4-pyridinylmethyl)amino]benzoato-κ2N:O)cobalt(II)]–1,2bi(4-pyridyl)ethene–water (1/1/1), C50H50N8O8Co
  68. Crystal structure of 3-(3-bromophenyl)-1′,3′-dimethyl-2′H,3H,4H-spiro[furo[3, 2-c]chromene-2,5′-pyrimidine]-2′,4,4′,6′(1′H,3′H) tetraone, C22H15BrN2O6
  69. The crystal structure of poly[aqua-(μ2-4,4′- bis(imidazolyl)biphenyl-κ2N:N′)-(μ2-3-nitrobenzene-1,2-dicarboxylato-κ2O:O′)]copper (II) hydrate, C26H21N5O8Cu
  70. The crystal structure of bis(4-(6-carboxy-8-ethyl-3-fluoro-5-oxo-5,8-dihydro-1,8-naphthyridin-2- yl)piperazin-1-ium) adipate tetrahydrate, C36H52F2N8O14
  71. Synthesis and crystal structure of poly[aqua(μ4-(1R,2S,4R)-4-hydroxy-1-((7-hydroxy-3-(4-hydroxy-3-sulfonatophenyl)-4-oxo-4H-chromen-8-yl)methyl)pyrrolidin-1-ium-2-carboxylate-κ4O:O′:O″:O‴)sodium(I)] monohydrate, C21H22NNaO12S
  72. Crystal structure of chlorido-(η6-toluene)(2,2′-bipyridine-κ2N,N′)ruthenium(II) hexafluorophosphate, C17H16ClN2RuPF6
  73. The crystal structure of (R)-6-hydroxy-8-methoxy-3-methylisochroman-1-one, C11H12O4
  74. Crystal structure of catena-poly[(5,5,7,12,12,14-hexamethyl -1,4,8,11-tetraazacyclotetradecane- κ4N,N′,Nʺ,N‴)nickel(II)-(μ2-perchlorato-κ2O:O′)] 3,5-dicarboxybenzoate – methanol (1/2), C27H49ClN4NiO12
  75. The crystal structure of 4-(chloromethyl)benzonitrile, C8H6ClN
  76. The crystal structure of dimethylammonium 8-[(7,9-dioxo-6,10-dioxaspiro[4.5]decan-8-ylidene)methyl]-9-oxo-6,10-dioxaspiro[4.5]dec-7-en-7-olate, C19H25NO8
  77. Crystal structure of (2R,3S,4S,5R,6S)-2-(acetoxymethyl)-6-((1-acetyl-5-bromo-4-chloro-1H-indol-3-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate hemihydrate C24H25BrClNO11
  78. The crystal structure of the co-crystal tetrakis[2-(tris(4-methoxyphenyl)stannyl)ethyl]silane – tetrahydrofuran – toluene – tetrahydrofurane (1/1/1), C103H116O13SiSn4
  79. Crystal structure of methyl 3-(1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)propanoate, C16H13NO4
  80. Crystal structure of ethyl (Z)-3-amino-2-cyano-3-(2-oxo-2H-chromen-3-yl)acrylate, C15H12N2O4
  81. Crystal structure of methyl 2-(1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)acetate, C15H11NO4
  82. Crystal structure of catena-poly[diaqua-bis(μ2-1,3-di(1H-imidazol-1-yl)propane-κ2N:N′)cobalt(II)] tetrafluoroterephthalate, C26H28N8O6F4Co
Downloaded on 6.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2022-0144/html
Scroll to top button